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ABSTRACT

Information Geometry and Model Reduction in Oscillatory and Networked Systems

Benjamin Lane Francis
Department of Physics and Astronomy, BYU

Doctor of Philosophy

In this dissertation, I consider the problem of model reduction in both oscillatory and net-
worked systems. Previously, the Manifold Boundary Approximation Method (MBAM) has been
demonstrated as a data-driven tool for reducing the parametric complexity of so-called sloppy
models.

To be effective, MBAM requires the model manifold to have low curvature. I show that
oscillatory models are characterized by model manifolds with high curvature in one or more
directions. I propose methods for transforming the model manifolds of these models into ones with
low curvature and demonstrate on a couple of test systems.

I demonstrate MBAM as a tool for data-driven network reduction on a small model from power
systems. I derive multiple effective networks for the model, each tailored to a specific choice of
system observations. I find several important types of parameter reductions, including network
reductions, which can be used in large power systems models.

Finally, I consider the problem of piecemeal reduction of large systems. When a large system is
split into pieces that are to be reduced separately using MBAM, there is no guarantee that the reduced
pieces will be compatible for reassembly. I propose a strategy for reducing a system piecemeal
while guaranteeing that the reduced pieces will be compatible. I demonstrate the reduction strategy
on a small resistor network.

Keywords: model reduction, parameter inference, oscillatory systems, networks, information
geometry, power systems, piecemeal reduction
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Chapter 1

Information Geometry and Model

Reduction in Oscillatory and Networked

Systems

1.1 Introduction

Models are used as a tool for studying, understanding, and predicting the behavior of a system

under various conditions. They simplify communication by summarizing knowledge that has

been accumulated about the system. In engineering contexts, they can be used to evaluate system

performance before the system is even built, making it cheaper and more efficient to explore various

designs. In other contexts ranging from medicine to economics to meteorology to public health,

they give the modeler an opportunity to explore the likelihood of certain events before they happen

and examine the impact of potential interventions before they are put into practice.

These promises of modeling assume that the models being used are a sufficiently accurate

representation of reality. This is especially true for quantitative mathematical models, where care

1
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must be taken to validate them against measurement data and properly infer model parameters that

cannot be measured directly. Efforts to improve mathematical models in many fields have given rise

to increasingly detailed models of system components, which require both greater computational

power to use and better measurement data to validate. Advances in computing continue to push

the boundaries of the size and complexity of models that can be handled, and new sensors and

measurement techniques are allowing data to be accumulated at unprecedented rates. But even when

a large model is within computational limits and sufficient measurements are available to identify

all of its parts and validate it, excessive detail obfuscates understanding of the relationships among

system components - understanding that acts as a springboard for the insight necessary to solve

difficult problems. This motivates reducing models in order to coarse-grain away the “microscopic”

detail in order to clarify the “macroscopic” view one is interested in.

For some applications people already intuitively do this. For example, in circuit analysis, details

of surface effects in a current-carrying wire that would require Maxwell’s equations to model are

ignored and only the bulk current is usually considered. For simple circuits involving a few resistors,

inductors, and/or capacitors, this gives a clearer picture of how different elements interact to produce

the overall behavior of the circuit. But what about a large circuit (like the power grid of a region),

where the number of components and lines in the circuit is in the thousands? Or what about models

of the brain involving millions of neurons, complicated “networks” of chemical reactions involved

in cellular processes or combustion, or large ecosystems with hundreds or thousands of interacting

species and resources? How do you appropriately coarse-grain away detail in systems like these?

1.2 Previous Work

The idea of coarse-graining was introduced by Kadanoff [1] in the field of statistical mechanics.

Kadanoff, in studying the behavior of the Ising model of spins on a lattice, wanted a way to



1.2 Previous Work 3

connect the microscopic picture of the behavior of individual spins in the lattice with the observed

macroscopic behavior of a magnet near its critical temperature. He proposed treating groups of

spins as units, using the total magnetization of the unit in place of individual spins and replacing the

interactions of individual spins with an effective interaction between units that is similar to the one

between spins but with adjusted parameters. This process is formalized by the Renormalization

Group. More recently, the coarse-graining idea has been used as a method for model reduction in

molecular dynamics simulations, where atoms are grouped and replaced with effective particles

whose properties are determined from the underlying group, and the interactions between atoms

are replaced with effective potentials between these particles [2–5]. Usually these methods require

modelers to make choices about how the atoms are grouped and what form the effective potentials

will take, based on expert intuition and available measurement data.

In the general area of dynamical systems, many previous efforts at model reduction have

concentrated on linear (or linearized) systems with methods such as balanced truncation [6],

singular perturbation [7, 8], Krylov subspace projection [9–12], or other methods [13–15]. Most

of these attempt to reduce the order (i.e., number of differential equations) of the model, rather

than its parametric complexity (i.e., number of tunable parameters) and focus on the input-output

response of the system. Singular perturbation methods are usable for nonlinear systems but

typically treat a specific class of approximations that distinguish slow- and fast-timescale dynamics,

without considering other effectively small or large parameters or coordinated parameter effects.

A commonly-used approach is to reduce the dimensionality of the system by projecting onto a

subspace that approximately captures the dynamics of the full system [16–18]. Balanced truncation

falls into this category, but it also includes strategies designed for nonlinear systems such as proper

orthogonal decomposition (POD) with Galerkin projection and extensions of balanced truncation.

The problem with all such schemes is that projection generally does not guarantee preservation of

underlying physical conservation laws or symmetries, potentially introducing instabilities in the
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model when reduction is performed on components in open loop. Extensions of POD or Galerkin

projection methods that preserve energy, stability, or other characteristics exist [19–23], but only for

certain types of systems (e.g., Hamiltonian systems). In addition, most of the above methods require

researchers to choose the level of approximation introduced, although in many cases heuristics are

given to guide such choices.

Most models that practitioners are interested in reducing have many tunable parameters whose

values must be inferred from measurements. Multiparameter models from a wide variety of fields

fall into a universality class known as sloppy models [24–28]. The predictions of these models are

very sensitive to coordinated changes in some combinations of parameters, but very insensitive to

others. Recently, a data-driven approach to parametrized model reduction for nonlinear systems

has arisen in the field of information geometry, known as the Manifold Boundary Approximation

Method (MBAM), that takes advantage of this parameter insensitivity by removing insensitive

parameter combinations from the model [29]. Having a data-driven method allows the reduction

to be tailored to the types and precision of available measurement data. Reduction using MBAM

proceeds by finding and applying physically-meaningful limits in the model parameters, so any

reduced models that are constructed represent the idealized behaviors of the original model in

specific parameter regimes. This, in turn, means that underlying conservation laws and symmetries

are respected during the reduction process.

MBAM has been applied to models from systems biology and biophysics [30–32], power

systems [33,34], nuclear structure physics [35], neuroscience [36], and general linear time-invariant

(LTI) systems [37]. In this dissertation, I lay the foundation for application of MBAM in general

oscillatory systems, which often exhibit large parameter sensitivities and other characteristics that

differentiate them from other sloppy models. I also demonstrate using MBAM as a tool for reducing

networks, with specific application in power systems and electric circuits.
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1.3 Overview

The outline of this work is as follows. In Ch. 2, I review concepts and methods from information

geometry, and as well as modeling in power systems. This is followed by three chapters (described

below) which take the form of journal articles. Concluding remarks are found in Ch. 6.

1.3.1 Similarity Measures in Oscillatory Systems

In order to quantitatively compare measured phenomena and model predictions, some kind of

similarity measure must be used. For dynamical systems it is common to compare time series data

to predictions using the method of least squares. I show, in Ch. 3, that this is generally inappropriate

for oscillatory systems. I also define new similarity measures that address many of the issues with

the usual approach.

1.3.2 Network Reduction in Power Systems

Many of the systems that scientists and engineers are interested in studying consist of large,

complicated networks of many interacting components. Equations used to model the components

are usually known, resulting in very large models for the entire networked system. For some

applications, measurements on the whole system are impractical, if not entirely unavailable. In such

cases, reducing parts of the model that are irrelevant for predicting the available measurements not

only reduces the computation necessary to use the model, but also helps provide insight into the

“coarse-grained” system-level behavior. In Ch. 4, I use MBAM as a tool for network reduction on a

small network from the field of electric power systems. I show the relationship between the choice

of observations being made on the system and the level of reduction that can be achieved in the

model.
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1.3.3 Piecemeal Reduction of Large Networks

The computations necessary to reduce models of very large systems using MBAM are cumbersome.

New tools are needed for efficiently extending methods developed on small systems to large ones.

One way to do this is to partition the system into manageable pieces, reduce them separately, and

then put the pieces back together. I address issues that arise, outline a piecemeal reduction strategy,

and demonstrate on a network of resistors in Ch. 5.



Chapter 2

Background and Methodology

2.1 Information Geometry

This section contains a brief review of concepts from [25, 26, 29].

Consider a parametrized model f (t,θθθ) of a system. This model makes predictions for the

behavior {yi}M
i=1 of the system observed under various experimental conditions {ti}M

i=1 (e.g., at

different times and/or for different inputs) based on the values of the parameters θθθ . Parameter

inference consists in finding the values of θθθ for which the model predictions { f (ti,θθθ)}M
i=1 most

closely fit the observed behavior {yi}. Closeness is defined through the use of a metric or similarity

measure (known variously as a loss, error, objective, or cost function).

2.1.1 Least squares regression

It is common in statistics to assume that the data can be reproduced by the model plus a stochastic

term to account for discrepancies,

yi = f (ti,θθθ)+ ςi, (2.1)

7
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where ςi is a random variable that is independently distributed according to N(0,σi), with σi being

the experimental uncertainty in the measurement yi. This leads to a probability distribution function

P(yyy|θθθ) = 1
(2π)M/2

∏
M
i=1 σi

exp

(
−1

2

M

∑
i=1

(
yi− f (ti,θθθ)

σi

)2
)
, (2.2)

which is a likelihood function for the observations {yi} (which collectively form the observation

vector yyy). Maximizing the likelihood leads to minimizing the sum of squares in the exponential,

resulting in the following metric:

C(θθθ) =
1
2 ∑

i

(
yi− f (ti,θθθ)

σi

)2

, (2.3)

It is possible to obtain other metrics if different assumptions are made about the generating process

for {yi}.

The graph of C(θθθ) is a surface over parameter space, so the parameter inference problem

translates to one of finding the global minimum of this surface. To illustrate, consider the following

rational function, which could be used to model some system for which data is available (see

Fig. 2.1):

f (t,θθθ) =
1

1+θ1t +θ2t2 + . . .
(2.4)

Leaving out the other parameters for the moment, I plot the cost surface over θ1 and θ2 in Fig. 2.2.

2.1.2 The model manifold

Being a metric or distance measure, C(θθθ) can be interpreted as the (squared) distance between

two vectors yyy and fff (θθθ) (which is the vector formed from the collection of predictions { f (ti,θθθ)}).

These two vectors live in a space known as data space because it is the space of all possible data

vectors yyy that could have been obtained for the given experimental conditions [25, 26]. As θθθ is

varied, fff (θθθ) sweeps out a surface in this space known as the model manifold, which is the primary

object of study in information geometry (see Fig. 2.3 for an example). In this view, the model fff (θθθ)
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Figure 2.1 Predictions of the model in Eq. (2.4) for various choices of θθθ . The “best fit”
curve minimizes the cost in Eq. (2.3). Each of the vertical “slices” represents a single axis
in data space (see Fig. 2.3).

is a mapping from parameter space to data space, with the parameters acting as coordinates on the

model manifold. The Jacobian Jiµ = ∂ fi/∂θµ of this mapping, also known as the sensitivity matrix,

characterizes the response of the model to changes in the parameters.

2.1.3 The Fisher Information Matrix and sloppiness

The shapes of the cost surface in parameter space and of the model manifold in data space are

closely related. To see this, first consider the gradient and Hessian of the cost function:

∇µC(θθθ) =
∂C
∂θµ

=−∑
i

1
σ2

i
(yi− fi(θθθ))

∂ fi

∂θµ

, (2.5)

Hµν(θθθ)≡
∂ 2C

∂θµ∂θν

= ∑
i

1
σ2

i

(
∂ fi

∂θµ

∂ fi

∂θν

− (yi− fi(θθθ))
∂ 2 fi

∂θµ∂θν

)
. (2.6)

Near the best fit parameters θθθ
∗, as long as the fit is good it can be assumed that the deviations

(yi− fi(θθθ
∗)) are small, so the gradient will be negligible and the Hessian, dominated by the first
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Figure 2.2 Example cost surface in parameter space for a rational function model with
two parameters [see Eq. (2.4)]. Near the best fit (point of lowest cost), level contours of
constant cost approximately form ellipses, whose principle axes (length and orientation)
are related to the eigenvalues and eigenvectors of the Hessian of the cost.

Figure 2.3 Example manifold in data space for a rational function model with two pa-
rameters [see Eq. (2.4)] being used to predict three measurements (y1,y2,y3), which are
represented collectively by the plotted point. This manifold is a 2D surface because there
are two parameters in the model, which act as coordinates on the model manifold. It is
embedded in a 3D space because the model is trying to predict three data (see Fig. 2.1).
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term in Eq. (2.6), will primarily determine the shape of the cost surface (namely an elliptical bowl;

see Fig. 2.2). In fact, the expectation value of the Hessian at the best fit is an important object in

statistics known as the Fisher Information Matrix (FIM):

Iµν ≡
〈
Hµν(θθθ

∗)
〉
= ∑

i

1
σ2

i

∂ fi

∂θµ

∂ fi

∂θν

(2.7)

The eigenvectors of the FIM indicate the directions of the principle axes of the hyperellipsoids

which form approximate surfaces of constant cost near the best fit. The lengths of these axes are

proportional to the inverse square roots of the eigenvalues.

Many multiparameter models used by practitioners exhibit a property known as sloppiness in

which the model responds very strongly to a few so-called stiff combinations of parameters and is

very insensitive to others (which are called sloppy). This is reflected in the eigenvalues of the FIM

for such a model, which will be spread over many orders of magnitude (see Fig. 2.4). In the cost

Figure 2.4 Example spectrum of eigenvalues of the FIM for a rational function model with
eight parameters [see Eq. (2.4)]. Notice that the eigenvalues are spread over many orders
of magnitude. This is an indication of sloppiness.

surface for a sloppy model, the bowl, or rather canyon, in which the best fit lies is characteristically

long in the sloppy directions and thin in the stiff ones.
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2.1.4 Information topology: manifold boundaries

Most observed (or desired) system behavior is finite and does not grow without bound, so the model

manifolds arising out of models for these systems are typically bounded. Additionally, most sloppy

models have model manifolds that exhibit a hyperribbon structure that is very long and thin (see

Fig. 2.3). This can be understood by noting that, for analytic functions, the output of the function

at neighboring points tends to be correlated. If the output at one point is fixed, the total amount

of variation of other points in a neighborhood will be limited by constraints of analyticity. As the

number of fixed points is increased, the amount of variation possible at interpolating points sampled

from the function decreases by roughly a constant factor [26]. Applying this argument to models

that are analytic functions of the parameters, cross-sections of the model manifold will likewise have

a hierarchy of widths, each roughly a constant factor smaller than the previous one. The response of

model predictions to changes in parameters typically reflects this property, so the eigenvalues of the

FIM for a sloppy model tend to be distributed in a similar way. (For a rigorous treatment of the

origin of the hyperribbon structure of model manifolds, see [38].)

Because model predictions are very insensitive to coordinated changes in some combinations of

parameters (eigendirections of the FIM with very small eigenvalues), these parameters can be taken

to extreme values (such as zero or infinity) while introducing very little error. This motivates an

examination of the limiting behaviors of the model, which are reflected in the boundary structure

of the model manifold. Topologically, for a model with N parameters, the model manifold is an

N-dimensional volume which is bounded by a set of (N−1)-dimensional faces, which in turn are

bounded by (N−2)-dimensional faces, and so on. This leads to a partially ordered set (specifically,

a graded poset, and in many cases an abstract polytope) of boundary cells that can be schematically

represented with a Hasse diagram. For example, the model manifold in Fig. 2.3 is a two-dimensional

surface that is bounded by one-dimensional edges, which come together at zero-dimensional corners.

The Hasse diagram for the boundary complex of this model manifold is shown in Fig. 2.5.
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Figure 2.5 Hasse diagram for the boundary complex of the model manifold in Fig. 2.3.
The topological structure of this manifold is that of a digon [left], a two-dimensional shape
with only two edges. The Hasse diagram [center] schematically represents the boundary
structure of this shape. Moving down the diagram corresponds to going from a given
N-dimensional face to one of the (N− 1)-dimensional faces that form its boundary. In
terms of the model, this corresponds to evaluating a limit in the parameters. Doing so
reduces the number of parameters (and hence the dimensionality) by one [right].

Each succeeding face in the hierarchy of boundary cells has one less dimension, so it is

characterized by one less parameter. Boundary cells thus represent limiting approximations of the

model with lower complexity. When the behavior of interest is close to the boundary of the model

manifold, an appropriate boundary cell with fewer parameters may be used to model the behavior

without introducing significant error. These boundary cells can be found by exploring the model

manifold using geodesics, which are the analog of straight lines for curved surfaces. This method

of approximating a model manifold by an appropriate boundary cell is known as the Manifold

Boundary Approximation Method (MBAM) [29]. A summary of the method is as follows:

1. Calculate the FIM and identify the eigendirection with smallest eigenvalue.

2. Numerically construct a geodesic from the initial parameters in this direction until a boundary

cell is encountered.
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3. Identify the appropriate mathematical limit corresponding to the boundary cell and evaluate it

in the model.

4. Fit the reduced model to the original and check for fidelity.

5. Repeat until the reduced model is no longer faithful to the original.

2.2 Power Systems Modeling

The following is an overview of some important power systems concepts. A couple of good

introductory texts are [39] and [40], while some of the more technical details of modeling can be

found in [41–43].

Power systems are the combination of components and networks designed to produce and

deliver electrical power to consumers. Broadly speaking, power systems can be thought of as having

three main parts: generation, transmission, and distribution. Modeling of power systems is done at

many levels and serves a variety of purposes. Typical elements of a power systems model at the

transmission level include generators, buses, transmission lines, and loads, each of which may be

modeled with varying levels of detail. A bus (short for busbar) is a point of connection for the other

components, i.e., generators and loads are connected to buses and transmission lines connect buses

to each other. In the network structure of a power system, buses serve as nodes and transmission

lines serve as edges (see Fig. 2.6).

The general scenario is that electrical power is produced by generators and then injected into

the buses to which these generators are connected. From there, power flows through the network

of transmission lines to all the other buses, where it is ultimately consumed by loads. Power flow

analysis consists in numerically solving for this flow of power when the system is in steady state (i.e.,

producing AC electricity at 60 Hz). This usually provides the starting point for transient stability

analysis, in which the response of the system to various faults (abnormal currents or voltages, e.g.,
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Figure 2.6 Example power systems network. Buses (horizontal lines, numbered) are
connected via transmission lines. Generators (circles marked “SG”) “inject” or supply
power at buses. Power flows through the network to loads (arrows), where it is “consumed”.
This network is known as the IEEE 14-bus test system.

due to a short-circuit) is analyzed. In a transient stability model, the system is initialized in steady

state, a fault is introduced, and the resulting transient in the variables of interest is observed. This

transient consists of the oscillating deviations of the system around equilibrium, which presumably

damp out over time (assuming the system is stable).

2.2.1 Equations of motion

The equations used to model power system phenomena reflect the fact that these phenomena cover

an incredibly broad range of time scales, from 10−7 s (lightning effects) to 105 s (day-to-day power

demand) [42, 43]. In principle, most of the devices in a system can be modeled with continuous

dynamics, resulting in ordinary differential equations (ODEs). However, the dynamics of some

variables in the system are likely to considerably faster or slower than the behavior one is primarily

interested in. In practical modeling situations, variables with slow dynamics are approximately
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constant and can be taken as control parameters or inputs, whereas those with fast dynamics are

approximately instantaneous and can be taken as algebraic, i.e., defined by an algebraic relationship

to the other variables.

To illustrate, consider the following ODE:

Txẋ = f (x,z,u, t),

Tzż = g(x,z,u, t),

Tuu̇ = ϕ(x,z,u, t).

(2.8)

The time constants Tx, Tz, and Tu represent the speed of the dynamics of the variables x, z, and u.

