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ABSTRACT

LOGISTIC MAPS AND SYNCHRONIZATION

Richard Taylor

Department of Physics and Astronomy

Bachelor of Science

Chaotic systems are frequently encountered in nature. Their continued dis-

covery imparts relevance to the effort being made to understand the behavior

of chaotic dynamics. The wide occurrence of chaos in nature shows that the

chaos found in many simple mathematical models is not a trite ancillary math-

ematical effect but adumbrates a profound natural phenomenon. The logistic

map (LM) is frequently cited as one such simple model capable of exhibit-

ing chaotic behavior and is used widely as a pedagogical tool. It provides a

proverbial stepping stone toward expanding our understanding of the path dy-

namical systems take toward chaos. Also, the 2-D LM serves as a convenient

tool for studying the synchronization behavior encountered frequently in cou-

pled chaotic systems. Complete synchronization can be shown to occur in the

coupled logistic map for certain values of the coupling constant. Furthermore,

intermittent synchronization precedes the onset of complete synchronization.



Analytic techniques can be used to precisely determine the onset of complete

synchronization. A general analytic method, however, for predicting regions

of synchronization remains to be found.
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Chapter 1

The logistic equation: A review

1.1 Introduction

The ubiquity of chaos in the natural world has given rise to a plentitude of fascinating

science. Phenomenologically inherent to many naturally occurring systems, chaotic

dynamics are encountered on the microscopic scale as well as the macroscopic scale.

From the rotation of several gravitationally attracted large bodies, to the dynamics

of viscous flow or population growth, chaos is widely prevalent. The importance

of understanding the origin and behavior of chaos is incontrovertible; and though a

relatively new science there already exists a wealth of literature on the topic.

In the present paper, chaos is explored by means of the deceptively simple logistic

map(LM). Often cited as a canonical example of chaotic behavior and used frequently

solely for didactic purposes, the LM is a natural model useful in a variety of applica-

tions. The logistic equation from which the LM originates is an ordinary differential

equation introduced first as a demographic model in 1838 by Pierre Francois Ver-

hulst [1]. One arrives at the typical form of the logistic equation from Verhults’ by a

series of simple variable changes shown in 1.2.

1



1.2 Verhults equation 2

The deeper ramifications of the logistic model, specifically its chaotic behavior,

were reviewed in a seminal paper by the biologist Robert May in 1976 [2]. Indeed,

numerical and analytical efforts to understand the behavior of the LM have continued

steadily since that time. The happy advent of computers has provided an invaluable

tool for insight into chaotic dynamics. The present paper provides a summary and

extension of a few of the many results related to the LM.

1.2 Verhults equation

The logistic equation was written in the following form by Verhulst in his population

model published in 1845 [1].

dN

dt
=
rN(K −N)

K
(1.1)

Here r is called the Malthusian parameter, and K is referred to as the carrying

capacity— to see why, simply let N go to K,

dN

dt
=
rN(K −K)

K
≡ 0. (1.2)

Thus, when N equals K the population growth is zero and is at a maximum. The

logistic equation, however, is most often written in a different form by letting x →

N/K,

k
dx

dt
= rx(1− x). (1.3)

Then redefining r by r → r/K,

dx

dt
= rx(1− x)

ẋ = rx(1− x).

(1.4)
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I have introduced the common notation, ẋ = dx/dt. As a result of the rescaling, x is

now between 0 and 1. Further, r (called the biotic constant or potential) represents

the largest possible value of growth.

1.3 Sigmoid curves

With this form of the logistic equation as a starting point, the a familiar sigmoid

solutions are readiably obtainable;

dx

dt
= rx(1− x). (1.5)

Using the partial fractions method, this is easily separable and integrable.

1

rx(1− x)
=

A

rx
+

B

1− x
(1.6)

A− Ax+Brx = 1 (1.7)

A = 1 B =
1

r
(1.8)∫ x

x0

1

rx
+

1

r(1− x)
dx =

∫ t

t0
dt (1.9)

For convenience and without loss of generality, let t0 = 0:

1

r
([ln(x)− ln(1− x)]− [ln(x0)− ln(1− x0)]) = t (1.10)

1

r
ln
(

x

1− x
1− x0

x0

)
= t. (1.11)

Solving (1.11) for x takes a little algebra but gives the following result:

x(t) =
1

1 + e−rt( 1
x0
− 1)

. (1.12)

Functions of this form are called sigmoid functions. Sigmoid functions plotted for

several initial values of x are shown in Figure 1.1.
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Figure 1.1 Sigmoid curves for several values of x0. The horizontal line at
x = 1 corresponds x0 = 1

1.4 Discretization

With the logistic equation solved analytically, we can observe that the behavior is

always non-chaotic. Discretization, however, introduces the possibility of chaotic be-

havior in the LM. The motivation behind discretization is primarily pragmatic: Nu-

merical analysis of a differential equation requires the transformation into a difference

equation. The transformation to a discretized equation, however, is not without its

complications: one dimensional differential equations never display chaotic behavior,

while one dimensional difference equations do so frequently. Indeed, the emergence

of chaos in difference equations is often inherent in the structure, i.e., the LM.