Assume the timescale of the behavior of interest is O(Tx). If Tu� Tx, then the dynamics of u are

much slower than those of x and the system can be approximated with the limit Tu→ ∞, which

leads to u̇ = 0 or u(t) = u(0) = u0 (hence constant). If Tz� Tx, then the dynamics of z are much

faster than those of x and the system can be approximated with the limit Tz→ 0, which leads to

0 = g(x,z,u, t), which is an algebraic constraint for the variable z. The result is that (2.8) becomes a

differential-algebraic equation (DAE):

Txẋ = f (x,z,u0, t),

0 = g(x,z,u0, t).
(2.9)

In most cases, xxx and zzz will actually be vectors of state variables. These often differ from the

variables yyy that can actually be observed, so the system in (2.9) is usually supplemented with a set

of observation equations yyy = hhh(xxx,zzz,uuu0, t). In addition, the functions fff , ggg, and hhh will depend on

various device or system parameters ppp.1 A general power systems model thus takes the following

1 In the context of power systems, I will use ppp for parameters, rather than θθθ , to avoid confusion with the conventional

use of θ as a phase angle for complex quantities. I will also follow the convention of using j, rather than i, for the

imaginary unit.
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form:

ẋxx = fff (xxx,zzz, ppp, t),

000 = ggg(xxx,zzz, ppp, t),

yyy = hhh(xxx,zzz, ppp, t),

(2.10)

where both Tx and uuu0 have now been absorbed into the functions fff , ggg, and hhh.

2.2.2 Power flow analysis

In an AC system, the voltage V and current I are sinusoidally-varying quantities, which may or

may not be in phase. Consequently, they are typically represented as complex quantities known as

phasors, having both magnitude and angle, e.g.,

V = |V |e jθ . (2.11)

Current through and voltage difference across an electrical line are related through the complex

impedance Z:

∆V = ZI. (2.12)

Impedance Z = R+ jX generalizes the resistance R of an electrical line through the addition of

an imaginary component X called reactance, which indicates the tendency of the line to cause the

voltage and current to be out of phase. The inverse of the impedance is the admittance Y = 1/Z,

which may be split into real and imaginary parts as Y = G+ jB, where G = R/(R2 +X2) is the

conductance and B =−X/(R2 +X2) is the susceptance of the line.

The equations used for power flow analysis begin with conservation of current at each bus of

the network:

Iinj,i =
Nbus

∑
k=1

Iik, (2.13)

where Iinj,i is the total current injected into Bus i (e.g. by devices connected to Bus i), Nbus is the

number of buses in the network, and Iik is the current flowing from Bus i to Bus k. The latter can be
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expressed in terms of the voltages Vi and Vk at each bus and the admittance Yik of the line between

them:

Iik = Yik(Vi−Vk) (2.14)

One can substitute (2.14) into (2.13) and rewrite it to obtain

Iinj,i =
Nbus

∑
k=1

Yik(Vi−Vk)

= Yi1(Vi−V1)+Yi2(Vi−V2)+ . . .

=−Yi1V1−Yi2V2 + . . .+(Yi1 +Yi2 + . . .)Vi + . . .

=

[
−Yi1 −Yi2 · · · ∑k Yik · · ·

]




V1

V2

...

Vi

...




(2.15)

Defining the vectors IIIinj ≡
[

Iinj,1 Iinj,2 . . .

]ᵀ
and VVV ≡

[
V1 V2 . . .

]ᵀ
and the matrix

YYY bus ≡




∑k Y1k −Y12 · · · −Y1i · · ·

−Y21 ∑k Y2k · · · −Y2i · · ·
...

... . . . ... . . .

−Yi1 −Yi2 · · · ∑k Yik · · ·
...

... . . . ... . . .




, (2.16)

one can summarize (2.15) in the single matrix equation

IIIinj = YYY busVVV . (2.17)

The equations embodied in (2.17) are known as the current balance equations.
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A related set of equations can be obtained for the (complex) power

Sinj,i =ViI∗inj,i (2.18)

injected at each bus. Defining SSSinj ≡
[

Sinj,1 Sinj,2 . . .

]ᵀ
, (2.18) can be expressed in matrix form as

SSSinj = diag(VVV )III∗inj

= diag(VVV )YYY ∗busVVV
∗. (2.19)

It is often more practical to use these equations in real (rather than complex) form. Letting

Sinj,i = Pinj,i + jQinj,i (P and Q are real and reactive power, respectively), Vi = |Vi|e jθi , and Ybus,ik =

Gbus,ik + jBbus,ik, the real part of (2.18) is

0 =−Pinj,i +∑
k
|Vi||Vk|(Gbus,ik cos(θi−θk)+Bbus,ik sin(θi−θk)) (2.20)

and the imaginary part is

0 =−Qinj,i +∑
k
|Vi||Vk|(Gbus,ik sin(θi−θk)−Bbus,ik cos(θi−θk)). (2.21)

Equations (2.20) and (2.21) constitute the power balance equations.

In power flow analysis, the goal is to find values of Pinj,i, Qinj,i, |Vi|, and θi that satisfy (2.20)

and (2.21). Given that there are two equations for each bus, two of these four variables must be

specified at each bus to obtain a consistent system. Loads are specified in terms of real Pl,i and

reactive Ql,i power consumed (PQ loads). The voltage magnitude |Vi| is specified on all buses

with generators, and all generators except one produce a specified amount of real power Pg,i (PV

generators). The real power on the remaining generator (called the swing or slack generator) cannot

be specified in advance; it must be free to vary to account for losses in transmission lines. In fact,

because of conservation of energy, (2.20) and (2.21) overconstrain the injected power (one equation

is redundant) while the voltages remain underconstrained because no reference angle is specified.

Accordingly, (2.20) is omitted for the slack generator and instead the voltage angle on the slack bus

is specified.
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2.2.3 Transient stability analysis

In transient stability analysis, the power flow equations are supplemented with equations for the

dynamics of the various devices in the system. It is usually assumed that the dynamics of power

flow are fast compared to the transients being studied, so the power flow equations form part of

the algebraic relations 000 = ggg(xxx,zzz, ppp, t) in (2.10). Relevant model parameters that come from the

transmission network usually include line conductances Gik and susceptances Bik.

Generators come in various types, including synchronous generators (SGs; used to model

conventional power plants), doubly-fed induction generators (DFIGs; used to model certain types of

wind power), and direct-drive synchronous generators (DDSGs; used for solar and other types of

wind). In addition, each generator is often connected to other devices that regulate its output (such as

turbine governors (TGs) for regulating the input mechanical torque and providing speed/frequency

control, and automatic voltage regulators (AVRs) for controlling the output voltage). This review

will focus on SGs and introduce some of the basic equations and parameters. A synchronous gene-

rator consists of a rotating component, appropriately called the rotor, and a stationary component,

called the stator. Both components have electrical windings which carry current during operation

of the generator. The windings on the rotor carry a DC current which produces a magnetic field by

Ampere’s law. As the rotor spins, the rotating magnetic field induces an AC voltage in the stator

windings by Faraday’s law. These stator windings are usually arranged so that the voltages produced

are 120 degrees apart, producing three symmetrical phases of AC voltage. The basic equations

for a synchronous generator describe the relationships between these various fields, voltages, and

currents. More sophisticated models include the effects of dampening, eddy currents in the rotor,

magnetic saturation, etc.

It is common practice in power systems modeling to consider all quantities from a rotating

frame of reference in which sinusoidally-varying quantities appear constant in time. This is

accomplished via a transformation known as the dq0 transformation or Park’s transformation (for
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details, see [41, 43]). This refers to the direct axis, which is aligned with the north pole of the

rotating magnetic field; the quadrature axis, which is 90 degrees ahead of the direct axis; and the

homopolar axis, perpendicular to both. In addition, most quantities are scaled by a set of base

values using a dimensionless “per-unit” (pu) system in order to further simplify the equations.

The following equations come from applying Newton’s second law to the motion of the rotor:

δ̇ = Ωb(ω−ωs) (2.22)

ω̇ =
1

2H
(τm− τe−D(ω−ωs)); (2.23)

where δ and ω are the rotor angle in rad and speed and rad/s, respectively; Ωb is the base rotational

frequency (e.g., 360π rad/s in a 60 Hz system); ωs is the reference frequency in pu (usually 1);

H is known as the inertia constant; τm and τe are the mechanical and electromagnetic torque,

respectively; and D is a damping coefficient. Ωb, ωs, H, and D are parameters (constants). τm is an

input which may either be set to a reference value or be determined by a turbine governor. τe is

usually given by

τe = (raiq + vq)iq +(raid + vd)id, (2.24)

where ra is the armature resistance (a parameter), id and iq are machine output currents, and vd and

vq are machine output voltages. The last two are linked to the bus voltage through the equations

vd = |V |sin(δ −θ) (2.25)

vq = |V |cos(δ −θ), (2.26)

whereas the power injected by the generator into the bus is

Pg = vdid + vqiq (2.27)

Qg = vqid− vdiq. (2.28)

Equations (2.22), (2.23), and (2.25)-(2.28) are the same for all SG models. Minimally, they

must be supplemented by two more algebraic relations between the machine voltages and currents
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for all quantities to be well-defined. These vary depending on the order (number of differential

variables) of the model used. The simplest model is the second-order classical model, which only

adds the following two equations to the foregoing:

0 = vq + raiq− e′q + x′did (2.29)

0 = vd + raid− x′diq, (2.30)

where e′q is a constant emf (voltage source) and x′d is the d-axis transient reactance (a parameter).

For comparison, a slightly more sophisticated (third-order) model includes the following differential

equation for e′q:

ė′q =
1

T ′d0
(−e′q− (xd− x′d)id + v f ), (2.31)

where T ′d0 is the d-axis open-circuit transient time constant, xd is the d-axis synchronous reactance,

and v f is the field voltage. T ′d0 and xd are both parameters; v f is an input determined either by a

reference value or by an automatic voltage regulator. For this model, (2.29) and (2.30) must be

replaced by

0 = vq + raiq− e′q + x′did (2.32)

0 = vd + raid− xqiq, (2.33)

where xq is the q-axis synchronous reactance (another parameter).



Chapter 3

Similarity Measures in Dynamical Systems

The field of dynamical systems covers a broad range of models. Many of these can be categorized

by the behavior they exhibit: transient behavior that settles into a steady state, cyclic behavior that

repeats at regular intervals (i.e., periodic oscillatory motion), cyclic behavior that is irregular (e.g.,

chaotic oscillatory motion), and stochastic behavior, for example. These categories are more than

simply convenient; they reflect fundamental differences between different types of systems (or

phases of a single system).

In this chapter, I explore the differences between (nonstochastic) oscillatory and nonoscillatory

sloppy models. I show that oscillatory models have characteristic features that manifest in the cost

function used for parameter inference and that these features are a reflection of model manifolds

that are qualitatively different than those of nonoscillatory models. Specifically, oscillatory models

have manifolds with a high effective dimensionality, rather than the low effective dimensionality

typical of other sloppy models. The differences also extend to the sensitivities of model predictions

to changes in parameters, which scale as a function of the total observation time in ways that are

characteristic of the model type.

I develop alternative metrics that can be used for oscillatory models which transform the model

manifold from one of high to one of low effective dimensionality. This is an important step

23
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toward being able to use tools such as MBAM for reduction of models of complex oscillatory

processes, because the primary assumption of MBAM is that the model manifold has a low effective

dimensionality that allows it to be approximated by a boundary cell of lower dimensionality without

introducing significant bias.

While much of the development of ideas and writing of this work were done collaboratively with

my advisor, I performed the computations, which resulted in the figures of the paper, in addition to

fleshing out much of the mathematical theory.

This chapter was published as an article in the journal Physical Review E [44]. I hereby confirm

that the use of this article is compliant with all publishing agreements.
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In this paper, we consider the problem of parameter sensitivity in models of complex dynamical systems
through the lens of information geometry. We calculate the sensitivity of model behavior to variations in
parameters. In most cases, models are sloppy, that is, exhibit an exponential hierarchy of parameter sensitivities.
We propose a parameter classification scheme based on how the sensitivities scale at long observation times.
We show that for oscillatory models, either with a limit cycle or a strange attractor, sensitivities can become
arbitrarily large, which implies a high effective dimensionality on the model manifold. Sloppy models with a
single fixed point have model manifolds with low effective dimensionality, previously described as a “hyper-
ribbon.” In contrast, models with high effective dimensionality translate into multimodal fitting problems. We
define a measure of curvature on the model manifold which we call the winding frequency that estimates the
density of local minima in the model’s parameter space. We then show how alternative choices of fitting metrics
can “unwind” the model manifold and give low winding frequencies. This prescription translates the model
manifold from one of high effective dimensionality into the hyper-ribbon structures observed elsewhere. This
translation opens the door for applications of sloppy model analysis and model reduction methods developed for
models with low effective dimensionality.

DOI: 10.1103/PhysRevE.100.012206

I. INTRODUCTION

An essential part of the modeling process is selecting
a similarity metric that quantifies the extent to which a
model mimics the system or phenomenon of interest [1].
The choice of similarity metric informs nearly all aspects of
the modeling process: model selection, data fitting, model
reduction, experimental design, model validation, etc. Here,
we consider the question of similarity metrics for dynamical
systems, particularly oscillatory ones. Although a common
choice, the least squares metric comparing model outputs
at selected times may lead to models with a high effective
dimensionality. In addition to posing technical challenges
(e.g., ill-posed, multimodal fitting problems), we argue that
a high effective dimensionality reflects a more fundamental
issue: that the choice of metric does not accurately capture
the phenomenon of interest. In this paper, we use sloppy
model analysis and information geometry to identify parame-
ter combinations in models of dynamical systems that lead to
high effective dimensionalities (Secs. II and III). We then use
methods of signal processing to construct similarity measures
that “unwind” the model manifold and lead to well-posed
inference problems (Sec. IV).

Some have already observed that one’s choice of metric
is a critical aspect of parameter space exploration [2,3].
The relationship between model behavior and parameters is
(locally) captured by sensitivity analysis. Previous studies
have decomposed the sensitivities of periodic signals into
independent parts that control amplitude, period, and other

*mktranstrum@byu.edu

features [4–6]. In chaotic systems, it has been found that
the dynamics exhibit an exponential sensitivity to parameters
[7,8]. In such cases, it is common to use measures of the
statistical distribution in phase space, rather than time series
[3,7,9–11]. The present work combines these insights with
tools of sloppy model analysis and information geometry.

Sloppy models are a broad class of models whose behav-
ior exhibits an exponential hierarchy of parameter sensitiv-
ities [12–20]. Using an information geometric approach, it
has been shown that the local sensitivity analysis reflects a
global property, i.e., a low effective dimensionality described
as a hyper-ribbon [21–24]. It has been suggested that this
hyper-ribbon structure is why simple effective (i.e., low-
dimensional) theories of collective behaviors exist for systems
that are microscopically complicated [23,24].

The effective dimensionality of sloppy models has im-
portant statistical implications. Information criteria (such as
Akaike or Bayes) are used in model selection and penalize
those with too much fitting flexibility. A model’s fitting power
is most easily estimated in the asymptotic limit, in which it
is simply approximated by the number of parameters, i.e., the
dimension of the model manifold. For hyper-ribbons, these
formulas greatly overestimate the fitting power of a model
[25,26]. However, it is also possible for models to exhibit
a high effective dimensionality, i.e., have model manifolds
whose fitting power is much larger than that suggested by the
number of parameters. As we show in Secs. II and III, these
models will exhibit extreme multimodality when fit to data,
and have model manifolds with large curvatures that tend to
fill large volumes of behavior space.

The challenge of multimodality in fitting problems has
been noted in many fields [9,10,27–29]. Proposals for

2470-0045/2019/100(1)/012206(14) 012206-1 ©2019 American Physical Society
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addressing multimodality have included global search meth-
ods [9,28,30–32], increasing the size of the parameter space
in order to escape local minima [29,33], and changing the
parameter landscape through an alternative choice of metric
[3,9].

In Sec. II, we introduce the least squares metric under
consideration and use model sensitivity analysis at long times
to classify parameter combinations. In turn, we classify mod-
els based on which parameter types they include and show
that some classes of models exhibit an anomalous statistical
dimension, that is, the effective dimensionality of the model
may be either much more or less than the number of param-
eters. In Sec. III, we argue for a deeper theoretical impli-
cation of this phenomenon. Using an information geometric
approach, we relate the effective statistical dimension to the
curvature on the model manifold. In Sec. IV, we explicitly
demonstrate that alternative metrics can lead to different ef-
fective dimensions and present a prescription for how models
of high effective dimension can be regularized through an
appropriate choice of metric.

II. MODEL AND PARAMETER CLASSIFICATIONS

A. Similarity measure

Consider a parametrized model of time y(t ; θ ) (which
could be generated, for example, as the solution to a system
of differential equations), where θ is a vector of parameters
(which could include initial conditions) and y is either a scalar
or vector of observables. We wish to quantify the similarity
of the model behavior for different values of θ . The most
common metric in the literature is least squares regression,
in which case the distance (or cost) between two models, with
parameters θ and θ0, takes the form

C(θ ) = 1

2T

∫ T

0
dt[δy(t ; θ )]2, (1)

δy(t ; θ ) ≡ y(t ; θ0) − y(t ; θ ). (1a)

We are interested in the sensitivity of model predictions
at different time scales. By increasing the total time T , this
cost function C(θ ) defines a coarse-graining in the effec-
tive sampling rate followed by a renormalization so that
the total number of effective data points is constant. When
measuring the distance to observed data yi at times ti (with
uncertainties σi used as weights), the integral becomes a
sum,

C(θ ) = 1

2T

∑
i

(
yi − y(ti; θ )

σi

)2

. (2)

Being a distance measure, C defines a metric on the space
of data and model predictions known as data space [21,22].
We interpret the model predictions y(ti; θ ) and observations yi

as components of two vectors in data space which we denote
y(θ ) and y, respectively. By varying θ , y(θ ) sweeps out a
surface in data space known as the model manifold. With this

notation, Eq. (2) may be written as

C(θ ) = 1

2T
δyᵀ�−1δy, (3)

δy ≡ y − y(θ ), (3a)

where � denotes the (diagonal) covariance matrix for the
observation vector y.

B. Sensitivity analysis and parameter classification

To quantify the sensitivity to parameters of model predic-
tions at different time scales, we consider derivatives of the
cost with respect to θ . Dropping the t and θ dependence for
clarity, the gradient of Eq. (1) is

∂C

∂θμ

= − 1

T

∫ T

0
dt

(
δy

∂y

∂θμ

)
, (4)

and the Hessian is

Hμν ≡ ∂2C

∂θμ∂θν

= 1

T

∫ T

0
dt

(
∂y

∂θμ

∂y

∂θν

− δy
∂2y

∂θμ∂θν

)
. (5)

Note that because δy(t ; θ0) = 0, the gradient at θ0 is also 0 and
the Hessian at θ0 simplifies to

Hμν (θ0) = 1

T

∫ T

0
dt

(
∂y

∂θμ

∂y

∂θν

)
. (6)

This is also approximately valid when θ ≈ θ0. For Eq. (3), the
Hessian at θ0 takes the form

H (θ0) = 1

T

∂y
∂θ

ᵀ
�−1 ∂y

∂θ
. (7)

Although the gradient and Hessian may be evaluated at other
points, H (θ0) is particularly important because it is the Fisher
information metric (FIM) for this measurement process and
acts as a Riemannian metric on the model manifold. We are
interested in the eigenvalues of H and their dependence on T .

Figure 1 plots a cross section of C (as a surface over θ ), the
eigenvalues of H , and a three-dimensional projection of the
model manifold for three models (details of these models are
found in Appendix A).

The first model is characterized by a transient decay to a
steady state. As illustrated in Fig. 1(b), for large T , the model
becomes increasingly insensitive to parameter combinations
that control transient behavior, scaling as O(T −1). The pa-
rameter that determines the steady state scales as O(1). These
scaling behaviors can be motivated as follows. We assume that
parameter combinations which control the transient dynamics
have sensitivities that decay to zero at long times,

∂y

∂θμ

(t → ∞; θ ) ∼ 0, (8)

while those that control the steady state are asymptotically
constant:

∂y

∂θμ

(t → ∞; θ ) ∼ const. (9)

In light of Eq. (6), this leads to the O(T −1) and O(1) scaling
behaviors observed. Note that as the total sampling time T is
increased past the transient dynamics, the only new informa-
tion obtained is information about the final steady state. Our

012206-2



UNWINDING THE MODEL MANIFOLD: CHOOSING … PHYSICAL REVIEW E 100, 012206 (2019)

FIG. 1. Model classes. [(a), (d), (g)]: Cross sections of C(θ ) [Eq. (1)] for three prototype models (see Appendix A, models A, D, and G).
Contrast the canyons in (a) with the ripples in (d) and the roughness in (g). [(b), (e), (h)]: Hessian eigenvalues as a function of sampling time
(same models). Colors differentiate scaling behaviors at long times. [(c), (f), (i)]: Projections of the model manifold (same models). In (c), a
three-ball in parameter space was mapped to the nearly one-dimensional region of prediction space shown (low effective dimensionality). By
contrast, for (f) and (i) a single parameter was varied producing a one-dimensional (1D) (space-filling) curve in prediction space (high effective
dimensionality). Note that in (i), the model goes through a bifurcation where the manifold begins to oscillate rapidly. The sampling required
to see continuity is prohibitive, so the points plotted become scattered.

choice of normalization keeps the effective number of data
points constant, so increasing T results in an effective loss of
information about the transient dynamics but no information
loss for the steady state.

The second model exhibits a periodic limit cycle. As shown
in Fig. 1(e), parameter combinations controlling features of
the attractor scale as O(1), those that control the transient
approach to the attractor scale as O(T −1), and the combination
controlling frequency scales as O(T 2). Motivation for the
scaling behavior of the parameter combinations controlling
the the transient approach to the attractor follow as in the
previous case. To motivate the other two scaling behaviors,
we consider the steady state of the model and expand in a
Fourier series:

y(t → ∞; θ ) =
∞∑

k=−∞
ck (θ )eikω(θ )t = y(t → ∞; c(θ ), ω(θ )).

(10)

There is an intermediate dependence of the steady state on
the amplitude coefficients ck and the oscillatory frequency ω.

This allows us to decompose the parameter sensitivities of the
steady state into two parts:

∂y

∂θμ

(t → ∞; θ ) =
∞∑

k=−∞

∂y

∂ck

∂ck

∂θμ

+ ∂y

∂ω

∂ω

∂θμ

. (11)

Because ck and ω are time independent by construction, the
time dependence of these sensitivities is due entirely to the
coefficients

∂y

∂ck
(t → ∞; θ ) = eikω(θ )t , (12)

which is bounded by a constant, and

∂y

∂ω
(t → ∞; θ ) =

∞∑
k=−∞

iktck (θ )eikω(θ )t ∼ t, (13)

which grows linearly with time. The amplitude sensitivities
(∂y/∂ck )(∂ck/∂θμ) control the shape and amplitude of the
steady state and give rise to O(1) scaling behavior [referring
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TABLE I. Parameter classification.

Eigenvalue scaling behavior Dynamics controlled

O(T −1) transient
O(1) steady state
O(T 2) frequency
O(eT ) chaotic behavior

again to Eq. (6)]. By contrast, the frequency sensitivity
(∂y/∂ω)(∂ω/∂θμ) results in O(T 2) scaling behavior. Other
studies have focused on the sensitivity to period, rather than
frequency, but the temporal scaling behavior is the same for
both [4–6].

Finally, the third model is chaotic; parameters controlling
its dynamics exhibit exponential sensitivities,

∂y

∂θμ

(t → ∞; θ ) ∼ eλμt , (14)

leading to the exponential scaling behavior in Fig. 1(h).
We classify parameter combinations in a model according

to their scaling behavior. This classification is summarized in
Table I. LaMont and Wiggins have also proposed a classifica-
tion of model parameters, based on the complexity of a given
parameter combination [25]. In the case of dynamical models,
our analysis illustrates the mechanisms that give rise to the
complexities of each class.

C. Model classification

The different scaling behaviors for the Hessian eigenval-
ues are accompanied by different structures in both the cost
surface and the model manifold (first and third columns of
Fig. 1). The cost surface of the first model is characterized
by a single, highly anisotropic basin. Its model manifold is
similarly anisotropic; the long, narrow hyper-ribbon structure
is common for models with low effective dimensionality
[21,22]. In contrast, the second cost surface has many local
minima and a model manifold with high curvature. The third
cost surface exhibits a fractal-like roughness (although for
finite T the derivative with respect to parameters formally
exists everywhere). Its model manifold is even more highly
curved and space filling.

These three models are prototypes of three model classes,
distinguished by the scaling behavior of the largest eigenvalue
for large T . For the first class, λmax ∼ O(1) is bound by a
constant. For the second class, λmax ∼ O(T n) is bound by a
polynomial. For the third class, λmax ∼ O(eT ) is exponential.
We plot the eigenvalues of the Hessian (at large, fixed T )
for the three prototype models and for two additional models
from each class in Fig. 2 (details of these models are found
in Appendix A). All nine models are considered sloppy; that
is, the eigenvalues of the Hessian are spread over many orders
of magnitude. Accordingly, we refer to these model classes as
sloppy models of the first, second, and third kinds, respectively.

III. MANIFOLD CURVATURE

The large sensitivities of sloppy models of the second and
third kinds are necessarily associated with large curvature and

FIG. 2. Eigenvalues of H (θ0) for the following models (see
Appendix A for details): A: sum of exponentials; B: rational polyno-
mial; C: biological adaptation; D: FitzHugh-Nagumo; E : Hodgkin-
Huxley; F : Wnt oscillator; G: Lorenz; H : Hindmarsh-Rose; I:
damped, driven pendulum. {A, B,C} are nonoscillatory models,
{D, E , F } are periodic, and {G, H, I} are chaotic.

high effective dimensionality on the model manifold. This
can be understood by noting that the absolute variation in
the model behavior is bounded (the models oscillate within
a finite range and do not grow). This restricts the model
manifold to a finite region of data space. Large parameter
sensitivities indicate that the model manifold is very long
in the associated parameter directions. The only way to fit
something very long into a finite region is for it to curve,
fold, or wind. The combination of large parameter sensitivities
and bounded predicted behavior necessitates large manifold
curvature. For large T , there will be enough winding that the
manifold effectively fills a volume of higher dimension than
that of the manifold itself. This high effective dimensionality
is the opposite effect of the low effective dimensionality
argued for in previous studies of sloppy models [23,24].

To quantify this effect, we introduce a quantity that we
call the winding frequency, as follows. The extrinsic curvature
associated with parameter direction v is given by the geodesic
curvature k(v) = 1/R (as in Ref. [22]), where R is the radius
of curvature of the circle tangent to the manifold along direc-
tion (∂y/∂θμ)vμ (sum over μ implied; see Fig. 3). We define

FIG. 3. Illustration of winding frequency. The “s”-shaped curve
represents a possible 1D cross section of a model manifold (obtained,
for example, by varying just one parameter combination) in a sim-
ple 2D data space. Also shown are the tangent or velocity vector
(∂y/∂θμ)vμ (sum over μ implied), the tangent circle with radius R,
and the winding frequency ω defined in Eq. (15).
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FIG. 4. Winding frequencies along Hessian eigendirections for
the models from Fig. 2, ordered from left to right by magnitude of
the corresponding eigenvalue. “Stiff” refers to eigendirections with
large eigenvalues, while “sloppy” refers to eigendirections with small
eigenvalues. The black dashed line at ω = 2π roughly distinguishes
low from high winding frequencies.

the winding frequency as

ω(v) ≡
∣∣∣∣ ∂y
∂θμ

vμ

∣∣∣∣k(v), (15)

which is the angular velocity at which the manifold locally
winds around the tangent circle, such that f = ω/2π is the
number of windings of the manifold per unit change in pa-
rameters. Because C is a distance measure for the manifold
embedding space, each winding of the manifold results in
a local minimum of C, so f is also the frequency of local
minima in C as we move along parameter direction v.

Figure 4 shows winding frequencies along Hessian
eigendirections for the models from Fig. 2. Notice that sloppy
models of the first kind (i.e., hyper-ribbons) have low winding
frequencies. Sloppy models of the second kind have high
winding frequency in the stiffest direction, which controls
frequency. Sloppy models of the third kind have high winding
frequencies in more than one direction.

The effective dimensionality, estimated by the winding
frequencies, depends on the metric of the model manifold
embedding space, i.e., Eq. (1). We now show that alternative
choices for embedding the model manifold can lead to differ-
ent effective dimensionalities.

IV. ALTERNATIVE METRICS

A. Analytic signal (AS)

The high effective dimensionality of sloppy models of the
second kind is due entirely to the parameter combination
controlling frequency. Varying this parameter combination
causes model predictions to pass in and out of phase with each
other, resulting in local minima in the cost (see Figs. 5 and 6).
We avoid this aliasing by defining the phase of oscillation as
a monotonically increasing function of time and comparing
model behaviors at the same phase.

Many definitions of instantaneous frequency and phase
have been considered in the literature [34–36]. We use the an-
alytic signal approach [37], which is discussed in Sec. IV A 1.
Some alternatives are discussed in Appendix B. We propose a
metric for oscillatory systems in Sec. IV A 2. We discuss the

FIG. 5. Cost C for the model y(t ) = A cos(ωt ), treating A and ω

as parameters. The cost has been rescaled to make the local minima
apparent.

Hessian and FIM in Sec. IV A 3. Results of applying our met-
ric to the FitzHugh-Nagumo model are found in Sec. IV A 4.
Comparing model predictions with observational data in this
paradigm requires calculating the phases of the observa-
tions, which will have uncertainty. We propagate uncertainty
and derive appropriate covariance matrices in Appendix C.
Calculation of winding frequencies requires second-order
parameter sensitivities (specifically, when calculating the
geodesic curvature κ); we derive the necessary formulas in
Appendix D.

1. Phase definition

The analytic representation z(t ) of an oscillatory signal y(t )
is a complex function defined as

z(t ) ≡ y(t ) + iH[y](t ) = A(t )eiφ(t ), (16)

FIG. 6. Decoupling amplitude from phase. (a) Signal vs time
for two signals with mismatched amplitude and frequency; their
difference is indicated by the shading between the curves. The
mismatch in frequency causes a large difference δy when the two
signals are out of phase (t ≈ 1.8) but little or no difference when
they are in phase (t ≈ 3.5). (b) Signal vs phase for the same signals.
The difference-at-constant-phase δỹ is consistent throughout (see
Sec. IV A 2). (c) Phase vs time for the two signals. The difference
in phase δφ simply grows linearly (see Sec. IV A 2). (d) Analytic
representation in the complex plane of the black point marked in the
other three panels (see Sec. IV A 1).
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where H[y](t ) is the Hilbert transform of y(t ),

H[y](t ) ≡ 1

π
P. V.

∫ ∞

−∞

y(τ )

t − τ
dτ , (17)

and the magnitude A(t ) and argument φ(t ) of z(t ) are

A(t ) ≡
√

y2(t ) + H2[y](t ), (18)

φ(t ) ≡ tan−1

(
H[y](t )

y(t )

)
(19)

[see Fig. 6(d)].
In light of Eq. (16), we reinterpret y(t ) in terms of ampli-

tude and phase as

y(t ) = Re{z(t )} = A(t ) cos(φ(t )). (20)

We then define a new signal ỹ as a function of phase:

ỹ(φ(t )) ≡ y(t ) = A(t ) cos(φ(t )). (21)

As long as φ(t ) is monotonically increasing, the relationship
between φ and t is invertible. Hence, we may also write

ỹ(φ) = A(t (φ)) cos(φ). (22)

If y(t ) is a vector (rather than scalar) function of time, then
φ(t ) will also be a vector function of time. That is, for each
scalar component of y(t ), the preceding prescription for con-
structing the phase should be applied separately. If this is not
possible or does not produce a set of monotonically increasing
phases, it may be applied to a single scalar component of y
and the resulting phase used for all of the components. For
other alternatives that avoid using the Hilbert transform, see
Appendix B.

As a final note, a necessary condition for φ(t ) to be mono-
tonically increasing is that the signal y(t ) oscillate around 0. If
it does not, the time average 〈y(t )〉 = (1/T )

∫ T
0 y(t )dt should

be subtracted from y(t ) prior to calculating the phase. H[y](t )
will be unaffected, as the Hilbert transform of a constant is 0.

2. New cost using phase

We want to construct a cost that compares models at the
same phase rather than the same time. Actually, we can go
one step further and construct a cost that also retains the
phase information while still eliminating the aliasing of oscil-
lations that results in local minima. We use an approximation
of Eq. (1a) that arises from the propagation of uncertainty
considered in Appendix C [see Eq. (C16)]. In the discrete
case [comparing a model y(ti; θ ) with observational data yi],
Eq. (1a) is

δyi ≡ yi − y(ti; θ ). (23)

We define the deviations of the phases φi of the observations
from the phases φ(ti; θ ) predicted by the model as

δφi ≡ φi − φ(ti; θ ) (24)

[see Fig. 6(c)], and the deviations of the observations from the
predictions at constant phase as

δỹi ≡ yi − ỹ(φi; θ ) (25)

FIG. 7. Cost decomposition of the model y(t ) = A cos(ωt ).
(a) Same as Fig. 5. (b) ỹ(φ) = A cos(φ) is insensitive to changes in
ω and varies linearly with A, resulting in a quadratic dependence
of Cỹ(φ) on A only. (c) φ(t ) = ωt is insensitive to changes in A and
varies linearly with ω, resulting in a quadratic dependence of Cφ(t ) on
ω only. (d) Cost using Eq. (27). The ripples in (a) have been replaced
with a quadratic basin.

[see Fig. 6(b)]. The approximation we use for oscillatory
systems is

δyi ≈ δỹi +
(

∂ ỹ

∂φ

)
i

δφi ≡ δŷi. (26)

The first term captures changes in amplitude while the second
term captures changes in phase or frequency, so both pieces of
information are retained (see Sec. IV A 3). At the same time,
because this approximation is first order in δφi, it eliminates
the nonlinear dependence on frequency that results in ripples
in the cost (refer back to Fig. 6), which we will demonstrate
in Figs. 7 and 8.

We define a new cost function by replacing δy in Eq. (3)
with the approximation δŷ defined according to Eq. (26):

Cφ (θ ) ≡ 1

2T
δŷᵀ�−1δŷ. (27)

Using Eq. (26), this may be decomposed into three pieces rep-
resenting the amplitude contribution, the phase contribution,
and a cross term:

Cφ (θ ) = Cỹ(φ)(θ ) + Cφ(t )(θ ) + CX (θ ), (27a)

Cỹ(φ)(θ ) ≡ 1

2T
δỹᵀ�−1δỹ, (27b)

Cφ(t )(θ ) ≡ 1

2T
�φᵀ�−1�φ, (27c)

CX (θ ) ≡ 1

2T
(δỹᵀ�−1�φ + �φᵀ�−1δỹ), (27d)

�φi ≡
(

∂ ỹ

∂φ

)
i

δφi. (27e)

We compare C [Eq. (3)], Cỹ(φ), Cφ(t ), and Cφ in Fig. 7.
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FIG. 8. Effects of alternative metrics on cost surfaces (first column), winding frequencies (second column), and manifolds (third column),
(a)–(c) using analytic signal (AS) and (d)–(f) using kernel density estimation (KDE). Compare (a),(c),(d), and (f) with Figs. 1(d), 1(f), 1(g), and
1(i), respectively. Panels (b) and (e) show both the winding frequencies shown previously in Fig. 4 (“w/o ___”) and the winding frequencies
that result when using our metrics (“using ___”) for comparison. Note that long time series are needed to achieve these results; see Appendix E
for details.

When comparing two models with parameters θ0 and θ ,
Eqs. (24)–(27) take the form

δφ(t ; θ ) ≡ φ(t ; θ0) − φ(t ; θ ), (28)

δỹ(t ; θ ) ≡ ỹ(φ(t ; θ0); θ0) − ỹ(φ(t ; θ0); θ )

= y(t ; θ0) − ỹ(φ(t ; θ0); θ ), (29)

δŷ(t ; θ ) ≡ δỹ(t ; θ ) + ∂ ỹ(φ(t ; θ0); θ0)
∂φ

δφ(t, θ ), (30)

Cφ (θ ) ≡ 1

2T

∫ T

0
dt[δŷ(t ; θ )]2. (31)

As we show in Sec. IV A 3, Eq. (31) is a quadratic approxima-
tion of Eq. (1) (i.e., they have the same gradient and Hessian).
In other words, Eq. (31) is an isometric embedding of the
model manifold. However, because changes in frequency only
affect φ(t ; θ ), which is unbounded, the large manifold volume
is no longer constrained to a finite region of the embedding
space.

3. Fisher information metric

We stated in Sec. II B that the Hessian of the cost evaluated
at θ0 is the Fisher information metric (FIM). Specifically, the
FIM is related to the cost by

Iμν =
〈
∂2C(θ0)

∂θμ∂θν

〉
= 〈Hμν (θ0)〉. (32)

We have already shown that

Iμν = 1

T

∫ T

0
dt

∂y

∂θμ

∂y

∂θν

(33)

for Eq. (1) [see Eq. (6)]. We can rewrite this for oscillatory
systems in light of Eq. (21),

y(t ; θ ) = ỹ(φ(t ; θ ); θ ). (34)

Differentiating Eq. (34) with respect to θμ, we obtain

∂y

∂θμ

∣∣∣∣
t

= ∂ ỹ

∂θμ

∣∣∣∣
φ

+ ∂ ỹ

∂φ

∣∣∣∣
θ

∂φ

∂θμ

∣∣∣∣
t

, (35)

where the |x notation is used to indicate that the argument x is
being held constant in the given derivative. This relationship
is exact and shows a decoupling of the amplitude sensitivity
from the phase sensitivity [similar to Eq. (11)]. Substituting
Eq. (35) into Eq. (33) yields

Iμν = 1

T

∫ T

0
dt

(
∂ ỹ

∂θμ

+ ∂ ỹ

∂φ

∂φ

∂θμ

)(
∂ ỹ

∂θν

+ ∂ ỹ

∂φ

∂φ

∂θν

)
. (36)

We now show that Eq. (36) is also the FIM for Eq. (31).
First we calculate the gradient of Cφ (θ ):

∂Cφ

∂θμ

= − 1

T

∫ T

0
dt

{
δŷ

(
∂ ỹ

∂θμ

+ ∂ ỹ

∂φ

∂φ

∂θμ

)}
. (37)

Next we calculate the Hessian and evaluate it at θ0 [note that
δŷ(θ0) = δφ(θ0) = 0]:

Hμν (θ0) = 1

T

∫ T

0
dt

(
∂ ỹ

∂θμ

+ ∂ ỹ

∂φ

∂φ

∂θμ

)(
∂ ỹ

∂θν

+ ∂ ỹ

∂φ

∂φ

∂θν

)
.

(38)

Clearly this is the same as Eq. (36). Because the FIM is
preserved, the new cost [Eq. (31)] constitutes an isometric
embedding of the model manifold and no information is lost
(in the sense of the Fisher information).
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4. Results

We implement the metric for the FitzHugh-Nagumo model
as an example; results are shown in Figs. 8(a)–8(c). The local
minima in the cost surface in Fig. 1(d) have been eliminated,
the winding frequency of the stiffest direction is significantly
reduced, and the manifold is no longer highly curved (see also
Appendix E). Because the new cost function is an isometric
embedding [i.e., preserves the Hessian in Eq. (6)], the curva-
ture of the cost surface at the bottom of the bowl is the same
as that in Fig. 1(d).

B. Kernel density estimation (KDE)

The high effective dimensionality of sloppy models of the
third kind cannot be eliminated using the metric discussed
in Sec. IV A. Adjusting the phase of a chaotic time series
is insufficient to account for the variation in predictions as
one moves from point to point in parameter space [resulting
in the apparent roughness of the cost surface illustrated in
Fig. 1(g)]. This is reflected in the exponential sensitivities
of chaotic systems at long times and is connected with a
fundamental difference in manifold structure between sloppy
models of the second and third kinds. Note from Eq. (15) that
winding frequency is directly proportional to geodesic (extrin-
sic) curvature. Figure 4 shows that the manifolds of sloppy
models of the second kind only have high extrinsic curvature
in one direction (like a scroll of paper). This high curvature
can be eliminated through an isometric embedding (analogous
to unwinding the scroll). By contrast, sloppy models of the
third kind have high extrinsic curvature in more than one
dimension. High extrinsic curvature in multiple dimensions is
necessarily associated with some intrinsic curvature, and this
intrinsic curvature cannot be eliminated through an isometric
embedding (think of a globe, which can’t be “unwound” and
laid flat).