The LM is obtained by discretizing the logistic equation not by the common Euler

method but in the following manner:

ẋ(t) → xn+1

x(t) → xn

(1.13)
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Then making these substitutions, the logistic equation becomes

xn+1 = rxn(1− xn). (1.14)

A discrete relation of the above form is also sometimes generally reffered to as a

quadratic map, because it is in the form of a quadratic equation. Tabulating the first

few iterations and choosing x0 to represent the initial value yields,

x1 = rx0(1− x0) (1.15)

x2 = rx1(1−x1) = rx0(1−x0)(1−rx0(1−x0)) = r2x0−(r3+r2)x2
0+2r3x3

0−r3x4
0 (1.16)

x3 = rx2(1− x2) = r3x0(1− x0) (1− rx0(1− x0)) (1− r2x0(1− x0)(1− rx0(1− x0))

(1.17)

As you can see, calculating the values in this manner gets complicated very quickly

with the order of the polynomial doubling with each each iteration. This hints at the

complexity introduced by discretizing even a simple differential equation.

Note also that the behavior of the logistic map depends on the parameter r. For

certain values of r there exist exact solutions which give the value after t-iterations

as a function of the initial point x0. Two exact solutions occur at r = 2 and 4 and

take the following form [3]

r = 4→ sin2(2t sin−1(
√
x0)) (1.18)

r = 2→ (1− (1− 2x0)
2t)

2
. (1.19)

From these exact solutions the general behavior of the logistic map is apparent: Let

us look at the behavior of the map at r = 2 and 4 in the limit as t goes to infinity.

When r = 4 the solution is the square of a periodic function, sin2[2t sin−1(
√
x)], and

in the limit as t goes to infinity is bounded by 0 and 1. We should note, then, that the
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map is chaotic at r = 4. When r = 2 however, the solution for x ∈ (0, 1) converges;

A stationary point thus exists.

lim
t→+∞

[1− (1− 2x)2t]

2
=

1

2
(1.20)

From these two exact solutions we can hypothesize (correctly) that the map must

evolve from non-chaotic behavior (one-period to be precise) to chaotic behavior at

least by the time r = 4. This, of course, does not rule out the possibility of intermit-

tent regions of non-chaotic behavior even after the map has generally become chaotic.

The bifurcation diagram obtained by numerically iterating the LM shown in Fig 1.2

verifies this prediction.

Figure 1.2 A bifurcation diagram of the logistic map. The first bifurcation
occurs at r = 3



Chapter 2

Fixed points, bifurcation and roots

2.1 Introduction

In the case of the logistic map, we can calculate the fixed points as a function of

the parameter r by noting that the condition xn+a = xn must be satisfied and by

substituting into the mapping function. When a = 1 we have,

xn = rxn(1− xn) (2.1)

We may write this without the subscripts and solve for x,

x = rx(1− x)→ x(1− r + rx) (2.2)

x = 0,
r − 1

r
. (2.3)

Notice that the non-zero root verifies the result presented in Chapter 1 from the exact

solution, namely that the trajectories converge to 1/2 when r = 2.

For the a = 2 case we get a quartic equation resulting in two separate stationary

points. This is appropriately called a two-cycled attractor because the trajectories

oscillate between two stationary points.

x = r(rx(1− x))(1− rx(1− x)) (2.4)

7
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x = 0,
r − 1

r
,
r + 1±

√
r2 − 2r − 3

2r
(2.5)

It is readily seen that (r+1±
√
r2 − 2r − 3)/2r are imaginary until (r−3)(r+1) = 0.

Thus, we should expect to see some behavioral difference in the map at r = 3.

Further investigation reveals that, indeed, the stationary point found in the a = 1

case becomes unstable at r = 3, while the newly found a = 2 roots are stable. The

change from a single stationary point to two results in a bifurcation. The a = 1 root

is plotted with the a = 2 roots in 4.6 showing a bifurcation. This agrees exactly with

the bifurcation diagram shown in Chapter 1.