The sensitivities of chaotic time series to parameters (in-
cluding initial conditions) make time series prediction in
sloppy models of the third kind impractical at long times.
However, model predictions yi(θ ) in phase space do give rise
to a predictable distribution f (y, θ ) [11]. We evolve an ensem-
ble of initial conditions and use the result to approximate this
distribution with a kernel density estimate [38,39],

f (y, θ ) ≈ 1

nh

n∑
i=1

K

(
y − yi(θ )

h

)
, (39)

where n is the number of predictions or observations, K (·) is
a kernel function, and h is the kernel bandwidth. A natural
metric to use for distributions is the Hellinger distance,

C̃(θ ) ≡ 1

2

∫
dy

(√
f (y, θ0) −

√
f (y, θ )

)2
, (40)

because it is a quadratic form, which can be interpreted as
a Euclidean embedding space. It also induces a metric on the
model manifold that is given by the Fisher information metric.

We implement this cost for the Lorenz system; results are
shown in Figs. 8(d)–8(f). The “rough” cost surface of Fig. 1(g)
has been replaced with a basin, the high winding frequencies
have all disappeared, and the manifold is regular (see also
Appendix E).

V. CONCLUSION

Multimodality in comparing and training multiparameter
models is a common problem [9,10,27–29]. Many common
search algorithms find only a local minimum (a point in
parameter space which locally minimizes the chosen distance
measure) and not the global one. Even with global search
methods the possibility of local minima reduces confidence
that the global minimum will be found. Here, we have shown
how the choice of distance measure affects the number of
local minima. We have quantified this effect using curvature
on the model manifold and introduced the winding frequency
to estimate the density of local minima in parameter space.
Finally, we have shown that through an appropriate choice of
metric, the model manifold can be systematically “unwound”
to remove local minima while preserving relevant physical
interpretations of distance.

In this paper we have studied systems for which the rel-
evant structures were known a priori (e.g., limit cycles and
strange attractors). However, the metrics we propose may also
be useful for identifying previously unknown structures in
other complex systems.

One of the ongoing challenges for many complex systems
is the development of appropriate reduced-order representa-
tions [23,40–42]. More broadly, it has been suggested that the
existence of useful simplified models is often due to a sys-
tematic compression of parameter space [23]. Compressing
the parameter space leads to a type of “universality class”
in which models with different parameter values make sta-
tistically indistinguishable predictions. This line of work has
also led to methods for constructing simplified models from
more complex and complete mechanistic representations [43].
Ultimately, this compression is a consequence of the similarity
metric used to compare model behaviors.

For sloppy models of the first kind (which have previously
dominated the literature), the compression “squashes” some
dimensions to be very thin [as in Fig. 1(a) and Refs. [21,22]],
leading to a universality class of continuously connected
parameters for which reduced-order models can be system-
atically derived [43]. In contrast, for sloppy models of the
second and third kind, the manifold is wound tightly, so
that a compression leads to a manifold folding in which
noncontiguous regions of the manifold are identified as part
of the same universality class. It is unlikely that predictive
reduced-order models can be found for sloppy models with
high winding frequencies as this would imply the existence,
for example, of accurate long-term weather forecasts. High
winding frequency is the information-geometric equivalent of
sensitivity to microscopic details (such as frequency, initial
conditions, or other parameters), well studied in chaotic sys-
tems. In contrast, by unwinding the model manifold using an
alternative metric, the manifold is transformed into a hyper-
ribbon and this extreme sensitivity to microscopic details is
removed.

Understanding how effective theories emerge at long time
scales is a challenging problem that has drawn on sophisti-
cated expertise from a variety of fields, including dynamical
systems [44,45], signal processing [4,6], statistics [26,46], and
optimization [10,29]. In this work we have combined insights
from these other domains with tools of information geometry.
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Our hope is that this explicit connection will bring new tools,
such as sloppy model analysis and the manifold boundary
approximation method, to bear on a wide range of important,
ongoing scientific problems.
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APPENDIX A: MODELS

Following are the models examined in Figs. 1, 2, 4, and 8.
In some cases (models D, G, and I), additional polynomial
terms (with parameters as coefficients) were added to the
model equations of motion. This allows calculation of the
structural susceptibility of the model, that is, susceptibility to
perturbations of the underlying dynamics [47]. These terms
can be thought of as representing details of the real system
that have been left out of the model.

A: A sum of decaying exponentials leading to a steady
state,

y(t ; θ ) = θ1 +
N∑

n=2

e−γnt , (A1a)

γn ≡
n∑

i=2

θi, (A1b)

where θi > 0. Eigenvalues of the Hessian and winding fre-
quencies [Figs. 1(b), 2, and 4] were calculated at θi = 1;
likewise for the cost surface in Fig. 1(a) except for the two
parameters indicated on the axes. For the manifold projection
in Fig. 1(c), ln θ2, ln θ3, and ln θ4 were varied over a spherical
volume of radius 20 centered on the original parameter values.
Note that using θi as the parameters of the model, rather than
using the decay rates γn directly, guarantees that the decay
rates are ordered (i.e., γn+1 > γn), breaking the symmetry
between them.

B: A rational polynomial model,

y(t ; θ ) = θ1 + θ2t + θ3t2 + θ4t3

1 + θ5t + θ6t2 + θ7t3
. (A2)

Parameter values used were randomly chosen in the range
e−5 � θi � e5.

C: We used the IFFLP model of biological adaptation
described in [48].

D: The FitzHugh-Nagumo model [29,49,50] can be
written as

V̇ = c

(
V − V 3

3
+ R + I +

∑
n,m

θnmV nRm

)
, (A3a)

Ṙ = −1

c
(V − a + bR). (A3b)

We used a constant input current I , taken as a model pa-
rameter (in addition to the parameters a, b, c, and θnm). Initial

conditions used were (V0, R0) = (−1, 1). Eigenvalues of the
Hessian and winding frequencies [Figs. 1(e), 2, and 4] were
calculated at (a, b, c, I, θnm ) = (−0.0225, 0.135, 3.0, 0, 0),
likewise for the cost surface in Fig. 1(d) except for the two
parameters indicated on the axes. For the manifold projection
in Fig. 1(f), a slice of parameter space along −2 � a � 2,
b = 0.2 was used (all other parameters as above).

E : We implemented the Hodgkin-Huxley model described
in [51].

F : We used the Wnt oscillator model described in [52].
G: The Lorenz system [53] is given by

ẋ = σ (y − x) +
∑
n,m,p

θnmpxnymzp, (A4a)

ẏ = x(ρ − z) − y, (A4b)

ż = xy − βz. (A4c)

Initial conditions used were (x0, y0, z0) = (1, 1, 10).
Model parameters include σ , ρ, β, and θnmp. Additional pa-
rameters for rescaling x, y, and z after solving the ODE [e.g.,
x̃ ≡ (x − xref )/xscale] were also included to illustrate that all
parameters in a chaotic system need not exhibit an exponential
sensitivity [see Fig. 1(h)]. (In general, parameters like these
could account for differences in units between the model
and the observations, if there were any.) Eigenvalues of the
Hessian and winding frequencies [Figs. 1(h), 2, and 4] were
calculated at (σ, ρ, β, θnmp, xref, yref, zref, xscale, yscale, zscale) =
(10, 28, 8/3, 0, 0, 0, 0, 1, 1, 1); likewise for the cost surface in
Fig. 1(g) except for the two parameters indicated on the axes.
For the manifold projection in Fig. 1(i), a slice of parameter
space along σ = 10.05, 10 � ρ � 30 was used (all other
parameters as above).

H : The Hindmarsh-Rose model [54,55] can be written as

ẋ = y − ax3 + bx2 − z + I, (A5a)

ẏ = c − dx2 − y, (A5b)

ż = ε

(
x − 1

s
(z − zR)

)
. (A5c)

Initial conditions used were (x0, y0, z0) =
(−0.216 272 . . . , 0.183 969 , 0.066 920 . . .). Model para-
meters include I (taken as a constant input current), a,
b, c, d , ε, s, and zR. Eigenvalues of the Hessian and
winding frequencies (Figs. 2 and 4) were calculated at
(a, b, c, d, I, ε, s, zR) = (1, 3, 1, 5, 0, 0.004, 4, 3.1586).

I: The equations of motion for a damped, driven pendulum
(derivable using Newton’s 2nd law) are

ϕ̇ = ω +
∑
n,m,p

θnmpϕ
nωmφp, (A6a)

ω̇ = −ω

Q
− sin(ϕ) + A cos(φ), (A6b)

φ̇ = ωD. (A6c)

Initial conditions used were (ϕ0, ω0, φ0) = (−2, 0, 0).
Model parameters include Q, A, ωD, and θnmp. Eigenvalues
of the Hessian and winding frequencies (Figs. 2 and 4) were
calculated at (Q, A, ωD, θnmp) = (2, 1.16, 2/3, 0).
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FIG. 9. Phases obtained when implementing the Hilbert trans-
form numerically on the model y(t, θ ) = A cos(ωt ), for ω ranging
from 2π to 4π . The effects of the Gibbs phenomenon can be seen
near the ends for some values of ω.

APPENDIX B: ALTERNATIVES FOR OBTAINING A PHASE

In some cases, Eq. (19) cannot be used to obtain a mono-
tonically increasing phase. For example, some oscillatory
behavior does not have a unique center of oscillation. If
that is the case, one approach is to decompose the signal
using empirical mode decomposition into a number of in-
trinsic mode functions, for each of which a separate phase
may then be defined [56]. However, because this method is
empirical, the decomposition may not vary smoothly with the
parameters of the model, leading to discontinuities in the cost
function.

Even when the oscillatory behavior does have a single
center of oscillation, in practice the Hilbert transform must be
implemented numerically (especially for observational data).
This usually involves a fast Fourier transform, which can
introduce unwanted effects in the phase due to the Gibbs
phenomenon (see Fig. 9). The impact of end effects can
be reduced by leaving the ends out of the cost function, or
through windowing.

More generally, any monotonically increasing function of
time may be used for a phase, provided it has the appropriate
frequency. One proposal is to use

φ(t ) = ωt + φ0, (B1)

and to estimate a value of ω from the oscillatory signal. This
may be done by fitting a line to the phase obtained from
Eq. (19) or by using a Fourier transform to decompose the
signal into frequency components and selecting one.

We also suggest the following method of obtaining a phase
(found in [35]) that does not require the use of the Hilbert
transform. It is sometimes the case that two signals, y1(t ) and
y2(t ), can be selected from the dynamical variables y(t ) of a
system and used to calculate a phase as follows:

φ(t ) = arctan

(
y2(t )

y1(t )

)
. (B2)

The only requirement is that the combined signal correspond
to a proper rotation, which has both a definite direction and
unique center of rotation, so that the phase will be monotoni-
cally increasing [36,57]. For example, in some cases, a signal

y(t ) and its time derivative ẏ(t ) may be used:

φ(t ) = arctan

(
y(t )

ẏ(t )

)
. (B3)

APPENDIX C: COVARIANCE MATRICES

We consider how uncertainty in experimental observations
propagates to phases calculated using Eq. (19). First, we
define more precisely the covariance matrix �y(t ) for the
observations with time as the independent variable. Let ξi

denote random variables drawn from the normal distribution
N (0, 1). We assume the observations yi are random variables
that are normally distributed about the predictions y(ti; θ0) of
the model at the best fit, with standard deviation given by the
uncertainties σi, and write

yi = y(ti; θ0) + σiξi. (C1)

The deviations

δyi ≡ yi − y(ti; θ ) (C2)

vary with the predictions of the model, but at the best fit they
are random variables with mean 0 and standard deviation σi:

δyi(θ0) = y(ti; θ0) + σiξi − y(ti; θ0) = σiξi. (C3)

The elements of the covariance matrix are defined as the
expectation of the product of deviations at the best fit:

�
y(t )
i j ≡ 〈δyiδy j〉 = 〈σiξiσ jξ j〉 = σiσ j〈ξiξ j〉. (C4)

The matrix is diagonal if the deviations are independent (i.e.,
if 〈ξiξ j〉 = δi j).

1. Covariance matrix for phase

Next, we derive the covariance matrix for the phases. The
observations yi are assumed to have occurred at the phases
φ(ti; θ0) predicted by the model. These phases will differ from
the phases φi calculated using Eq. (19) due to the presence
of noise in the observations. We define the deviations of the
phases as

δφi ≡ φi − φ(ti; θ ). (C5)

Note that, due to the presence of the Hilbert transform in
Eq. (19), the phase φ(t ) has a functional dependence on
the signal y(t ), i.e., φ(t ) = φ[y](t ). We use this functional
dependence and Eq. (C2) to relate δφi to δyi:

φi = φi[y]

= φi[y(t ; θ ) + δy]

≈ φi[y(t ; θ )] +
∑

j

∂φi[y(t ; θ )]

∂y j
δy j

= φ(ti; θ ) +
∑

j

∂φi

∂y j
δy j, (C6)

δφi ≈
∑

j

∂φi

∂y j
δy j . (C7)

In the fourth line we have simplified the notation for
clarity, and we have kept only the first-order terms. This

012206-10



UNWINDING THE MODEL MANIFOLD: CHOOSING … PHYSICAL REVIEW E 100, 012206 (2019)

approximation is valid near the best fit where δyi is small. At
the best fit, we have

δφi(θ0) =
∑

j

∂φi

∂y j
σ jξ j, (C8)

which shows that δφi(θ0) are random variables with mean 0.
Before proceeding, the derivative ∂φi/∂y j merits some

attention. First, we note that it may be evaluated using either
y(ti; θ ) or yi to first order in δyi:

∂φi[y(t j ; θ )]

∂y j
δy j = ∂φi[y j − δy j]

∂y j
δy j

= ∂φi[y j]

∂y j
δy j + O(δy2). (C9)

Second, using Eq. (19), we can derive an explicit expres-
sion for ∂φi/∂y j :

∂φi

∂y j
= ∂

∂y j

[
tan−1

(
Hi[y]

yi

)]

= 1

1 + (Hi[y]/yi )2

(
1

yi

∂Hi[y]

∂y j
− Hi[y]

y2
i

∂yi

∂y j

)
. (C10)

(Hi[y] is understood to mean the ith component of the Hilbert
transform of y.) To evaluate the derivative ∂Hi[y]/∂y j , we use
the definition of the derivative and the linearity of the Hilbert
transform:

∂Hi[y]

∂y j
= lim

h→0

Hi[y + hδ j] − Hi[y]

h

= lim
h→0

Hi[y] + hHi[δ j] − Hi[y]

h
= Hi[δ j]. (C11)

(We are using δ j to denote the vector formed by taking the
jth column of the Kronecker delta δi j when considered as a
matrix.) Plugging this into Eq. (C10) gives

∂φi

∂y j
= yiHi[δ j] − Hi[y]δi j

y2
i + Hi[y]2

. (C12)

Third, the matrix ∂φ/∂y defined by Eq. (C12) is singular
(i.e., it has at least one zero eigenvalue). As we now show, this
is because changes in the amplitude of an oscillation do not
affect the phase.

Theorem. The matrix ∂φ/∂y, whose i jth element is

∂φi

∂y j
= yiHi[δ j] − Hi[y]δi j

y2
i + Hi[y]2

,

has at least one zero eigenvalue, corresponding to the eigen-
vector δy∗ = y.

Proof.∑
j

∂φi

∂y j
δy∗

j =
∑

j

yiHi[δ j] − Hi[y]δi j

y2
i + Hi[y]2

y j

= yiHi
[∑

jδ jy j
] − Hi[y]

∑
jδi jy j

y2
i + Hi[y]2

= yiHi[y] − Hi[y]yi

y2
i + Hi[y]2

= 0. �

FIG. 10. Propagation of uncertainty. (a) Data (blue) simulated
from the model y(t ) = A cos(ωt ) (red) by adding uniform Gaussian
noise. Error bars indicate uncertainty. (b) Data (blue) plotted as
a function of phase compared with y(φ) = A cos(φ) (red). Error
bars indicate the uncertainties obtained using Eqs. (C14) and (C20).
(c) Phase (blue), obtained for each data point using Eq. (19), com-
pared with φ(t ) = ωt (red). Error bars indicate the uncertainties
obtained using Eq. (C14).

Any change in amplitude at constant phase is a multiple of
y and thus also lies in the null space of ∂φ/∂y.

Returning to Eq. (C7), we derive an expression for the
covariance matrix �φ(t ) for the phases:

�
φ(t )
i j ≡ 〈δφiδφ j〉

=
〈∑

k

∂φi

∂yk
δyk

∑
l

∂φ j

∂yl
δyl

〉

=
∑
k,l

∂φi

∂yk
〈δykδyl〉∂φ j

∂yl

=
∑
k,l

∂φi

∂yk
�

y(t )
kl

∂φ j

∂yl
(C13)

�φ(t ) = ∂φ

∂y
�y(t ) ∂φ

∂y

T

. (C14)

This shows how uncertainties σ 2
yi

= �
y(t )
ii in the observations

are propagated to uncertainties σ 2
φi

= �
φ(t )
ii in the phases of

the observations (see Fig. 10 ).

2. Covariance matrix for observations as a function of phase

Finally, we derive the covariance matrix �y(φ) for the ob-
servations with phase as the independent variable. We define
the deviations of the observations from the predictions at
constant phase as

δỹi ≡ yi − ỹ(φi; θ ). (C15)
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We can relate these to δyi and δφi using Eqs. (C5) and (21):

δỹi = yi − ỹ(φi; θ )

= yi − ỹ(φ(ti; θ ) + δφi; θ )

≈ yi − ỹ(φ(ti; θ ), θ ) − ∂ ỹ(φ(ti; θ ); θ )
∂φ

δφi

= yi − y(ti; θ ) −
(

∂ ỹ

∂φ

)
i

δφi

= δyi −
(

∂ ỹ

∂φ

)
i

δφi. (C16)

In light of Eqs. (C3) and (C8), δỹi also has mean 0 at the
best fit. Note that, similar to ∂φi/∂y j , ∂ ỹ/∂φ may be evaluated
using either φi or φ(ti; θ ) to first order in δφi:

∂ ỹ(φ(ti; θ ); θ )
∂φ

δφi = ∂ ỹ(φi − δφi; θ )

∂φ
δφi

= ∂ ỹ(φi; θ )

∂φ
δφi + O(δφ2). (C17)

We can take Eq. (C16) a step further using Eq. (C7):

δỹi = δyi −
(

∂ ỹ

∂φ

)
i

δφi

= δyi −
∑

j

(
∂ ỹ

∂φ

)
i

∂φi

∂y j
δy j

=
∑

j

[
δi j −

(
∂ ỹ

∂φ

)
i

∂φi

∂y j

]
δy j

≡
∑

j

Di jδy j . (C18)

Taking the expectation of pairs of deviations δỹi, we obtain

�
y(φ)
i j ≡ 〈δỹiδỹ j〉

=
〈∑

k

Dikδyk

∑
l

D jlδyl

〉

=
∑
k,l

Dik〈δykδyl〉Djl

=
∑
k,l

Dik�
y(t )
kl D jl (C19)

�y(φ) = D�y(t )DT . (C20)

This gives us a way to compute the uncertainties σ 2
ỹi

= �
y(φ)
ii

of the observations when taking phase as the independent
variable instead of time (see Fig. 10).

APPENDIX D: PARAMETER SENSITIVITIES

Here we derive the first- and second-order parameter sen-
sitivities of ỹ and φ that are used in calculating the FIM and
winding frequencies for the analytic signal-based metric of

Sec. IV A. We begin with Eq. (20),

y(t ; θ ) = A(t ; θ ) cos(φ(t ; θ )), (D1)

and differentiate it with respect to θμ:

∂y

∂θμ

= ∂A

∂θμ

cos(φ) − A sin(φ)
∂φ

∂θμ

. (D2)

Comparing with Eq. (35), we now see that we have ex-
plicit expressions for ∂ ỹ/∂θμ and ∂ ỹ/∂φ in terms of A, φ,
and ∂A/∂θμ:

∂ ỹ

∂θμ

∣∣∣∣
φ

= ∂A

∂θμ

cos(φ)
∂ ỹ

∂φ

∣∣∣∣
θ

= −A sin(φ)

= y

A

∂A

∂θμ

= −H[y]. (D3)

In the second line we have used the trigonometric relation-
ships cos(φ) = y/A and sin(φ) = H[y]/A which are easily
derived from Eqs. (18) and (19). The second derivative of
Eq. (D1) is

∂2y

∂θμ∂θν

= y

A

∂2A

∂θμ∂θν

− H[y]

A

(
∂A

∂θμ

∂φ

∂θν

+ ∂φ

∂θμ

∂A

∂θν

)

− y
∂φ

∂θμ

∂φ

∂θν

− H[y]
∂2φ

∂θμ∂θν

. (D4)

Because the new analytic signal-based metric involves ỹ and
φ, we use only the first term (which is ∂2ỹ/∂θμ∂θν) and the
last term in this expression when calculating the geodesic
curvature.

Expressions for the sensitivities of A and φ are obtained by
differentiating Eqs. (18) and (19):

A =
√

y2 + H2[y] φ = tan−1

(
H[y]

y

)
(D5)

∂A

∂θμ

= 1

A

(
y

∂y

∂θμ

+ H[y]H

[
∂y

∂θμ

])
(D6)

∂φ

∂θμ

= 1

A2

(
yH

[
∂y

∂θμ

]
− H[y]

∂y

∂θμ

)
(D7)

∂2A

∂θμ∂θν

= A
∂φ

∂θμ

∂φ

∂θν

+ 1

A

(
y

∂2y

∂θμ∂θν

+ H[y]H

[
∂2y

∂θμ∂θν

])

(D8)

∂2φ

∂θμ∂θν

= − 1

A

∂A

∂θμ

∂φ

∂θν

− 1

A

∂φ

∂θμ

∂A

∂θν

+ 1

A2

(
yH

[
∂2y

∂θμ∂θν

]
− H[y]

∂2y

∂θμ∂θν

)
. (D9)

APPENDIX E: REGULARITY OF COST
SURFACES AND MANIFOLDS

In Fig. 8, a sufficiently large number of time points was
included in the cost and manifold calculations to demonstrate
the results of using the new metrics in the limit of infinite
time. In practice, only a finite number of time points can
be included. Here we demonstrate the convergence of the
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FIG. 11. Magnitude of the gradient of the FitzHugh-Nagumo
cost |∇Cφ (θ )|. The magnitude of the gradient has only one mini-
mum, indicating that the cost cross section shown in Fig. 8(a) has
a single minimum. The minimum of |∇Cφ (θ )| shown is not quite
zero because the actual minimum of Fig. 8(a) is between the grid
points where |∇Cφ (θ )| has been calculated. Note that in the upper
corners of the plot, there is a phase transition to nonoscillatory
behavior, where the methods of Sec. IV A cannot be applied ef-
fectively. The sharp apparent dropoff is due to such choices as
having our algorithms return zeros rather than throw errors for these
regions.

FitzHugh-Nagumo manifold and the Lorenz cost as a function
of the number of sampled time points. In addition, we discuss
the gradient of the FitzHugh-Nagumo cost, shown in Fig. 8(a),
as it relates to the regularity of the new surface.

Figure 11 shows a plot of the magnitude of the gradient
of the cost cross section shown in Fig. 8(a). The significance
of the gradient of the cost is that every local minimum of the
cost will be a zero of the gradient. If there are multiple local
minima still present in the new cost, then the gradient will
have multiple zeros. We plot the magnitude of the gradient so
that zeros can be found easily. It is clear from Fig. 11 that there
is only one zero, so the new cost does, in fact, have a single
minimum.

Figure 12 shows two projections of the FitzHugh-Nagumo
manifold (signal predictions at constant phase): one calculated
using about 24 time points per cycle in the original time
series and the other using twice the time sampling of the first.

FIG. 12. FitzHugh-Nagumo manifold projection. A was calcu-
lated using about 24 time points per cycle in the original time series;
B was calculated using twice the time sampling of A.

FIG. 13. FitzHugh-Nagumo amplitude oscillations. Colors are
the same as in Fig. 12, with dark or light indicating the value of the
parameter a. As the peak moves between sampled time points, the
amplitude appears to oscillate.

The manifold itself exhibits oscillations in both cases. These
oscillations are an artifact of the finite time sampling of the
oscillatory signal predicted by the model. As parameters that
control frequency are varied, the peak of each cycle shifts
between adjacent time points and the local amplitude appears
to oscillate (see Fig. 13). Hence the predicted signal values at a
given (constant) phase also oscillate, resulting in the manifold
oscillations observed.

As demonstrated in Fig. 12, doubling the sampling of time
points doubles the frequency of these manifold oscillations,
but their amplitude decreases by a factor of ∼10. Hence, in
the limit of infinite sampling they disappear. In practice they
will be negligible as long as enough time points per cycle
are sampled for the amplitude of the oscillations to be small
compared to the amplitude of the signal itself (and to changes
effected by the parameters).

The attractors of chaotic systems have fractal structure
that is realized only in the limit of infinite sampling time
T . Accordingly, as more time points are included, the kernel
density estimate Eq. (39) will approach the true distribution
f (y, θ ) asymptotically. Figure 14 illustrates the convergence
of a cross section of the cost Eq. (40) for the Lorenz system
as the total sampling time T is varied.

FIG. 14. Lorenz cost. As the number of sampled time points
grows, the noise in the cost dies away. When fit to a parabola,
the MAE between the parabola and the cost cross section shown
is 0.0088 for T = 80 and 0.0013 for T = 800 (about a sevenfold
reduction in noise).
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Chapter 4

Data-Driven Model Reduction for Network

Simplification and Effective Equivalents

Networks play an important role in epidemiology, ecology, systems biology, the Internet, and power

systems, among others. Most real-world networks involve huge numbers of interacting components,

agents, or nodes. A detailed, “mechanistic” mathematical description of such a network, which

might be used to study and predict its behavior, quickly becomes very complicated. Often the

available observational data are insufficient to identify all of the parameter values needed to complete

the model and validate it. In other cases, detail in certain parts of the system is simply irrelevant

and unnecessary to accomplish the purpose for which the model was created.

In this chapter, I demonstrate that MBAM can be used as a tool for reducing models of networked

systems in a data-driven way. I apply the method to a small network from the field of power systems

and show that the amount of reduction is tailored to the observations being made on the system. This

results in several “effective” networks which capture the primary features of each particular choice

of observations being made on the system. I also discover several important types of reductions

(i.e., parameter limits) that are applicable to power systems and, more generally, to certain types

39



40

of networks. Information about the types of reductions which can be performed on models with

similar mathematical structures is an important step toward scaling up MBAM model reduction to

very large models.

This work is an extension of previous work done by Mark Transtrum, Andrija Sarić, and

Aleksandar Stanković which lead to a short conference paper [45] ©2018 IEEE. My contributions to

this work include performing most of the model reduction calculations discussed herein, which are

an improvement on the previous work in several ways, as explained in the article; expanding sections

which were carried over from the previous article; and writing much new material, including all of

the results. Jacob Nuttall assisted in running some of the calculations during the reduction process.

Sarić and Stanković provided expertise in power systems, as well as the power systems model used

and initial parameter values.

This article has been prepared for submission to a peer-reviewed journal but has not yet been

submitted. Some preliminary results that are repeated here were published in the conference

proceedings of the 2019 North American Power Symposium [46] ©2019 IEEE. I hereby confirm

that the use of this material is compliant with all publishing agreements.
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Abstract—Models of dynamical phenomena in large power
networks have grown significantly over time. Although available
measurements have also increased, data are generally insufficient
to constrain all of the parameters. This is because the models
are often sloppy, that is, system behavior is determined by a few
parameter combinations. Because some parameter combinations
are neither identifiable from data nor useful for making new
predictions, they can be eliminated without significantly affecting
the reliability of the model. We use the Manifold Boundary
Approximation Method (MBAM) to remove unidentifiable pa-
rameters from a model of a small power network (the IEEE 14-
bus test system) in a data-driven way. We consider five different
possible measurement structures and show that the reduction
is tailored to the available measurements. The result in each
case is both a reduced dynamical model and an equivalent
network that together serve as a “gray-box” approximation or
effective theory appropriate for the available measurement data.
Parsimonious models give insights into the relationships among
observed system components and latent variables that can guide
developing dynamic equivalents and other effective descriptions
of large power systems.

Index Terms—Global Optimization, Parameter Estimation,
Reduced Order Systems, System Identification.

I. INTRODUCTION

As power systems have evolved in response to changes in
markets, source and load types, and other pressures, models
used to study dynamic phenomena in power systems have also
grown in size and detail. Advances in computing capabilities
have helped alleviate the computational strain resulting from
the increases in size. However, these more-detailed models still
have trouble replicating real events recorded in power systems
[1].

This has resulted in many efforts to improve models through
system identification. The use of trajectory sensitivities in
identifying parameters of various system components, for
example, was demonstrated in [2], [3] and extended to hybrid
systems in [4]. But detailed models often have many more
parameters than can be effectively identified from the availa-
ble measurements. One proposal for dealing with parameter
insensitivity is subset selection [5], in which the subset of

This work was supported by the US National Science Foundation under
Award EPCN-1710727.

parameters that are most insensitive or ill-conditioned are held
fixed during parameter estimation.

Network dynamics, where the discrete structure of a net-
work is blended with the continuous dynamics of system
components [6], presents additional challenges. In many cases,
measurements are not available for certain parts of the net-
work, or analysts may only be interested in a particular portion
of the network. Identifiability of linear dynamical networks
where the topology is known a priori but measurements may
not be available for every node was previously explored in
[7]. A joint parameter and topology estimation method was
demonstrated on radial networks in [8].

Parameter insensitivity, lack of available measurements, and
lack of a need for detail in some parts of a model all motivate
the use of reduced models. One approach to model reduction
is to identify dominant modes in the dynamics and then to
neglect the others. Several such modal techniques are reviewed
in [9], but these have the drawback that they can only be
used for linearizable systems. The same limitation holds for
the Krylov subspace methods and many of the SVD-based
methods (i.e., described in [10], [11]). Another approach that
has been used in nonlinear power systems models is singular
perturbation theory [12], in which small time constants are
found in a model and used to distinguish slow- and fast-
timescale dynamics. These can then be taken to limiting values
(i.e., zero) in order to reduce model complexity.

Static and dynamic equivalents are often used when a
detailed model is only desired in part of a network (see [13]
for a more extensive literature review of static and dynamic
equivalents). Static equivalents, such as Ward and REI equi-
valents (originally proposed in [14] and [15], respectively),
replace part of the network with a simplified representation.
In some cases this is accomplished via a Kron reduction
of the network, where the nodal admittance matrix of the
reduced network is the Schur complement, with respect to
the nodes being eliminated, of the unreduced nodal admittance
matrix [16]. Recently some static equivalencing methods were
compared in [17]. Dynamic equivalents complement static
equivalents by finding groups of dynamic components that
can be replaced by single equivalents (a couple of reviews
of dynamic equivalencing techniques can be found at [18],



[19]).
Our approach to improving power systems models focu-

ses on nonlinear systems and combines system identification
with model reduction. We use tools of information geometry
(information theory combined with differential geometry) to
first find, then remove both dynamic and network parameters
that are not identifiable from operational data. The parameters
that remain not only have reduced uncertainty, which improves
overall model predictivity, but also retain physical interpreta-
bility, because they can be related back to the parameters of
the original model. Accordingly, the resulting reduced models
not only are more manageable computationally but can serve
as “gray-box” approximations or effective theories that are
more amenable to insight, illuminating key phenomenological
relationships between parts of the system and eliminating
mechanistic detail where it is not needed [20].

In addition, our approach does not impose any particular
final structure on the reduced network (as opposed to, e.g.,
REI equivalents). Rather, the network reduction that occurs
depends on the measurement structure imposed at the outset
of the reduction process. At the core of our method is the
interpretation of a model as a manifold embedded in the space
of measurements. This manifold retains all information about
model predictions, in contrast to the cost surface in parame-
ter space which condenses the prediction and measurement
vectors into a single number [21].

This paper improves on and extends the work presented
in [22] and [23]. We have previously applied techniques of
information geometry to some power systems components
in [24], [25], [26]. Here we explore global identifiability
properties of a networked system with 58 unknown component
and network parameters. Our previous results showed that
the level of reduction achieved depends on the observations
available or chosen in the system. In this paper we illustrate
the data-driven nature of our approach by considering several
possible sets of partial measurements and comparing with prior
results.

In Sec. II, we formulate the parameter identifiability pro-
blem, and Sec. III outlines our model reduction method.
We describe the test system and measurement schemes that
we used for this study in Sec. IV. Results for each of the
measurement schemes are given in Sec. V, and Sec. VI
presents our conclusions.

II. PROBLEM FORMULATION

Equation (1) represents a generic transient stability model
in differential-algebraic form [27]:

ẋ = f(x, z,p, t),

0 = g(x, z,p, t), (1)
y = h(x, z,p, t).

Here x is a vector of (differential) state variables, z are
the algebraic variables, p are parameters, t is the (scalar)
time variable, and y is the vector of observables. In system
identification, the parameters p are unknown and are estimated

from measurements y, although some information, such as
plausible ranges for each, may be available.

Often, available measurements are insufficient to identify all
parameters in a large, complicated model [21]. In particular,
the model’s predictions may be insensitive to coordinated
changes in certain combinations of parameters, making them
practically unidentifiable [28]. This insensitivity is measured
by the eigenvalues of the Fisher Information Matrix (FIM).
In order to construct the FIM, it is necessary to calculate the
parametric sensitivities using the sensitivity equations,

d
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To illustrate, the eigenvalues of the FIM for the model intro-
duced in Sec. IV-A are shown in Fig. 1a. Small eigenvalues
indicate that the associated parameter combinations will be
unidentifiable, but more importantly that they have little effect
on model predictions. When these parameter combinations are
removed from the model, parameters that are retained are able
to explicitly control model behavior. Our method for removing
parameters combination, discussed in Sec. III, is known as the
Manifold Boundary Approximation Method (MBAM). It was
introduced to the physics community in [29] and adapted to
power systems applications in [24], [25], [26].

Fig. 1. Eigenvalues of the FIM, prior to the model reduction process, for the
following sets of observations (see Sec. IV-B for details): a “full”; b “half”; c
“Area A”; d “Area B”; e “supplier-consumer”. When variables are eliminated
from observation (going from a to any of b, c, d, or e), the eigenvalues
decrease because there is less information available about the parameters.

Sensitivity of model parameters depends strongly on what
is being measured in the system. Changing the measure-
ment structure (and, accordingly, the observation function h)
changes the eigenvalues of the FIM. This is illustrated in
Fig. 1b through e, where eigenvalues of the FIM are shown
for various partial measurement structures (described in full
in Secs. IV-B). In every case, the partial set of measurements
carries less information than the full set, so the eigenvalues



decrease (compare a to each of the others). This allows greater
reduction to be achieved while maintaining model performance
in those parts of the system that are of interest to analysts.

III. MANIFOLD BOUNDARY APPROXIMATION METHOD

We remove unidentifiable parameter combinations using the
Manifold Boundary Approximation Method (MBAM) [29].
What follows is a summary of the method; for a detailed
explanation in the context of power systems, see [24]. Equation
(1) can be interpreted as a mapping from the parameter vector
p in parameter space to a second space known as data space.
This mapping defines a manifold in data space, where the
parameters act as coordinates on the manifold (see Fig. 2 for
an illustration). Model manifolds are usually bounded, with
a hierarchical structure like a polygon (faces, edges, etc.).
Each boundary cell corresponds to a reduced model with fewer
parameters. We identify these boundary cells by constructing
geodesics (the analogs of straight lines on curved surfaces) on
the model manifold.

Fig. 2. Illustration of parameter space (on the left) and the model manifold
in data space (on the right), both colored by the objective function used
for system identification. The mapping from parameter space to data space
is defined by the model [e.g., (1)]. A geodesic on the model manifold
corresponds to some path through parameter space (red curves). When the
geodesic reaches the manifold boundary, some combination of parameters
goes to extreme values (see Fig. 3).

When a geodesic encounters the boundary of the manifold,
one or more parameters become extreme (go to zero or infinity;
see Fig. 3 for an example), corresponding to a limit that can
be formally evaluated in the model. The result is a simplified
model with one less parameter. This model is then tuned to
match the predictions of the original model. We repeat this
process of constructing geodesics, evaluating limits, and tuning
the reduced model until the predictions of the reduced model
no longer faithfully reproduce those of the original.

The procedure is data-driven in the sense that the least
sensitive parameter combinations are removed first, so all
behavior predicted by the model (e.g., participating modes
of the system) that would be measurable at a given level
of uncertainty is preserved. This approach unifies concepts
from other methods of model reduction (such as singular
perturbation approximation and dynamic equivalents) in a
single framework while at the same time allowing us to find
approximations that have not previously been considered.

Fig. 3. Parameter values along a geodesic from the “area A” model reduction
(see Sec. V-C). Some parameters adjust (blue) while others remain mostly
unchanged (black). One goes to infinity (red), encountering a singularity
(dashed line, approximate location) when the geodesic reaches a manifold
boundary. This indicates the limit xq →∞ (Step 26 in Table II).

IV. APPLICATION

A. Test system

We apply MBAM to the IEEE 14-bus test system (Fig. 4)
with synchronous generators (SG) on Buses 1, 2, 3, 6, and 8.
These are modeled as follows:
• Bus 1: a fourth-order model (rotor angle, speed, and

transient electromotive forces in the d- and q-axes).
• Buses 2 and 3: a classical, second-order model (rotor

angle and speed only).
• Buses 6 and 8: a sixth-order model (rotor angle, speed,

and both transient and subtransient electromotive forces
in the d- and q-axes).

Some parameters (such as rotor moments of inertia) are held
fixed to predetermined values, so that we have 38 tunable
parameters for generator and controller elements.

20 additional parameters come from the network, where
we take the susceptance Bik of each network edge as a
tunable parameter and model the conductance Gik as being
proportional to the susceptance:

Gik = cikBik. (3)

We discuss the significance of this choice in Sec. V-A. The
result is a total of 58 tunable parameters, for both network
elements and dynamic components.

We assume the system is initially in steady state and perturb
it at t = 1 s with a short circuit in Bus 14, which is
subsequently cleared at t = 1.25 s. This is a more realistic
scenario than the one considered in [22], where the mechanical
power seen by each generator was simultaneously increased
at t = 0 s. In order to include the full decay of transients
back to the steady state, we also consider longer observation
times than in [22], going all the way to t = 100 s. Transients
out to 100 s are not typical in power systems modeling; here
we have very slow dynamics, so long observation times are
needed to capture them.



Fig. 4. IEEE 14-bus test system, with observation areas marked.

Transients at Bus 8 from the original model as well as from
the “Area A” reduction (see Sec. IV-B) are shown in Fig. 5.
Notice that, aside from a few visible deviations, the match is
quite good. The deviations indicate that all of the parameters
of the model are now identifiable and the reduction process is
complete.

B. Partial response matching

We consider several different measurement schemes for the
test system described in Sec. IV-A.

The first is a “full” set of observables, which includes the
rotor angle and speed and both real and reactive powers of
all generators, as well as voltage magnitude and angle on
all buses. Preliminary results of applying MBAM for this set
of observations were given in [22], [23]. We highlight the
results from [23] in Sec. V-B for comparison with the other
measurement schemes described below.

In the second, we still include observations from the entire
network, but only half of the variables from the full set
(specifically, only real and reactive powers of all generators
and voltage magnitude on all buses). Our reduction results for
this “half” set of observations are discussed in Sec. V-B.

In the remaining measurement schemes, only part of the
network is observed, as indicated in Fig. 4. The third and
fourth include all variables from the full set that are in Areas
A (Buses 7-14 and associated generators) and B (Buses 3, 4,
and 7-9 and associated generators), respectively. We discuss
results for these reductions in Sec. V-C.

For the final measurement scheme we chose a very sparse
set of observations which might be reminiscent of a supplier-
consumer relationship, consisting of only Buses 1 and 14

Fig. 5. Transients in generator and bus variables at Bus 8, following a short
circuit in Bus 14 at t = 1 s (cleared at t = 1.25 s), for both the original model
and the reduced model obtained when observing only Area A (see Sec. IV-B).
The shaded regions from the left-hand plots are plotted on the right for detail.
For most of the transients (especially those not pictured), there is still good
agreement between the original and reduced models. The few deviations that
are visible here indicate that all parameters are identifiable and the reduction
process is complete.