Figure 2.1 The first bifurcation of the logistic map occurs at r = 3. The
first root becomes unstable at this point.

2.2 Root behavior of the logistic map

The results above indicate that the emergence of new roots leads to a bifurcation.

We can understand in a more general way the root behavior of iterative functions by

the following simple analysis. Begin by defining a homogenous iterative function to
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be any composite function of the form

F ◦ F ◦ ... ◦ F (x) = 0 (2.6)

Now let the roots of the above equation be denoted by xr.Starting with the zeroth

iteration, F (x) = 0, we will have roots x1, ..., xn where n is the order of the polynomial

map F . The roots are in general complex. Now let us look at F composed once with

itself. This gives the second iteration,

F ◦ F (x) = 0. (2.7)

If we substitute a solution of F (x) = 0, xr, into this we have

F ◦ F (xr) = 0. (2.8)

And so by definition of polynomial roots we have

F (0)
?
= 0 (2.9)

which is clearly not true in general, since a general function evaluated at zero is

certainly not always zero.

Now let a non-homogenous iterative function be any function of the form

F ◦ F ◦ ... ◦ F (x) = g(x) (2.10)

Roots of this relation, again denoted by x1, ..., xn, are then solutions to the following:

F ◦ F ◦ ... ◦ F (x)− g(x) = 0. (2.11)

n is determined by the order of the entire left hand side. For simplicity let us look at

the above relation letting g(x) = x.

F ◦ F ◦ ... ◦ F (x)− x = 0 (2.12)
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A root of this equation, then, can also be viewed as a stationary point of a map,

xn+1 = M(xn). To reiterate, a stationary point x0 is any point that satisfies M(x) = x

and is therefore also a solution of M(x)− x = 0. Starting with a stationary point x0,

let us substitute into a general iteration, F ◦ F ◦ ... ◦ F (x)− x = 0.

F ◦ F ◦ ... ◦ F (x0)− x0
?
= 0 (2.13)

And as before, we ask whether this is true in general. By definition of a stationary

point, F (x0) = x0, and so the equation reduces to what we started with.

F (x0)− x0 = 0⇒ x0 − x0 = 0 (2.14)

Thus, a solution of F (x) − x = 0 is a general root of all iterations of the map

xn+1 = F (xn).

We can give credence to this result with the help of a symbolic math program like

Maple. Using the @ symbol, Maple will compose functions saving us a good deal of

effort. Let us find the roots of the LM for several iterations. Again we use the LM in

the usual form xn+1 = rx(1− x). We define a function on Maple as follows,

F:=x->r*x*(1-x)

Maple can then be used to solve the map after the zeroth iteration, rx(1 − x) = x.

The roots are 0 and (r−1)/r in agreement with what was shown in Section 2.1. Now

using the @ command, (F@F)(x), Maple gives the following solution.

r2x (1− x) (1− rx (1− x)) (2.15)

Finally, using the solve command, solve((F@F)(x)-x = 0, x) yields four solutions,

0,
r − 1

r
,
1/2r + 1/2 + 1/2

√
r2 − 2r − 3

r
,
1/2r + 1/2− 1/2

√
r2 − 2r − 3

r
(2.16)

For the second iteration F 2(x), the command (F@F@F)(x) gives

r3x (1− x) (1− rx (1− x))
(
1− r2x (1− x) (1− rx (1− x))

)
(2.17)
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And we get eight roots,

0,
r − 1

r
, ...

Even though Maple failed to explicitly solve for all eight roots, it still found the roots

of the zeroth iteration in agreement with the analytical result. Let us do one more

iteration, F 3(x)− x = 0. Solving gives,

0,
r − 1

r
,
1/2 r + 1/2 + 1/2

√
r2 − 2 r − 3

r
,
1/2 r + 1/2− 1/2

√
r2 − 2 r − 3

r
, ...

And again as expected, 0 and (r− 1)/r are still roots. These results verify the claim

made above that the zeroth-iteration yields roots that are solutions to all iterations.

2.2.1 Higher order roots

We have only verified that the roots to the zeroth iteration are roots to all iterations.