(including the generator on Bus 1). Results for this set were
previously given in [23]; they are repeated in Sec. V-D for
comparison with the previous choices of observations.

V. RESULTS AND DISCUSSION

A. Circuit Theory Analysis of Network Reduction

In our reduction results for all five measurement structu-
res, network reductions occurred due to the following two
parameter limits involving the line susceptances: Bik → 0
and Bik → ∞. In this section, we present a formal analysis
of these limits and show their relation to other reduction
techniques (such as Kron reduction).

Recall our choice to let the conductances be proportional
to the susceptances, Gik = cikBik. This means that varying



Bik changes the magnitude of the complex admittance Yik =
Gik + jBik, but not its argument:

|Yik| = Bik

√
1 + c2ik (4)

arg (Yik) = arctan

(
1

cik

)
(5)

Thus the two limits for Bik are equivalent to |Yik| → 0 and
|Yik| → ∞. This is effectively the same as taking the length
of the line either to infinity (disconnecting the line) or to zero
(inserting a short between the two nodes), respectively.

Formal application of the limit |Yik| → 0 to the nodal
admittance matrix Ybus is straightfoward. The two off-diagonal
elements Yik and Yki become zero (assuming Ybus is symme-
tric) and the corresponding term in the two diagonal elements
Yii = −

∑
n 6=i Yni and Ykk = −∑n6=k Ynk drops out of the

sum. As mentioned in [22], the new nodal admittance matrix
Y

′
bus is

Y
′

bus = Ybus + Yikeike
T
ik, (6)

where eik is the Nbus-dimensional branch-bus incidence vector
whose ith element is +1, kth element is -1, and other elements
are 0.

The case where |Yik| → ∞ is not as straightforward,
because the four elements Yik, Yki, Yii, and Ykk all diverge
in this limit. However, we can treat this case using a Kron
reduction as follows.

First, we take the current balance equations I = YbusV and
reorder them so that the injected current Ik and voltage Vk on
node k are the last elements in the vectors I and V and Ykk

is in the last row and column of Ybus. We can then partition
I = YbusV as

[
IA

Ik

]
=

[
YAA YAk

Y T
Ak Ykk

][
VA

Vk

]
, (7)

where

YAA =




Y11 · · · Y1i · · ·
...

. . .
...

. . .

Y1i · · · Yii · · ·
...

. . .
...

. . .




and YAk =




Y1k

...

Yik

...




(8)

and we have assumed Ybus is symmetric. Equation (7) provides
of system of two matrix equations:

IA = YAAVA + YAkVk (9)

Ik = Y T
AkVA + YkkVk. (10)

Solving (10) for Vk, we have

Vk = Y −1kk

(
Ik − Y T

AkVA

)
(11)

=
Ik − Y1kV1 − . . .− YikVi − . . .

−Y1k − . . .− Yik − . . .

In the limit that |Yik| → ∞, L’Hôpital’s rule gives

Vk = Vi, (12)

which shows that the voltages in the two nodes become
identical in this limit. This is the same result obtained in [23]
by a different method.

Returning to (9), we eliminate the dependence on Vk by
using (11) to obtain

IA − YAkY
−1
kk Ik =

(
YAA − YAkY

−1
kk Y T

Ak

)
VA, (13)

where we now see the Schur complement of Ykk in Ybus
appearing on the right. After taking the limit |Yik| → ∞,
(13) will give us a new set of current balance equations for
the network with node k eliminated:

I
′
= Y

′
busVA (14)

I
′ ≡ lim

|Yik|→∞
IA − YAkY

−1
kk Ik (14a)

Y
′

bus ≡ lim
|Yik|→∞

(
YAA − YAkY

−1
kk Y T

Ak

)
. (14b)

To show this, we first examine YAkY
−1
kk :

lim
|Yik|→∞

YAkY
−1
kk = lim

|Yik|→∞




Y1k

−Y1k−...−Yik−...
...

Yik

−Y1k−...−Yik−...
...



=




0
...

−1
...



.

(15)
Defining ei as an (Nbus − 1)-dimensional vector whose ith
element is +1 and other elements are 0 (note the difference
from the eik vector defined earlier), I

′
becomes

I
′
= IA + eiIk =




I1
...

Ii + Ik
...



, (16)

indicating that the current injections from node k get moved
to node i.

Next, we examine YAA − YAkY
−1
kk Y T

Ak:

YAA − YAkY
−1
kk Y T

Ak =


Y11 +
Y 2
1k

Y1k+...+Yik+... · · · Y1i +
Y1kYik

Y1k+...+Yik+... · · ·
...

. . .
...

. . .

Y1i +
Y1kYik

Y1k+...+Yik+... · · · Yii +
Y 2
ik

Y1k+...+Yik+... · · ·
...

. . .
...

. . .



.

(17)

The off-diagonal elements become

lim
|Yik|→∞

Ynm +
YnkYmk

Y1k + . . .+ Yik + . . .
= Ynm, (18)

for n 6= m, n 6= i, and m 6= i and

lim
|Yik|→∞

Yni +
YnkYik

Y1k + . . .+ Yik + . . .
= Yni + Ynk, (19)



for n 6= i; and the diagonal elements become

lim
|Yik|→∞

Ynn +
Y 2
nk

Y1k + . . .+ Yik + . . .
= Ynn (20)

for n 6= i and

Yii +
Y 2
ik

Y1k + . . .+ Yik + . . .

= −
∑

n 6=i,k

Yni − Yik +
Y 2
ik

Y1k + . . .+ Yik + . . .

= −
∑

n 6=i,k

Yni +
−Y1kYik − . . .− Y 2

ik − . . .+ Y 2
ik

Y1k + . . .+ Yik + . . .

= −
∑

n 6=i,k

Yni −
Yik

Y1k + . . .+ Yik + . . .

∑

n 6=i,k

Ynk (21)

lim
|Yik|→∞

Yii +
Y 2
ik

Y1k + . . .+ Yik + . . .
= −

∑

n 6=i,k

Yni + Ynk;

(22)
so as with the current injections, all of the branches connected
to node k also get moved to node i. The new nodal admittance
matrix is

Y
′

bus = YAA +
3∑

l=1

Yl (23)

where the Yl are three (Nbus − 1)× (Nbus − 1) matrices with
1) YAk as the ith column and zeros elsewhere, 2) Y T

Ak as the
ith row and zeros elsewhere, and 3) Ykk as the (i, i)th element
and zeros elsewhere.

For the power balance equations S = diag(V )I∗, partitio-
ning as before leads to

SA = diag(VA)I
∗
A (24)

Sk = VkI
∗
k . (25)

The new power injection vector is

S
′
= diag(VA)I

′∗

= diag(VA) (IA + eiIk)
∗

= SA + eiViI
∗
k

= SA + eiSk (26)

where we used (24), (12), and (25). The power injections on
node k are simply moved to node i.

B. “Full” and “half” observations

Using MBAM, we were able to reduce the model down
to 37 parameters with “full” observations [23]. Switching
to “half” observations allowed a couple more reductions,
for a total of 35 parameters, which is equal to what was
predicted in [22]. Table I shows the reductions that occurred
when using “half” observations; those that also occurred with
“full” observations are marked with an asterisk. The most
notable difference between these two reductions is the limit
B9,10 →∞, which indicates merging Buses 9 and 10 (see [23]
for more on merging buses). This is interesting because the
voltage magnitudes of both buses are being observed, yet we

are still able to combine them without introducing noticeable
deviations from the original model. The reduced network for
“half” observations is shown in Fig. 6.

In contrast with [22], we found that parameter limits invol-
ving time constants were not always paired with removal of
reactances, as would be the case in, e.g., a typical singular
perturbation reduction. This is because we initialized the
system in steady state, making the initial conditions (ICs)
parameter-dependent. Specifically, while the ICs did depend
on the reactances, they did not depend on time constants. To
illustrate, consider the following equation [30] for the transient
emf e

′
q:

T
′
d0ė

′
q = −e′

q − (xd − x
′
d)id + vf . (27)

Steady state implies ė
′
q = 0, so the ICs are (partially, along

with the other equations of the model) determined by the
constraint

0 = −e′
q − (xd − x

′
d)id + vf , (28)

which does not depend on T
′
d0 but does depend on xd and

x
′
d. MBAM naturally picks up on this subtlety because it is

reflected in the structure of the model manifold which MBAM
navigates. A more in-depth exploration of various power
systems models using MBAM would likely reveal additional
such subtleties in the parameter reductions of the model.

TABLE I
REDUCTIONS WITH “HALF” OBSERVATIONS.

Step Reduction Location Step Reduction Location

1 *T
′
q0 →∞ Bus 8 13 *T

′′
q0 → 0 Bus 8

2 *T
′
q0 →∞ Bus 6 14 *x

′′
q → x

′
q Bus 8

3 *xq →∞ Bus 8 15 *xd → x
′
d Bus 6

4 *T
′
d0 →∞ Bus 8 16 *T

′
d0 →∞ Bus 6

5 *xq →∞ Bus 6 17 *Ke → 0 Bus 6

6 *xd →∞ Bus 8 18 *Ka → 0 Bus 8

7 *Ke → 0 Bus 8 19 *Ka → 0 Bus 6

8 *B12,13 → 0 Line 12-13 20 *xd → x
′
d Bus 1

9 B9,10 →∞ Line 9-10 21 T
′′
q0, x

′
q , e

′
d →∞ Bus 6

10 *x
′′
d → 0 Bus 6 22 x

′
q → 0 Bus 1

11 *B2,5 → 0 Line 2-5 23 *T
′′
d0 → 0 Bus 6

12 *x
′′
d → 0 Bus 8

*Also occurred with “full” observations.

We conducted a sensitivity analysis of the reduced mo-
dels with “full” and “half” observations and found that our
reduction method has effectively removed only the smallest
eigenvalues of the FIM (see Fig. 7). The parameters that
remain are the ones that are most significant in determining
the behavior of the model.

C. Areas A and B

In large systems, engineers are usually most interested in
the behavior of only part of the system, called the internal or
study system. The external system, which is of less interest,
can be reduced using static and dynamic equivalents, as long
as its effects on the study system are retained [13]. By



Fig. 6. Reduced network for “half” observations. Branches marked in
red were removed during the reduction process for both “full” and ”half”
observations. Buses 9 and 10 were merged (blue) only in the “half” reduction.

Fig. 7. Eigenvalues of the FIM for “full” (a and b) and “half” (c and
d) observations; the reduced models are b and d. The smallest eigenvalues
have been effectively “erased,” so the most identifiable parameters have been
retained.

including observables only from the study system, MBAM can
be used to simultaneously eliminate unidentifiable parameters
in the study system and obtain equivalents for the external
system. We demonstrate this using the “Area A” and “Area B”
measurement regions shown in Fig. 4.

With “Area A” measurements, we were able to reduce
the model down to 31 parameters - significantly fewer than
predicted in [22]. The “Area B” measurements were not
considered in [22]; in this case the model was reduced down
to 25 parameters. Reduction steps are shown in Tables II and
III, respectively. Notably, compared to the “full” or “half”
measurement structures considered in Sec. V-B, much more

reduction occurred in both of these reductions in the generator
on Bus 1, which is not being observed in either area. In
addition, Area B had more reduction in the generator on Bus
6 than did Area A. Both of these points are consistent with
the expected lack of need to retain detail outside the observed
area.

TABLE II
REDUCTIONS WITH “AREA A” OBSERVATIONS.

Step Reduction Location Step Reduction Location

1 T
′
q0 →∞ Bus 8 15 T

′′
q0, x

′
q , e

′
d →∞ Bus 8

2 T
′
q0 →∞ Bus 6 16 B1,5 → 0 Line 1-5

3 xq →∞ Bus 8 17 Ke → 0 Bus 3

4 T
′
d0 →∞ Bus 8 18 B2,3 → 0 Line 2-3

5 xq →∞ Bus 6 19 B4,9 → 0 Line 4-9

6 xd →∞ Bus 8 20 T
′′
q0, x

′
q , e

′
d →∞ Bus 6

7 Ke → 0 Bus 8 21 B4,5 →∞ Line 4-5

8 B12,13 → 0 Line 12-13 22 T
′
d0 →∞ Bus 6

9 T
′
q0 → 0 Bus 1 23 Ke → 0 Bus 6

10 xq → x
′
q Bus 1 24 Ka → 0 Bus 6

11 B2,4 → 0 Line 2-4 25 T
′′
d0, x

′
d, e

′
q →∞ Bus 8

12 xd → x
′
d Bus 6 26 xq →∞ Bus 1

13 Ka → 0 Bus 8 27 x
′′
q → 0 Bus 8

14 xd → x
′
d Bus 1

TABLE III
REDUCTIONS WITH “AREA B” OBSERVATIONS.

Step Reduction Location Step Reduction Location

1 T
′
q0 →∞ Bus 8 18 Ka → 0 Bus 6

2 T
′
q0 →∞ Bus 6 19 xd →∞ Bus 6

3 xq →∞ Bus 8 20 B2,4 → 0 Line 2-4

4 T
′
d0 →∞ Bus 8 21 T

′′
q0, x

′
q , e

′
d →∞ Bus 6

5 xq →∞ Bus 6 22 B6,13 →∞ Line 6-13

6 xd →∞ Bus 8 23 xd → x
′
d Bus 1

7 Ke → 0 Bus 8 24 x
′
q → 0 Bus 1

8 B12,13 → 0 Line 12-13 25 B4,5 →∞ Line 4-5

9 B10,11 → 0 Line 10-11 26 T
′
q0 → 0 Bus 1

10 B6,12 →∞ Line 6-12 27 T
′′
q0, x

′
q , e

′
d →∞ Bus 8

11 B9,10 →∞ Line 9-10 28 B1,5 → 0 Line 1-5

12 B6,11 →∞ Line 6-11 29 x
′′
q → 0 Bus 6

13 x
′′
d → x

′
d Bus 6 30 B13,14 →∞ Line 13-14

14 T
′′
d0 → 0 Bus 6 31 B3,4 → 0 Line 3-4

15 T
′
d0 →∞ Bus 6 32 B4,9 → 0 Line 4-9

16 Ke → 0 Bus 6 33 x
′′
q → 0 Bus 8

17 Ka → 0 Bus 8

Particularly striking are the network reductions that occurred
in each of the “Area A” and “Area B” reductions. These can be
seen in Figs. 8 and 9. Although significant external network
reduction occurred, in both cases buses were retained that
could be considered “far” from the observed region because
they are not directly connected to any of the observed buses
(notably, Buses 1-3 in the “Area A” reduced network and Bus



1 in the “Area B” reduced network). This indicates that some
external network structure can be “seen” through its effects on
the study system, even when it is not being directly observed.
We note that this may be related to the presence of generators
on these external buses.

Fig. 8. Reduced network for “Area A” observations (shaded region). Branches
that were removed during the reduction from inside the observed area are
marked in red; those removed from outside have been omitted for clarity.
Buses (and associated components) that were merged during the reduction
are marked in blue.

As in the case of “half” observations, in “Area B” we
find that some external buses have merged into those being
observed (Buses 9 and 4). We also note that Bus 14, where the
short occurs, has now been merged with other external buses
in “Area B,” indicating that in general, the exact location of a
short in the external system may not be discernible from the
available measurements and so may be irrelevant.

We conducted a sensitivity analysis of the “Area A” and
“Area B” reduced models and confirmed that the small eigen-
values of the FIM have been eliminated (see Fig. 10).

D. Supplier-consumer observations

The final measurement scheme includes observations on
only two buses, 1 and 14, as well as the generator on Bus 1.
This choice allows for maximal network reduction to occur
in the system. We expect the results obtained for this set
of observations to be particularly indicative of the level of
network reduction that could be achieved for large power
systems where only portions of the system are being directly
observed.

We saw the most reduction for this set of observations, with
the final reduced model consisting of 20 parameters (see Table
IV for reduction steps). This matches the prediction made in
[22].

Fig. 9. Reduced network for “Area B” observations (shaded region). Branches
that were removed during the reduction from inside the observed area are
marked in red; those removed from outside have been omitted for clarity.
Buses (and associated components) that were merged during the reduction
are marked in blue.

Fig. 10. Eigenvalues of the FIM for “Area A” (a and b) and “Area B” (c and
d) observations; the reduced models are b and d.

As with Areas A and B (see Sec. V-C), we did not see
a complete reduction of the unobserved parts of the network
(see Fig. 11. A “backbone” consisting of Buses 1-3, each with
its own generator, remains essentially unchanged in all three
reductions; but it is also noteworthy that in this reduction, the
other two buses with generators have merged.

A sensitivity analysis on the 20-parameter reduced model
reveals that many of the small eigenvalues have again been
eliminated (see Fig. 12).

VI. CONCLUSION

In this paper, we have demonstrated capabilities of the Ma-
nifold Boundary Approximation Method (MBAM) to simulta-
neously reduce dynamical components and network structure
and perform parameter estimation in the IEEE 14-bus test



TABLE IV
REDUCTIONS WITH “SUPPLIER-CONSUMER” OBSERVATIONS. c©2019

IEEE

Step Reduction Location Step Reduction Location

1 T
′
q0 →∞ Bus 8 20 x

′
q , e

′
d →∞ Bus 8

2 T
′
q0 →∞ Bus 6 21 B7,9 →∞ Line 7-9

3 xq →∞ Bus 8 22 x
′′
q → 0 Bus 6

4 T
′
d0 →∞ Bus 8 23 B7,8 →∞ Line 7-8

5 xq →∞ Bus 6 24 T
′′
d0, x

′
d, e

′
q →∞ Bus 8

6 xd →∞ Bus 8 25 xd → x
′
d Bus 6

7 Ke → 0 Bus 8 26 B9,14 → 0 Line 9-14

8 B12,13 → 0 Line 12-13 27 T
′
d0 →∞ Bus 6

9 B10,11 →∞ Line 10-11 28 Ke → 0 Bus 6

10 B9,10 →∞ Line 9-10 29 Ka → 0 Bus 6

11 B6,12 →∞ Line 6-12 30 B4,7 →∞ Line 4-7

12 B2,5 → 0 Line 2-5 31 B6,13 →∞ Line 6-13

13 T
′′
q0 → 0 Bus 8 32 T

′′
d0 → 0 Bus 6

14 x
′′
q → 0 Bus 8 33 Ke → 0 Bus 3

15 B4,9 → 0 Line 4-9 34 B3,4 → 0 Line 3-4

16 B6,11 → 0 Line 6-11 35 B1,5 → 0 Line 1-5

17 x
′′
d → 0 Bus 6 36 xd → x

′
d Bus 1

18 B4,5 →∞ Line 4-5 37 B5,6 →∞ Line 5-6

19 Ka → 0 Bus 8 38 x
′
d → 0 Bus 3

Fig. 11. Reduced network for “supplier-consumer” observations (shaded
regions). Branches that were removed during the reduction have been omitted
for clarity. Buses (and associated components) that were merged during the
reduction are marked in blue.

system. These efforts improve on previous studies [22], [23]
by using a more realistic fault scenario and longer observation
times and by applying MBAM in several new measurement
scenarios.

We have shown that MBAM is data-driven by obtaining
reduced models for 5 different sets of observations in this
system. In every case, fidelity with the original, unreduced
model is maintained and only the unidentifiable parameters
are removed, as evidenced by a sensitivity analysis using the
Fisher Information Matrix. The amount of reduction achieved
(from 58 parameters down to 37, 35, 31, 25, and 20 for the
five cases) is tailored to the set of observations being predicted
by the model in each case, with more reduction occurring for

Fig. 12. Eigenvalues of the FIM for “supplier-consumer” observations, before
(a) and after (b) reduction.

more limited sets of observations.
Some regions of the network are unobserved in three of

the five cases. We found that both dynamical components and
network structure in the unobserved regions were significantly,
but not completely, simplified. In every case, some external
network structure remained (besides boundary buses) that
might have been simplified by other reduction methods. This
indicates that, in general, more external network structure may
be “visible” through its effect on the region of interest than
has previously been supposed.

Accordingly, MBAM is a potentially useful way of deriving
equivalents, in models of large power networks, that strike a
better balance between model simplicity and accuracy. These
equivalents represent an effective network of interactions that
is sufficient to predict the observed dynamical behavior while
eliminating unnecessary detail. Such effective networks are
useful not only because of reduced computational effort and
model uncertainty but as a tool for developing insight about
the collective system-level behavior.

Finally, we identified several types of parameter limits that
can be used in power systems models with similar mathema-
tical structures. Identifying these limits will be crucial in our
ongoing efforts to scale up these methods to large systems.
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Chapter 5

Piecemeal Reduction of Large Systems

5.1 Introduction

Mathematical models from many fields of study involve large, interconnected network structures.

Often these models stretch and go beyond the limits of current computing capabilities, available

measurement data, and intuitive comprehension. For these reasons many efforts have been put

toward developing model reduction techniques. In particular, there is a need for reduction methods

that preserve physical interpretability of the reduced model, especially its interpretation as a network

of interconnected components. In some cases a model of a system may be so large that it is

impractical or even impossible to reduce as a whole with current methods. In these cases it is

necessary (and potentially still beneficial with more manageably-sized models) to have methods for

reducing pieces of the model separately and then reassembling them.

Most model reduction methods that have been developed involving interconnected subsystems

or network structure have been applied to whole systems simultaneously and not to pieces or

subsystems separately (i.e., in open loop). This is because, even when such methods preserve

stability or other characteristics in the open-loop subsystem, they do not guarantee preservation
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of underlying physical conservation laws, potentially leading to instabilities when the reduced

subsystem is reconnected. Still, there are methods that at least preserve all or part of the intercon-

nection structure between subsystems during the reduction process so that subsystems are effectively

reduced separately.

Traditional application of such methods as balanced truncation or Krylov subspace projection

does not preserve interconnection structure, because state variables of the reduced model are usually

linear combinations of the underlying “physical” states. However, modifications of these methods

that preserve interconnection structure by structuring the coordinate transformations or projections

involved have been explored in [47–52] and demonstrated in industrial advanced process control [53]

and power systems [54]. A variation on balanced truncation that reduces identical subsystems

in a network without disturbing the network structure and while maintaining homogeneity of the

subsystems is presented in [55]. An alternative approach for a one-dimensional arrangement of

identical interconnected subsystems that allows for uncertainties (represented as a ∆-block) is taken

in [56].

For networks of identical subsystems, the idea of clustering has been proposed for preserving

partial network structure, in which a system is decomposed into areas (clusters) whose subsystems

(nodes) are then aggregated (rather than being individually reduced). Criteria for determining

clusters have included cluster reducibility [57–59], almost equitable partitions [60–62], edge

importance [63, 64], and vertex/cluster dissimilarity [65, 66]. Most of these methods are only

applicable to first- or second-order subsystems or specific network structures (although in [66] both

of these restrictions are lifted), and all of them are suitable only for linear systems.

In power systems, the related concept of area aggregation has been explored in [67–71] for

identical first- and second-order (linear) subsystems and extended to detailed generator models

in [72]. This approach is based on slow coherency, in which a separation of timescales occurs

due to areas being much more densely connected internally than they are to other areas. Area
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aggregation and slow coherency fall under the broader scope of dynamic equivalencing in power

systems (see [73] for a review of dynamic equivalencing methods), which splits the system into a

detailed study area to be kept and an external area to be reduced. How to choose the study area

usually depends on the application and on the particular method of reduction.

Although similar to slow coherency, the notion of synchronic modal equivalencing (SME) [74]

was developed to address situations where there is no clear distinction between slow and fast

modes of the system or when modes other than the slowest may be of interest. The equivalents

are formed by organizing the system into groups whose motion can be well-approximated by a

linear combination of the motions of a set of basis generators. For the most part, little reduction is

performed on the network itself; although generators which are neither in the study group nor in the

chosen basis are replaced with current sources, their buses (nodes) are retained in-place. Both slow

coherency and SME require a multi-step procedure for determining which generators to group and

how to aggregate them.

One of the challenges of dynamic equivalencing is determining the parameters of the generator

equivalents so as to retain the characteristics of the generators being replaced. In [72], explicit

formulas relating the parameters of aggregated machines to those of the equivalent are derived

assuming the aggregated machines are identical, based on maintaining the mathematical structure

of the individual machine models. Alternatively, [75] proposes two methods, one using a fitting

algorithm to determine the parameters using aggregated values only as a starting point, and the

other based on aggregating impedances determined for certain oscillation frequencies. In the case

of SMEs, no aggregation is performed; rather a chosen set of generators is simply retained as-is.

Recent developments in information geometry have led to an alternative approach to model

reduction that maintains physical interpretability of the model and is amenable to fully nonlinear

systems, known as the Manifold Boundary Approximation Method (MBAM) [29]. By focusing

on the tunable parameters of the model, rather than the states, MBAM is able to directly consider
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physically-meaningful limiting behaviors of the model and preserve all relevant underlying conser-

vation laws and symmetries of the system. In addition, the MBAM reduction process is data-driven,

tailored specifically to maintain fidelity of the chosen set of observations, so detail is naturally kept

where it is needed and discarded where it is not.

Conventional application of MBAM proceeds by finding and then applying various parameter

limits to the model, reducing the number of parameters by one at each step. Although initially this

step-by-step procedure is necessary in order to discover which parameter limits are appropriate and

physically meaningful for the particular mathematical structure of the model, for large models with

hundreds or thousands of parameters it is impractical. It is also very computationally intensive,

requiring not only repeated evaluation of the model but repeated calculation of the Jacobian of the

model with respect to the parameters (i.e., parameter sensitivities) for each step of the reduction.

A variation of MBAM, known as LinearizedMBAM [76], has been developed that utilizes prior

knowledge about the types of viable parameter limits, obtained from applying conventional MBAM

to small or moderate systems, to find hundreds of limits for a large model in a single calculation,

making reduction of large models much more efficient and tractable. But unfortunately even this

is insufficient for reducing models of very large systems having more than tens of thousands of

parameters.

Model reduction methods that can be performed on pieces of the system separately while

maintaining physical interpretability can be useful, even for moderately-sized systems. In this

chapter, we propose a procedure for splitting a model of a large system into pieces, reducing the

pieces using MBAM or LinearizedMBAM, and reassembling them to construct a reduced model of

the whole system. The outline of the chapter is as follows. All possible sequences of parameter

limits that can be applied to a model are captured in a directed graph called a Hasse diagram;

Sec. 5.2 discusses how the Hasse diagram may be navigated piecewise. Section 5.3 outlines key

characteristics a successful piecemeal reduction strategy should have, discusses how these may
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be addressed in the context of MBAM, and ends with our proposed strategy. In Sec. 5.4, we

demonstrate the proposed strategy on an example network. This is followed by some discussion of

our results and concluding remarks in Sec. 5.5.

5.2 Navigating the Hasse diagram

Section 2.1 of Ch. 2 described the model manifold, whose boundary structure may be identified

as a graded poset1. In most cases of interest, this poset has the additional structure necessary

to identify it as an abstract polytope, in which case the poset elements are called faces. Abstract

polytopes capture the connectivity properties of traditional polytopes (which are the n-dimensional

generalizations of polygons and polyhedrons). When a model manifold has a polytopal boundary

structure, we will refer to the boundary structure as the model polytope; otherwise, we will refer the

boundary structure as the model boundary poset.

All discrete posets2 may be represented visually with a Hasse diagram (see Fig. 5.1). At the

top of the Hasse diagram for a model boundary poset is a vertex representing the full (unreduced)

model with N parameters.3 The other vertices of the Hasse diagram represent reduced models

that may be obtained by taking various combinations of parameter limits. Each edge represents a

1 A poset (partially ordered set) is a set P together with an ordering relation ≤P . A graded poset is a poset that

also has a rank function that maps from the poset to the natural numbers. For graded posets arising from the topological

connectivity properties of geometric figures, the rank of an element is the dimension of the corresponding structural

component of the figure, e.g., vertices and apices are rank 0, edges are rank 1, etc.
2 A discrete poset is a poset whose elements are countable.
3 This is the number of structurally identifiable [77] parameters in the model (see also [78]), rather than the number

of nominal parameters. A complete characterization of parameter identifiability requires calculation of the full Jacobian

J of the model predictions with respect to the parameters. Structurally unidentifiable parameter combinations appear

as eigenvectors of JᵀJ with zero eigenvalue. The total number of structural parameters is independent of how the

parameters are defined, so we will refer to individual parameters as well as to parameter combinations that act or can be

defined as single parameters simply as parameters.
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parameter limit that may be evaluated in the model at that edge’s upper vertex, typically reducing

the number of parameters by one. The number of parameters in each reduced model determines

its rank; all vertices at the same level in the Hasse diagram represent reduced models with the

same number of parameters. By finding and implementing parameter limits in the model, MBAM

effectively navigates down the Hasse diagram, one edge at a time. Formally, the model reduction

problem which MBAM solves can be stated as follows: Given the Hasse diagram for a model

boundary poset, construct a directed path from the top vertex to the lowest possible vertex such

that the bias introduced in the model (in some chosen norm) is no greater than a predetermined

bound. The process of constructing a directed path through the Hasse diagram is what we will refer

to as navigating the Hasse diagram. Typically the norm and bound chosen depend on the particular

application and which types of bias are more important to the user.

Figure 5.1 Left: A cube. Faces are labeled with capital Latin letters, edges with lowercase
Latin, and corners with lowercase Greek. The connectivity between these structural
elements is captured by a partially ordered set called an abstract polytope. Center: Hasse
diagram for the cube. ΓΓΓ represents the whole cube, and the succeeding three levels represent
faces, edges, and corners, respectively. Right: The rank indicates the dimensionality of
each structural element.

As an example, consider the network shown in Fig. 5.2. A model based on this network has

a nonnegative parameter for each edge and predicts observations made at nodes (for details, see
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Sec. 5.4). The cube in Fig. 5.1 represents the model polytope for such a model; we have redrawn the

Hasse diagram from Fig. 5.1 in Fig. 5.2 to illuminate the relationship between Hasse diagram edges

and the parameters of the model. Already the diagram is not simple (compared to the corresponding

network); generally speaking, the order of the Hasse diagram (its number of vertices) grows much

faster than the number of parameters in the model. Large models have incredibly large, complicated

Hasse diagrams. Reducing a large system by splitting it into pieces and reducing them separately

can be viewed as navigating parts of the Hasse diagram separately and then combining the results.

Figure 5.2 Network with four nodes and three edges. A model based on this network that
has nonnegative parameters for each edge and makes predictions at nodes would have
the cube in Fig. 5.1 as its model polytope. The Hasse diagram from Fig. 5.1 is repeated
here on the right, with edges colored to indicate which parameter (i.e., which edge in the
network) they correspond to. These edge parameters each have two possible limits (see
Sec. 5.3.3): dashed lines represent limits where a network edge is cut or removed, and
solid lines represent limits where a network edge is contracted and its two vertices are
merged.

This raises the question of how to identify parts of the Hasse diagram that can be navigated

independently. Because piecewise navigation involves the construction of multiple paths, the key

criterion is that each path be compatible with every other path constructed, i.e., each sequence

of parameter limits must be interchangeable with every other sequence of parameter limits. An

example of this is shown in Fig. 5.3, which shows both a network associated with a four-parameter

model (one parameter for each network edge) and the Hasse diagram for this model. Clearly, any

path from the top vertex of the Hasse diagram along only black edges could be replicated from
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either of the two orange edges at the top, and likewise both choices for orange are available at every

point in the central set of black edges.

Figure 5.3 Left: Network with 4 nodes and 4 edges. Colors distinguish two groups of
parameters. Right: Hasse diagram for a model based on this network. Starting from the
top, any path involving only black edges may be replicated from either of the two orange
edges, and vice versa.

This requirement that Hasse diagram paths be compatible has implications for how the para-

meters in the model should be grouped for piecemeal reduction. For example, it is necessary that

these groups of parameters be disjoint to avoid getting conflicting limits for the same parameter.

In some cases, simply partitioning the parameters is sufficient, provided that the partition meets

certain additional requirements. We discuss such partitions in Sec. 5.2.1. In other cases, it may be

necessary to (temporarily) leave some parameters out of the piecemeal reduction process in order

to ensure that paths will be compatible. As a result, the combined path will be limited as to how

far down the Hasse diagram it can extend, and further reduction may be possible after the initial

piecemeal reduction is performed. We discuss partial navigation of the Hasse diagram in Sec. 5.2.2.

5.2.1 Prime posets

As a special case, compatibility of Hasse diagram paths is guaranteed if the model boundary poset is

factorable, i.e., decomposable as a Cartesian product of (nontrivial) posets. The Cartesian product
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of two posets4 P and Q is defined as

P×Q ≡ {(F,G)|F ∈P,G ∈Q}, (5.1)

where the ordering is given by

(F,G)≤P×Q (F ′,G′) if and only if F ≤P F ′ and G≤Q G′. (5.2)

Any connected5 poset has a unique prime factorization with respect to the Cartesian product [80].6

Accordingly, given a poset P , we may write its prime factorization as

P = ∏
i

Pi. (5.3)

It has been shown [79, 81] that if P = ∏i Pi, then H(P) = ∏i H(Pi); that is, the Hasse diagram

for P is factorable as the Cartesian product of the Hasse diagrams of the factors Pi. This means

that the Hasse diagrams of the factors H(Pi) may be navigated separately and the resulting directed

paths combined (in any order) to obtain a single directed path through the Hasse diagram H(P) of

the full poset. It also means that any parameter limits associated with one prime P j are independent

of (and compatible with) those associated with all other primes Pi6= j. The network in Fig. 5.2 has a

factorable model boundary poset, as indicated by the repeated path structure throughout its Hasse

4 For abstract polytopes, several variations of this product, which are discussed in [79], are possible depending on

the treatment of the null and greatest faces, including 1) the join product, which includes pairings of all faces of the two

polytopes; 2) the Cartesian product, which excludes pairings of the null face of either polytope with the non-null faces

of the other, 3) the direct sum, which excludes pairings of the greatest face of either polytope with the non-greatest

faces of the other, and 4) the topological product, which excludes pairings of both the greatest and null faces with the

others. In the context of models with polytopal boundary structures, the null face has no meaning and is of no use, so

pairings of faces in one model polytope with the null face of the other are likewise meaningless. All other pairings are

meaningful, so the Cartesian product is the appropriate one for model polytopes.
6 A poset P is connected if, for any two elements F,G ∈P , there exists a sequence {F = F0,F1, . . . ,Fk = G} such

that Fi ≤ Fi−1 or Fi ≥ Fi−1 for every i ∈ {1, . . . ,k}.
6 [79] showed that this also holds for polytopes, which are connected by definition.
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diagram. For comparison, an example network whose model boundary poset is prime is shown in

Fig. 5.4.

Figure 5.4 Network (left) with the same number of parameters as the one in Fig. 5.2 but
slightly different topology, and associated Hasse diagram (right). In contrast with Fig. 5.2,
the repeating structure of paths in the Hasse diagram is broken; the corresponding model
polytope is not factorable. Some edges near the bottom of the diagram have two colors
because it is ambiguous which (bare) parameter remains in the model at that point in the
reduction.

We expect that groups of parameters associated with various prime factors in the poset de-

composition will be disjoint and lead to a partition of the parameters. Although identifying these

groups may, in general, be nontrivial, we can specify a couple of characteristics they possess, which

should aid in their discovery. Because the limits of a prime poset’s parameters are necessarily

compatible with all other parameter limits in the model, any parameter whose limits result in loss of

the structural identifiability7 of any other parameter in the model must belong to the same group as

that parameter. In addition, a prime poset’s parameters won’t participate in any coordinated limits

(e.g., two parameters going to infinity simultaneously while their ratio remains constant, or the like)

with the parameters of any other prime poset.

7 See footnote 3.
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5.2.2 Partial navigation of the Hasse diagram

If the model boundary poset is factorable, then so is the Hasse diagram, which may be completely

navigated (top to bottom) by parts without any conflicts. It is also possible to partially navigate the

Hasse diagram by parts even when it is not factorable or when the factorable pieces are too large to

be manageable. As previously stated, the necessary requirement is that each partial path constructed

be compatible with every other such path. A counterexample is shown in Fig. 5.5, which shows

a Hasse diagram where the set of choices at the second reduction step (going from the top vertex

down) for the remaining parameters depends on which path is taken on the first reduction step for

the first parameter. If the network in Fig. 5.5 were expanded from a 4-cycle8 to a 6-cycle (see

Fig. 5.6), then the first two parameters could be reduced independently, even though as a whole the

model boundary poset is not factorable. This has implications for dividing up a large network and

reducing parts of it separately (see Sec. 5.3.3).

5.3 Piecemeal Reduction Strategy

In general, there are several properties we have identified that are desirable in a piecemeal reduction

strategy. These include:

1. Accounting for the effects of the rest of the system on each subsystem during its reduction.

Typically a subsystem will exhibit different behavior when disconnected from the rest of

the system (in open loop) than when connected (in closed loop). Fidelity to the closed-loop,

rather than open-loop, behavior should be maintained.

2. Preserving connectivity with the rest of the system. Reduced subsystems should be compatible

at points of connection so they can be reassembled after reduction.

8 A k-cycle is a (sub)network with k nodes and k edges connected in a loop.
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Figure 5.5 Network and Hasse diagram for a four parameter model. Some edges in the
Hasse diagram have been grayed out to help illuminate certain structures that exist within
the diagram. Going from the top vertex of the Hasse diagram to the next level down (the
first reduction step), there are two choices for each parameter, but at the second reduction
step some of these choices are lost. For example, if the left purple edge is followed, all
six choices for red, green, and blue are preserved, and we obtain the network and Hasse
diagram shown in Fig. 5.2; but if the right purple edge is taken, there are only three paths
available and we obtain the network and Hasse diagram shown in Fig. 5.4 instead. If
this Hasse diagram were a subset of a larger diagram (see Fig. 5.6), it could be partially
navigated as long as the navigation stopped at what is the first level down from the top of
this diagram.
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Figure 5.6 Network and partial Hasse diagram for a six parameter model. Edges (and their
succeeding nodes) descending from gray and white nodes have been omitted for clarity.
At gray nodes, two options are available for each remaining color; at white nodes only one
option is available. As shown (bottom right), the Hasse diagram in Fig. 5.5 is a subset
of this one. Although the repeating structure does not carry through to the bottom of the
diagram, as it would if the corresponding model polytope were factorable, it does carry
through the first few levels, making it possible to navigate the upper part of the diagram
piecemeal.
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3. Ensuring that reconnecting the reduced subsystems does not introduce instabilities or other

unwanted artifacts. That is, the reduction process should respect underlying conservation

laws of the system.

4. Maintaining physical interpretability. One of the key reasons for performing model reduction

is to develop insight into the relationships between different components of the system by

eliminating unnecessary detail. This insight is lost if the reduced model is not physically

interpretable.

In this section, we discuss each of these properties in the context of reduction via MBAM, concluding

with an outline of our proposed reduction strategy. Most of our attention is on the second property;

we address the others only briefly.

5.3.1 Fidelity of closed-loop behavior

There are a couple of ways the first property can be attained. One is by retaining the entire model in

simulation but only calculating parameter sensitivities of observations within the subsystem to be

reduced and only with respect to parameters in that subsystem. This does not constitute a “true”

piecemeal reduction, since the entire model must still be evaluated when calculating predictions

and parameter sensitivities, but it at least reduces the size of the parameter Jacobian that must

be calculated. Alternatively, there will be external state variables that appear in the subsystem

equations in places where the subsystem being reduced connects to the rest of the system. These

state variables can be replaced with inputs that simulate or replicate their behavior (perhaps obtained

by recording their behavior during simulation of the entire system before reduction). There may

be other ways to maintain fidelity of the closed-loop behavior of the subsystem; however, careful

attention to this property is not the focus of this work.
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5.3.2 Respecting conservation laws and maintaining physical interpretabi-

lity

The third and fourth properties are both naturally achieved by MBAM. No truncations or projections

are performed which could potentially violate underlying conservation laws, and no state transfor-

mations occur that could obscure the physical interpretation of system states. Instead, reduction

proceeds by implementing a series of physically-meaningful parameter limits which simply restrict

model predictions to an appropriate submanifold of the model manifold. Unnecessary state variables

are naturally eliminated by, for example, steady-state approximations and singular limits in the

parameters. As a result, the final reduced model has a direct interpretation in terms of the parameters

and states of the original detailed one. In addition, as long as only proper reductions are performed

(as discussed in Sec. 5.3.3), no other instabilities or artifacts will be introduced by performing the

reduction piecewise.