It is natural to ask what happens for higher order roots. Let us look in the general

case at roots of the first iteration, F ◦ F (x) − x = 0. There will be four solutions

denoted by x0, x1, x2, x3. We know that two of these roots are solutions to the zeroth

iteration equation. Thus, the only new roots are x2 and x3. We want to know if these

new roots are indeed roots to a general iteration of the map. We might as well start

with the next iteration, the second iteration: F ◦ F ◦ F (x)− x = 0. Substituting x2

into the second iteration equation gives,

F ◦ F ◦ F (x2)− x2 = 0⇒ F (x2)− x2 6= 0. (2.18)

We have used the fact that F ◦ F (x2) = x2 to reduce the equation. It is important

to realize that x2 is a solution of F ◦ F (x) − x = 0 (and every even iteration) and

therefore an odd iteration such as F (x2) will not in in general be equal to x2. From

this, it is clear that all even iterations of the map will return roots including x2 and
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x3 but the odd iterations will not. This analysis can easily be extended to solutions

of the nth iteration.

To sum up the analysis presented in this section section we should observe the

following. The zeroth iteration yields roots that are solutions to a general iteration

(all numbers are multiples of one) whereas roots of an nth iteration are solutions only

to m× nth iterations where m is a positive integer value. You may have noticed also

the repetition of roots in the results of Sec. 2.2.0 as predicted here.



Chapter 3

Lyapunov exponents

3.1 Lyapunov exponents for one dimensional maps

The Lyapunov exponent(LE) is often used as a measure of the chaoticity of a dynam-

ical system. Simply stated, the LE characterizes the degree to which trajectories that

start very close together diverge over time. In a system with LE > 0, the trajectories

will diverge exponentially and thus the system exhibits sensitive dependence on ini-

tial conditions (frequently quoted as the defining characteristic of chaotic systems).

Further, if LE < 0 the system is dissipative in the sense that the trajectories converge,

and if LE= 0, the system is conservative.

Let us start with two initially nearby trajectories f 1(x0) and f 1(x0+ε) to derive the

Lyapunov exponent for one dimensional maps [4]. Let us assume that the divergence

∆ of the trajectories can be expressed as an exponential relation εenλ. It is clear from

the figure 3.1 that ∆ = fn(x0)− fn(x0 + ε). Thus we have,

fn(x0)− fn(x0 + ε) = εenλ (3.1)

fn(x0)− fn(x0 + ε)

ε
= enλ (3.2)

13
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Figure 3.1 Schematic of two initially close trajectories

If take the limit as ε goes to zero, the left hand side of the above relation is just the

derivative,

dfn(x)

dx

∣∣∣∣∣
x0

= enλ(x0) (3.3)

Solving for λ we find

λ =
1

n
ln

∣∣∣∣∣ dfn(x)

dx

∣∣∣∣∣
xo

∣∣∣∣∣ (3.4)

As noted earlier, recursive maps are just composite functions: fn(x0) = f◦f◦...◦f(x0).

Thus, when evaluating the derivative of fn(x) we can utilize the chain rule from

calculus.

dfn

dx

∣∣∣∣∣
x0

=
df

dx

∣∣∣∣∣
xn−1

df

dx

∣∣∣∣∣
xn−2

...
df

dx

∣∣∣∣∣
x0

(3.5)

Then, due to the property of logarithms, the expression for λ can be written as a sum

in the following useful form.

λ =
1

n

n−1∑
i=1

ln |f ′(xi)| (3.6)
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3.2 Lyapunov exponents in n-dimensions

Evaluating the LE’s in n-dimensional maps is usually not a trivial task; it involves

finding the solution of the variational equations of the system [5]. However, methods

do exist that allow one to approximately determine the highest LE for a system

of dimension greater than one.1. In the present paper, a method introduced by

Chen and Li [6] will be used from which it is possible to evaluate the limits of the

Lyapunov exponents of a discrete system in n-dimensions. This method is applicable

to the coupled logistic map (CLM). The theorem proved by Chen and Li applies to a

general nonlinear system assumed only to be continuously differentiable in the region

of interest [6].

xk+1 = f(xk), xk =∈ Ω ⊂ Rn, k = 0, 1, ... (3.7)

x0–given (3.8)

The following theorem is adapted from [6] with only minor notational modifications.

Theorem 1: Consider system (3.7)-(3.8). Suppose that ‖f ′(x)‖ ≤ N and that

the smallest eigenvalue of [f ′(x)]Tf ′(x) satisfies λmin([f ′(x)]Tf ′(x)) ≥ α > 0, where

α ≤ N2 and x ∈ Ω. Then, for any x0 ∈ Ω, all the Lyapunov exponents at x0 are

located inside [0.5 lnα, lnN ]. That is,

0.5 lnα ≤ λi(x0) ≤ lnN, i = 1, 2, ..., n (3.9)

In the notation of Chen and Li, ‖J‖ denotes the spectral norm of a matrix J, and

f ′(x) is the Jacobian matrix of the map. Further, all matrices are assumed to be

evaluated at the limits of the attractors of the system. For the logistic map these are,

x = y = 1 at r = 4.