5.3.3 Preserving connectivity

The second property is directly connected with the discussion in Sec. 5.2 and has particular

implications for how subsystems are chosen. For example, if two subsystems are chosen to

overlap each other, the two reductions may be incompatible in the overlapping region (i.e., may

have conflicting parameter limits), preventing straightforward reassembly. Even if the system is

partitioned so that no overlaps occur, there can be subtleties that arise along the boundaries that

distinguish subsystems which need to be addressed.

To illustrate, consider the network shown on the left in Fig. 5.7.9 Associated with each edge is a

9 In the context of power systems, this could represent a small power network, with nodes representing buses, edges

representing transmission lines, and wik corresponding to the magnitude of the line impedance. It was established in

Ch. 4 that letting wik→ ∞ disconnects Buses i and k whereas letting wik→ 0 shorts the two buses (effectively merging

them into a single bus). In this example, it is assumed that each bus has both a power source (generator) and a power
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tunable parameter wik representing the effective length of the edge. Letting wik→ ∞ corresponds to

removing the edge between nodes i and k, while wik→ 0 corresponds to contracting that edge and

merging nodes i and k. Assume that observations are made at nodes and not along edges.

Figure 5.7 3-node network, connected in a cycle. Edge weights wik represent the effective
length of the edge, such that wik→∞ represents edge removal and wik→ 0 represents edge
contraction. Letting w13→ 0 before either w12→ ∞ or w23→ ∞ results in a structurally
unidentifiable parameter because any change in either w12 or w23 can then be compensated
by the other.

Now consider what happens if the limit w13 → 0 is naively applied (right-hand network in

Fig. 5.7). Any change in w12 or w23 can now be compensated by the other, so there is a structurally

unidentifiable parameter combination. This means the number of (identifiable) parameters has been

reduced by two, not one. Such a reduction is forbidden; it does not correspond to any transition in

the Hasse diagram which represents the model boundary poset.10 Either of the limits w12→ ∞ and

w23→∞ comes first. When a 3-cycle (or cycle of any size) occurs within a subsystem, conventional

MBAM will naturally find the appropriate limits at each reduction step because all of the cycle’s

parameters will be included in the parameter Jacobian, but not when a cycle occurs at the boundary

between subsystems (Fig. 5.8). To avoid the situation in Fig. 5.7, the following restrictions would

need to be placed on reduction of each subsystem:

1. No edge connecting two nodes on the subsystem boundary should be contracted.

sink (load), so if any bus becomes completed disconnected from the others, its voltage will remain finite, ensuring a

bounded model manifold for any set of voltage observations made on the system; see Sec. 5.4.
10 This is the origin of the difference between Figs. 5.2 and 5.4 in Sec. 5.2.
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2. An edge connecting a boundary node with a interior node should not be contracted if the

interior node is also connected to another boundary node.

Figure 5.8 Part of a hypothetical network showing a proposed subsystem boundary (dashed
line) that intersects a 3-cycle. Separately reducing the left and right subsystems could lead
to complications for reassembly. On the left, naively contracting either edge AB or AC
(or both) would make BC structurally unidentifiable. On the right, naively contracting BC
would make AB or AC structurally unidentifiable.

These restrictions are specific to this type of network structure (i.e., undirected edges with

positive weights) and measurement structure (i.e., observations on nodes but not on edges). Other

types (e.g. directed edges, as in biochemical networks or other compartment models; edges with

either positive or negative weights, as in spin interactions in a lattice; etc.) may require different

restrictions. In general, the restrictions that are implemented in each case should ensure that the only

reductions performed on subsystems are those which could have been performed on the complete

system, i.e., which correspond to edges in the Hasse diagram for the full model boundary poset.

We term such reductions proper. This is an important additional property of reduction via MBAM:

by performing only proper reductions, one can guarantee that the model obtained by reducing the

pieces is something that could have been obtained by reducing the whole (if it were computationally

tractable to do so).

In many cases such restrictions are conservative and there will be additional reduction left

undone along subsystem boundaries that (in principle) could have been achieved by reducing the

whole all at once. In terms of the Hasse diagram, only part of the diagram will be navigated (see
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Fig. 5.6 in Sec. 5.2). This may seem to indicate that the boundaries should be chosen carefully in

order to minimize these restrictions. This is only partly true. If the piecemeal reduction process

is performed iteratively, then subsystem boundaries can be redefined or removed at each iteration

so that reductions that were restricted during one iteration become unrestricted at the next. This

can be done in a way that allows all reductions that could have been performed on the whole to

be explored by MBAM during reduction of the pieces. We address this further in the proposed

reduction strategy which follows.

5.3.4 Proposed strategy

We propose the following strategy for piecemeal reduction via MBAM (or LinearizedMBAM). This

strategy ensures subsystems are compatible after reduction and allows all reductions that could have

been performed on the whole system to be explored during reduction of the subsystems.

1. Define the subsystems to be reduced.

2. Implement restrictions along boundaries where each subsystem connects with the others to

ensure subsystems will be compatible after reduction.

3. Use some method to replicate or simulate the input-output behavior of each subsystem at

connection points with other subsystems so the behavior of each subsystem reflects what it

would have been if still connected.

4. Reduce the subsystems using MBAM or LinearizedMBAM.

5. Reassemble the reduced subsystems and define new subsystems that cover previous boundary

regions.

6. Repeat 2-5 until no more restrictions remain or all restrictions have been lifted in at least one

iteration of the process.
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5.4 Resistor Network Example

In this section we demonstrate our strategy on a network of resistors. Consider the network shown in

Fig. 5.9. Each branch has an associated resistance Rik which is taken as a model parameter. Currents

Iin
i are injected at each of the junctions (nodes) i, flow through the network, and are returned via

resistors to ground Rout
i at every junction. These resistances are fixed and assumed to be known.

Each of the outgoing currents Iout
i is measured, as are voltages Vi at junctions.

Figure 5.9 Diagram for a test case resistor network. Each branch/edge has an associated
resistance. Voltage is measured at junctions (nodes; numbered). Current is injected at every
junction, flows through the network, and is returned through a resistor to ground at each
junction (see detail at right). Each shaded box is a subnetwork to be reduced separately in
the piecemeal reduction process.

We model the network as follows. Current conservation at each of the nodes gives

Iin
i − Iout

i =
Nnode

∑
k=1

Iik, (5.4)

where Iik is the current flowing out of node i to node k. The voltage difference across each branch is

given by

Vi−Vk = IikRik. (5.5)
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Finally, the outgoing current Iout
i from each node is determined by

Vi = Iout
i Rout

i . (5.6)

Assuming the input currents Iin
i and resistances to ground Rout

i are known, these three sets of

equations can be solved for the node voltages Vi, branch currents Iik (not observed), and outgoing

currents Iout
i as a function of the branch resistances Rik.

This network structure was chosen to lead to a model manifold with specific characteristics. The

acyclic topology of the network allows each of the resistances Rik to be varied independently of

the others, leading to a manifold whose boundary poset is a hypercube. In addition, each of the

branch resistances can be varied to either extreme (0 or ∞) without any of the observable variables

becoming unphysical. These two extremes are, in fact, the DC analogues of the two parameter

limits observed and presented in Ch. 4, where two nodes either become disconnected (Rik→ ∞) or

merged (Rik→ 0).11 This can be seen when the limits are applied to Eq. (5.5):

Iik = lim
Rik→∞

Vi−Vk

Rik
= 0, (5.7)

Vi−Vk = lim
Rik→0

IikRik = 0. (5.8)

In particular, even if a node or subset of nodes becomes completely disconnected from the rest of

the network, there is always a path to ground for the current to follow and the voltage on the node

will remain finite, resulting in a bounded model manifold. In more realistic scenarios (e.g., in power

systems where not every bus has both a generator and a load), care must be taken to appropriately

identify the viable parameter limits and hence the structure of the model boundary poset.

We divided the network into five subnetworks (as indicated in Fig. 5.9) and applied Lineari-

zedMBAM to each. In this case there are no cycles in the network, so there are no restrictions

necessary at subsystem boundaries. Since this is a synthetic network and there is no measurement
11 Because resistance is inversely related to admittance, Y = 1/Z = 1/(R+ jX), the limits for the resistance given

here are the opposite of those for the admittance discussed in Ch. 4.
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uncertainty to provide a scale for the bias introduced during the reduction, we arbitrarily ended

the reduction of each subnetwork when 1/3 of the parameters remained (i.e., 2 out of 6). Table 5.1

lists the parameter reductions found, while Fig. 5.10 shows the resulting network. For comparison,

we also continued the reduction until no parameters remained; the additional parameter limits are

shown in Table 5.1 in parentheses. The total bias (sum of squared error between the predictions of

the unreduced and reduced models) for each of these cases is shown in Table 5.2, along with the

bias for two other cases: letting all parameters go to zero or to infinity. It is clear that, using MBAM,

we have found a set of parameter limits that introduces comparatively little bias.

Table 5.1 Parameter reductions, listed in the order in which they occurred in the reduction
of each subnetwork. Reduction of each proceeded until 2/3 of the parameters had been
reduced; reductions which would have occurred after this point are listed in parentheses.
Numerals indicate the order in which these reductions occurred when the entire network
was reduced simultaneously instead of piecemeal.

Subnetwork 1 Subnetwork 2 Subnetwork 3 Subnetwork 4 Subnetwork 5

2) R3,7→ ∞ 11) R8,16→ 0 4) R10,21→ 0 1) R13,26→ 0 3) R7,15→ ∞

10) R2,5→ 0 15) R4,8→ ∞ 6) R11,23→ 0 5) R12,24→ ∞ 20) R14,29→ ∞

9) R1,3→ 0 19) R9,18→ ∞ 8) R11,22→ ∞ 7) R12,25→ 0 21) R15,31→ 0

12) R1,2→ ∞ 17) R4,9→ 0 14) R5,10→ ∞ 22) R6,12→ 0 26) R15,30→ 0

13) (R3,6→ ∞) 25) (R8,17→ 0) 18) (R5,11→ 0) 23) (R6,13→ ∞) 28) (R7,14→ 0)

16) (R2,4→ 0) 30) (R9,19→ 0) 27) (R10,20→ 0) 24) (R13,27→ 0) 29) (R14,28→ ∞)

Table 5.2 Total bias (sum of squared error) introduced for different reduced models of the
network in Fig. 5.9. The first is LinearizedMBAM piecemeal reduction where 2/3 of the
parameters are reduced. The second is the same but reducing all of the parameters. The
third and fourth are other possible (but less optimal) reductions.

Piecemeal, 2/3 reduced Piecemeal, fully reduced All parameters to 0 All parameters to ∞

70 190 740 3800
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Figure 5.10 Resistor network from Fig. 5.9, after reducing 2/3 of the parameters. The
remaining branches are colored according to which subnetwork they were in prior to re-
duction. Merged junctions are indicated. At a certain level of measurement precision, this
network would be indistinguishable from the one in Fig. 5.9. It is also computationally sim-
pler and serves as an abstraction of the unreduced network’s primary (measurable) features,
e.g., which nodes are electrically “close together” (merged), “far apart” (disconnected), or
in between.

To show that our results are robust to the particular choice of subnetworks, we reduced the entire

network simultaneously (i.e., without splitting it into subnetworks) and found the same parameter

reductions, with only minor differences in the order (see Table 5.1).

5.5 Discussion and conclusions

In this chapter, we have proposed a strategy for splitting a system into subsystems (i.e., splitting

model parameters and predictions into groups), reducing the subsystems using MBAM (or Lineari-

zedMBAM), and then reassembling them. In some cases, to avoid conflicts, not all of the parameters

can be included in a single reduction, in which case the reduction can be performed iteratively

and the parameters can be regrouped at each iteration. To the extent that various parameters in

the model can be reduced independently, the choice of how to group parameters for piecemeal

reduction is quite flexible and arbitrary. As long as the parameter limits of the various groups are

interchangeable (as discussed in Sec. 5.2), the final reduced model will not depend significantly on

how the parameters are grouped.
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We demonstrated our piecemeal reduction strategy using LinearizedMBAM on a self-similar

network with identical, first-order subsystems (i.e., nodes with a single state). In contrast to other

methods, our strategy may also be applied to arbitrary networks with nonidentical, nontrivial (i.e.,

possibly dynamic and nonlinear) subsystems at each node. No assumptions about the structure

of the network or the nodes are required, and both the network and the nodes may be reduced

simultaneously. In addition, no particular network structure needs to be imposed on the final reduced

model. Rather, detail is maintained (for example, in a study area) by specifying which parts of

the system are going to be observed and hence which predictions’ fidelity should be maintained

in the reduced model. The reduction then proceeds by finding the physically-meaningful limiting

approximations which affect these model predictions the least. The resulting network topology

and subsystem internal structure reflect their salient features while eliminating unnecessary detail;

structure preservation occurs automatically.

Although beyond the scope of this research, there are many additional questions that could be

addressed or considered in future work. One of the assumptions implicit in our strategy is that the

effect of parameters in one subsystem on model predictions that are “distant” (i.e., in a different

subsystem) can be neglected when reducing a given subsystem, either because it is negligible or

because it is correlated with the effect of parameters on “nearby” model predictions. The primary

way this effect would manifest is that, after the subsystems have been reduced and reassembled,

the total bias in the whole will be significantly greater than the combined biases of the reduced

subsystems. Some reductions that are considered good approximations for a given subsystem may

not be good approximations for the whole because they introduce too much bias in other subsystems,

but this would not be discovered until the reduced subsystems are recombined. One possible way to

test for this would be to examine the Jacobian of parameter sensitivities. Dividing a system up into

subsystems also divides parameters and predictions into groups, which in turn divides the Jacobian

into different blocks. Some blocks will consist of sensitivities of predictions to parameters from the
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same subsystem, while others will consist of sensitivities of predictions to parameters from other

subsystems. Analysis of these blocks (such as a singular value decomposition) may reveal whether

parameters can significantly affect distant predictions without affecting those nearby.

Other questions regard the relationship between the model mapping (i.e., from parameters to

predictions) and the model boundary poset. For example, under what conditions does the model

mapping lead to a polytope boundary structure, and when will it fail to do so? Can prime factors

in the model boundary poset decomposition be determined directly from an examination of the

mathematical structure of the model (especially the parameters)? or how can they be discovered

most effectively?

This work has established the foundation for piecemeal reduction via MBAM. It is an important

stepping stone in ongoing efforts to scale up the MBAM model reduction technique to very large

systems.



Chapter 6

Conclusion

The Manifold Boundary Approximation Method (MBAM) is an important new tool for simplifying

(esp. nonlinear) models of large, complex systems, not only reducing the computational burden

of using them but also illuminating key relationships among components by abstracting away

unnecessary detail. In this dissertation I have made significant contributions to the development of

MBAM, extending its uses to oscillatory, networked, and very large systems.

In Ch. 3, I analyzed the properties of models of oscillatory systems and showed that their model

manifolds characteristically have a high effective dimensionality not suitable for model reduction

via MBAM. I used the concept of analytic signal (AS) as well as kernel density estimation (KDE)

to transform the predictions being made by these models in a way that leads to smooth model

manifolds with low effective dimensionality, i.e., the hyperribbon structure characteristic of other

sloppy models. This also alleviates the local minima problem that arises when inferring parameters

in oscillatory systems.

These techniques have potential application in large, complex oscillatory systems, such as

networks of neurons studied in neuroscience, where model reduction may help illuminate aggregate

or other “macroscopic” behavior. In addition, using the AS methods I discussed in Ch. 3 also

provides a means of decoupling the effects of parameters on limit cycle behavior from their effects

75
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on the oscillation frequency of the system, which could be useful for analysis and control in systems

where it is desirable to adjust aspects of the limit cycle without changing the system frequency, or

vice verse.

There is a notable difference between the methods proposed for periodic oscillatory systems

(using AS) and chaotic oscillatory systems (using KDE) in that information about the temporal

sequence of model predictions is kept in the first case and lost in the second. Although the

exponential divergence of nearby trajectories that is characteristic of chaotic systems makes long-

term prediction problematic, there still exists a short-term predictability that distinguishes chaotic

systems from stochastic ones [82, 83] which is washed out by KDE. It may prove useful to develop

an alternative to or an adaptation of KDE that preserves this short-term temporal sequencing

information.

One idea is to consider not just the distribution but the flow of model predictions in phase space.

For example, in a multiple-shooting approach, rather than calculating an entire trajectory from a

single initial point in phase space, a set of initial points distributed in some way throughout phase

space could each be used to predict just one succeeding point. This short-term trajectory would

be determined by the flow in phase space that is defined by the differential equations of the model

and so would not suffer from the exponential divergence of long-term trajectories. Kernel density

estimates of these short-term predictions could then be compared using a metric much like the one

suggested in Ch. 3.

Another approach is to calculate the flow of the distribution in phase space directly, rather than

estimating the distribution from the trajectories of points in the space. It is shown in [84] that, given

an ODE system dxi/dt = Fi(x), the evolution of the distribution u(t,x) of model predictions in

phase space satisfies the following continuity equation:

∂u
∂ t

+∑
i

∂ (uFi)

∂xi
= 0. (6.1)

Solving this equation for u(t,x), one could again use the metric suggested in Ch. 3 for comparing
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distributions. Then again, solving a PDE such as this one may be too computationally intensive

to be useful in many cases, especially if the phase space has more than a handful of dimensions

(which most do, especially for large complex systems). Still, the concept is intriguing and could

lead to something useful.

In Ch. 4, I performed MBAM reduction on a small network from the field of power systems,

showing how the reduction is dependent on the choice of system observations. This process also

resulted in the discovery of some of the different types of parameter limits which are appropriate for

the mathematical structures that arise in power systems models.

In the reduction I performed, some component (i.e., machine) parameters were kept constant

due to computational limitations. Without expert intuition, the appropriate reduction limits for these

parameters remain unclear due to the complexity of the governing equations of the model. A more

detailed analysis and exploration of the model manifold for a single high-order machine would not

only validate limiting approximations already found by experts but uncover other as-yet-unsuspected

but valid parameter limits. Such limits are easily found by MBAM without the need of expert

intuition.

I discussed piecemeal reduction of large systems in Ch. 5 in terms of navigating the Hasse

diagram for the boundary structure of the model manifold. I also outlined and demonstrated a

piecemeal reduction strategy on a small network. Some interesting additional questions that could

prompt future work have already been posed there.

One obstacle that remains in order to be able to scale up MBAM for very large systems is

that prior knowledge about the appropriate parameter limits for the mathematical structures in the

model is needed, so for example, MBAM reduction of one or more small or moderate systems

is usually necessary before LinearizedMBAM can be applied to a large one. This highlights the

question whether it is possible to determine the boundary structure of the model manifold by

direct examination or analysis of the governing equations of the model. Then again, if the small
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or moderate systems to which MBAM is first applied are carefully chosen, it may be possible to

explore the entire boundary structure and find the appropriate types of parameter limits without

much effort and without the need of much analysis of the equations.

Model reduction can be a tool not only for reducing computational burden but for abstraction,

which is at the core of scientific modeling. My hope is that the tools, methods, and concepts

discussed in this dissertation prove useful in solving many important problems in science and help

provide insight into many different kinds of systems.



Bibliography

[1] L. P. Kadanoff, “Scaling laws for Ising models near T c,” Physics Physique Fizika 2, 263

(1966).

[2] S. Izvekov and G. A. Voth, “Multiscale coarse graining of liquid-state systems,” The Journal

of chemical physics 123, 134105 (2005).

[3] W. G. Noid, J.-W. Chu, G. S. Ayton, V. Krishna, S. Izvekov, G. A. Voth, A. Das, and H. C.

Andersen, “The multiscale coarse-graining method. I. A rigorous bridge between atomistic

and coarse-grained models,” The Journal of chemical physics 128, 244114 (2008).

[4] W. G. Noid, P. Liu, Y. Wang, J.-W. Chu, G. S. Ayton, S. Izvekov, H. C. Andersen, and

G. A. Voth, “The multiscale coarse-graining method. II. Numerical implementation for coarse-

grained molecular models,” The Journal of chemical physics 128, 244115 (2008).

[5] W. G. Noid, “Perspective: Coarse-grained models for biomolecular systems,” The Journal of

chemical physics 139, 09B201_1 (2013).

[6] L. Pernebo and L. Silverman, “Model reduction via balanced state space representations,”

IEEE Transactions on Automatic Control 27, 382–387 (1982).

[7] P. V. Kokotovic, R. E. O’Malley Jr, and P. Sannuti, “Singular perturbations and order reduction
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