1For a comparison between methods of computing Lyapunov exponents see ref [5]
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3.2.1 Limits on the LE of the CLM

In accordance with Theorem 1 we first find the Jacobian matrix of the CLM. For this

derivation, we will use the master-slave coupling,

xn+1 = rxn(1− xn)

yn+1 = rq(1− q)

q = axn + (1− a)yn.

(3.10)

It is known that the coupled logistic map is chaotic and bounded by x = y = 1 at

r = 4. The Jacobian matrix evaluated at these values is then,

J =


−4 0

−4 a −4 + 4 a

 . (3.11)

To implement the theorem further, we need the transpose of J,

JT =


−4 −4 a

0 −4 + 4 a

 . (3.12)

Finally, J and JT are multiplied according to matrix multiplication,

JJT =


16 16 a

16 a 16 a2 + (−4 + 4 a)2

 . (3.13)

Below are the two eigenvalues of the above matrix. The spectral norm is calculated

with the largest.. 
16− 16 a+ 16 a2 + 16

√
2 a2 − 2 a3 + a4

16− 16 a+ 16 a2 − 16
√

2 a2 − 2 a3 + a4

 . (3.14)
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The spectral norm is,

‖J‖ = 4
√

1− a+ a2 +
√

2 a2 − 2 a3 + a4 = N. (3.15)

The smallest eigenvalue gives α,

16− 16 a+ 16 a2 − 16
√

2 a2 − 2 a3 + a4 4= α (3.16)

It then follows that the Lyapunov exponents at r = 4 lie within

0.5 ln(α) ≤ λ1(a) ≤ λ2(a) ≤ lnN (3.17)

A plot of the upper and lower bounds varying with the coupling constant a is shown

below.



3.2 Lyapunov exponents in n-dimensions 18

Figure 3.2 The upper and lower limits of the LE plotted as a function
of a at r = 4. For many values of a both limits lie above the horizontal
indicating hyper-chaoticity. The value at which the lower limit crosses below
the horizontal is 0.692



Chapter 4

Synchronization

4.1 Characterization of Synchronization in Chaotic

Maps

The trajectories of the LM in the chaotic regime can conveniently be thought of as

chaotic oscillations. This paradigm lends itself to a characterization of synchroniza-

tion based on the properties of waves. We may use frequency, amplitude, and phase,

to quantify the behavior of the trajectories which may in turn be used to identify

synchronization: If the phase, amplitude and frequency agree in a coupled system,

the system will exhibit complete synchronization (CS). Since we are dealing with

chaotic oscillations, there is no well defined frequency, phase, or amplitude. A mean

frequency, mean phase, and mean amplitude must be defined.

Mean frequency

By defining a mean frequency [7] we partially characterize the oscillations,

〈f〉 =
Nτ

τ
(4.1)

19
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where Nτ is the number of cycles within a time τ . Two systems with identical (or

near to it) mean frequencies are defined to be frequency synchronized.

Mean Phase

Analogous to the definition of a mean frequency, we can define the mean phase

for two oscillating trajectories.

φi ≡ |xi+1 − xi| ⇒ 〈φτ 〉 =

Nτ∑
i=1

φi

Nτ

(4.2)

xi correspond to the x-values of local maxima. Two systems with equivalent mean

phase or a constant difference in phase are phase synchronized. Note also that φi =

const. ∀ i when the oscillations are a sine, cosine, or triangle wave.

Mean amplitude

Amplitude, phase, and frequency completely define an oscillation. Using a mean

amplitude defined to be

〈A〉 =

Nτ∑
i=1

Ai

Nτ

(4.3)

we can completely characterized the oscillations. As in the previous two cases, Am-

plitude synchronization occurs when the mean amplitude is identical in the coupled

systems. Note also that by virtue of their respective definitions, the mean amplitude

and phase should be qualitatively similar.

4.2 Application to the CLM

The above quantities can be found in a fairly straightforward manner for the CLM

presented in Sec. 3.2.1. We must first, however, define the frequency for a discrete

system. By choosing local maxima in the discrete trajectories of the CLM to act as
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maxima of an oscillation, the frequency can be determined easily. Local maximums

are found by evaluating a forward and backward difference for every point in the

trajectory and storing only those points where the forward and backward differences

are larger than one. The Matlab code in Appendix A evaluates local maxima. Further

running the code in Appendix A produces Fig 4.6-4.4. It is apparent from Figure

Figure 4.1 The mean frequency difference goes to zero at x = 0.012

Figure 4.2 The mean amplitude goes to zero at around a = 0.42 upon which
there is a region of intermittent synchronization. The onset of complete
synchronization occurs at a = 0.5

4.1 and 4.2 that frequency synchronization occurs considerably earlier than phase

or amplitude synchronization. The onset of complete synchronization occurs at a =
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Figure 4.3 The mean phase equals a constant at a = 0.5

0.5. By inspection, one can also observe a region of intermittent synchronization

starting at about a = 0.4 in the amplitude plot. In other words, a region exists

before complete synchronization in which the averaged amplitude values are near to

or exactly zero. Figure 4.4 shows the region of intermittent synchronization for the

averaged amplitudes.

Figure 4.4 Close up of intermittent region
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4.3 Intermittent synchronization in the CLM

To analyze the region of intermittent amplitude synchronization in greater detail

requires we first find the distribution of amplitudes in the CLM. Amplitudes are av-

eraged over lengths of time τ for some large number n of iterations and are then

counted. For τ = 100 and n = 1× 104, the gaussian-like distribution, 4.5 is obtained

for the master. The slave similarly exhibits gaussian behavior. The width of the slave

Figure 4.5 The distribution of averaged amplitudes for the master.

distribution, however, is considerably larger indicating a greater range of amplitudes

in the oscillations. Using the distributions of amplitudes, intermittent synchroniza-

Figure 4.6 The distribution of averaged amplitudes for the master.

tion is defined to begin when the maximum of the slave-distribution first corresponds

to the maximum of the master-distribution, that is, when the most probable value in
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Figure 4.7 Close up of amplitude distributions just before intermittent syn-
chronization occurs.

Figure 4.8 Approximate onset of intermittent synchronization. The inter-
mittent synchronization onset exhibits a slight dependence on the number of
values averaged over in determining the distributions indicating some ambi-
guity in the method.

the distribution of the slave is equivalent to the most probable amplitude of the mas-

ter. The CLM becomes completely synchronized at a = 0.5, and thus it is of interest

to look at the amplitude distributions near this value. Figures 4.7 and 4.8 demon-

strate the onset of intermittent amplitude synchronization occurring approximately

at a = 0.425. It is important to note that synchronization is largely dependent upon

its definition. Although there exists a precise point at which complete synchroniza-

tion occurs (one-to-one correspondence between trajectories), the behaviors of the
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individual time averaged frequencies, phases, and amplitudes vary notably. Further-

more, these quantities were only obtained by averaging non-convergent values over

long time scales. Thus, the quantitative behavior naturally depends somewhat on

Nτ . Qualitative behavior remains largely unchanged, however, and the prediction of

complete synchronization is independent of Nτ .

Due to this dependence on Nτ , the physical significance of any solitary synchro-

nization onset is questionable. Whether or not the early onset of frequency synchro-

nization or the intermittent amplitude synchronization as defined in this section can

be observed physically is unknown.
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4.4 Analytic derivation of CS onset in the CLM

The onset of complete synchronization can be found by observing that stationary

points in the coupled system occur when

yn+1 = xn

xn+1 = yn.

(4.4)

Replacing xn+1 and yn+1 with their respective maps gives,

yn = rxn(1− xn)

xn = rq(1− q)

q = axn + (1− a)yn.

(4.5)

Solving the simultaneous set of equations when r = 4 for x and y gives three solutions,

with the first two agreeing with the previously obtained one dimensional results:

x = 0, y = 0 (4.6)

x =
3

4
, y =

3

4
(4.7)

x =
1

4

A±

a− 1
, y =

1

4

aA± − 4 a+ 5 + A±

1− 2 a+ a2
(4.8)

A± is one of two possible roots,

A± = 3/2 a− 5/2± 1/2
√

9 a2 − 14 a+ 5. (4.9)

Let ± correspond to the plus and minus solutions respectively. Only the third solution

(4.8) is a-dependent. As long as this set of stationary points is stable, a necessary

condition for complete synchronization is then,

1

4

A±

a− 1
=

1

4

aA± − 4 a+ 5 + A±

1− 2 a+ a2
. (4.10)
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If we use the plus-solution, 4.9 becomes after subtracting one side from the other,

− 1

4

(
1 +
√

9 a2 − 14 a+ 5
)
a

(a− 1)2 = 0 (4.11)

which yields only the trivial solution of a = 0. If we consider the minus-solution, we

get the following:

1

4

a−
√

9 a2 − 14 a+ 5

(a− 1)2 = 0 (4.12)

Solving for a gives two solutions, a = 1/2 and a = 5/4. The first of these verifies

the numerical result. The second is larger than one and can therefore be disregarded

on physical grounds. The same analysis can be applied to the symmetrically coupled

logistic map giving a first solution of a = 1/4. The result is not shown here. For

values of r other than 4, higher order iterations must be solved for stationary points

that are stable solutions of the map. The analysis can then be used to determine

complete synchronization for a general r.
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Appendix A

Matlab code

The code for determining local maximums is simply a loop over all points with two

conditions.

for k=1:Nsteps-2

b_diffx(k+1)=datax(k+1)-datax(k);

f_diffx(k+1)=datax(k+1)-datax(k+2);

b_diffy(k+1)=datay(k+1)-datay(k);

f_diffy(k+1)=datay(k+1)-datay(k+2);

if b_diffx(k+1)>0 && b_diffx(k+1)>0

maxx(k) =1;

if b_diffy(k+1)>0 && b_diffy(k+1)>0

maxy(k) =1;

end

end

end

Mean frequency, phase, and amplitude are found with Matlab in the following manner.

The code above is included but in a slightly different form.

29
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clear all; close all;

Nsteps =20000; %the ’time’ over which we will take averages.

r=4; %parameter in the chaotic regime

%amax = input(’maximum value of coupling constant---’);

Nskip = 1000;

N = 2000;

a=linspace(0,1,N);

%initialize the arrays for the plots

fx_array=zeros(N,1);

fy_array=zeros(N,1);

phi_x_array=zeros(N,1);

phi_y_array=zeros(N,1);

A_x_array=zeros(N,1);

A_y_array=zeros(N,1);

x=.1; %initial x value

y = x+.1;

datax = zeros(Nsteps,1);

datay = zeros(Nsteps,1);

for n=1:length(a)

for i_st = -Nskip:Nsteps % loop over i

x = r*x*(1-x); % Compute next x

q = a(n)*x+(1-a(n))*y;
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y = r*q*(1-q);

if i_st>1

datax(i_st-1)=x;

datay(i_st)=y;

end

end

% subplot(2,1,1)

% plot(datax)

% ylim([0 1.1])

% ylabel(’x_{trajectory}’,’fontsize’,12)

% xlabel(’t_{iteration}’,’fontsize’,12)

%

% subplot(2,1,2)

% plot(datay)

% ylim([0 1.1])

% ylabel(’y_{trajectory}’,’fontsize’,12)

% xlabel(’t_{iteration}’,’fontsize’,12)

%finding the mean frequency

%first we calculate a very crude ’derivative’

tau=Nsteps-10;

crude_db = zeros(tau,1);

crude_df = zeros(tau,1);

for i=1:tau

b=datax(i+1)-datax(i);
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f=datax(i+1)-datax(i+2);

crude_db(i)=b;

crude_df(i)=f;

end

% the idea here is that if we have a maximum then the forward difference

% and the backward difference are going to be positive.

maxpnts_x = zeros(tau,1);

xval = zeros(tau,1);

yval = zeros(tau,1);

for i=1:tau

if crude_db(i)>0 && crude_df(i)>0

maxpnts_x(i+1) = datax(i+1);

xval(i+1)=i+1;

bln_x(i+1) = 1; %#ok<AGROW>

end

end

%now we do the same thing for the y-trajectories

crude_db = zeros(tau,1);

crude_df = zeros(tau,1);

for i=1:tau

b=datay(i+1)-datay(i);
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f=datay(i+1)-datay(i+2);

crude_db(i)=b;

crude_df(i)=f;

end

maxpnts_y = zeros(tau,1);

for i=1:tau

if crude_db(i)>0 && crude_df(i)>0

maxpnts_y(i+1) = datay(i+1);

yval(i+1)=i+1;

bln_y(i+1) = 1; %#ok<AGROW>

end

end

%now with this data, we can find the mean frequency,

%mean amplitude, and the mean phase; two peaks corresponds

%to one wavelength or one cycle.

number_of_cycles_in_x = sum(bln_x)/2; %total number of cycles in x

number_of_cycles_in_y = sum(bln_y)/2; %total number of cycles in y

%calculate the mean frequency

fx = number_of_cycles_in_x/tau;

fy = number_of_cycles_in_y/tau;
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fx_array(n) = number_of_cycles_in_x/tau;

fy_array(n) = number_of_cycles_in_y/tau;

% %calculated the mean phase

Ty=find(maxpnts_y==0);

for j=2:length(Ty)

rawphasey(j)=Ty(j)-Ty(j-1);

end

phasey(n)=sum(rawphasey)/number_of_cycles_in_y;

Tx=find(maxpnts_x==0);

for j=2:length(Tx)

rawphasex(j)=Tx(j)-Tx(j-1);

end

phasex(n)=sum(rawphasex)/number_of_cycles_in_x;

% %calculate the mean amplitude

A_x_array(n) = sum(maxpnts_x)/number_of_cycles_in_x;

A_y_array(n) = sum(maxpnts_y)/number_of_cycles_in_y;
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end

%plot the mean values to see synchronization

subplot(3,1,1)

plot(a,fx_array,a,fy_array)

%ylim([.3 .7]) %you may have to find different ranges than mine

xlim([0 a(end)])

xlabel(’mean frequency’)

subplot(3,1,2)

plot(a,phi_x_array,a,phi_y_array)

%ylim([-.4 0])

xlim([0 a(end)])

xlabel(’mean phase’)

subplot(3,1,3)

plot(a,A_x_array,a,A_y_array)

%ylim([.3 .8])

xlim([0 a(end)])

xlabel(’mean amplitude’)

figure(2)

%since in practice the differences may actually be more useful to look at,

%I will include them also.

plot(a,100*abs(fx_array-fy_array))
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xlabel(’a’)

ylabel(’mean frequency difference’)

xlim([0 .06])

figure(3)

% plot(a,abs(phi_x_array-phi_y_array))

plot(a,abs(phasex-phasey))

xlabel(’a’)

ylabel(’mean phase difference’)

figure(4)

plot(a,abs(A_x_array-A_y_array))

xlabel(’a’)

ylabel(’mean amplitude difference’)

The following code calculates the distribution of amplitudes used to study intermittent

synchronization.

clear all; close all;

Nsteps = 1e6;

r=4;

Nskip = 1000;

a=.1;

f_diffx=zeros(Nsteps-1,1);

b_diffx=zeros(Nsteps-1,1);
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f_diffy=zeros(Nsteps-1,1);

b_diffy=zeros(Nsteps-1,1);

x=.1;

y =x+.1;

maxx=zeros(Nsteps,1);

maxy=zeros(Nsteps,1);

datax = zeros(Nsteps,1);

datay = zeros(Nsteps,1);

for i_st = -Nskip:Nsteps

x = r*x*(1-x);

q = a*x+(1-a)*y;

y = r*q*(1-q);

if i_st>1

datax(i_st-1)=x;

datay(i_st)=y;

end

end

for k=1:Nsteps-2

b_diffx(k+1)=datax(k+1)-datax(k);

f_diffx(k+1)=datax(k+1)-datax(k+2);

b_diffy(k+1)=datay(k+1)-datay(k);

f_diffy(k+1)=datay(k+1)-datay(k+2);
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if b_diffx(k+1)>0 && b_diffx(k+1)>0

maxx(k) =1;

if b_diffy(k+1)>0 && b_diffy(k+1)>0

maxy(k) =1;

end

end

end

c=0;

for w=1:100:Nsteps-102;

c=c+1;

sumy = 0;

sumx = 0;

for n=w:w+100

sumx = maxx(n) + sumx;

sumy = maxy(n) + sumy;

end

arx(c)=sumx;

ary(c)=sumy;

end

for nmb=1:100

cn=0;

for i=1:length(arx);

if arx(i)<=nmb && arx(i)>=nmb
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cn=cn+1;

elseif arx(i)<nmb && arx(i)>nmb

cn=cn+0;

end

end

gaussx(nmb)=cn;

end

for nmb=1:100

cn=0;

for i=1:length(ary);

if ary(i)<=nmb && ary(i)>=nmb

cn=cn+1;

elseif ary(i)<nmb && ary(i)>nmb

cn=cn+0;

end

end

gaussy(nmb)=cn;

end

figure

bar(gaussx,’r’);

ylabel(’Probability (not normalized)’,’fontsize’,12)



40

xlabel(’amplitude’,’fontsize’,12)

title([’for x: r=4 and a= ’,num2str(a)])

hold on;

figure

bar(gaussy,’b’)

ylabel(’Probability (not normalized)’,’fontsize’,12)

xlabel(’Amplitude’,’fontsize’,12)

title([’for y: r=4 and a= ’,num2str(a)])
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