
Brigham Young University Brigham Young University 

BYU ScholarsArchive BYU ScholarsArchive 

Theses and Dissertations 

2020-04-13 

Superconductivity at its Limit: Simulating Superconductor Superconductivity at its Limit: Simulating Superconductor 

Dynamics Near the Superconducting Superheating Field in Dynamics Near the Superconducting Superheating Field in 

Eilenberger and Ginzburg-Landau Theory Eilenberger and Ginzburg-Landau Theory 

Alden Roy Pack 
Brigham Young University 

Follow this and additional works at: https://scholarsarchive.byu.edu/etd 

 Part of the Physical Sciences and Mathematics Commons 

BYU ScholarsArchive Citation BYU ScholarsArchive Citation 
Pack, Alden Roy, "Superconductivity at its Limit: Simulating Superconductor Dynamics Near the 
Superconducting Superheating Field in Eilenberger and Ginzburg-Landau Theory" (2020). Theses and 
Dissertations. 8415. 
https://scholarsarchive.byu.edu/etd/8415 

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more 
information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu. 

http://home.byu.edu/home/
http://home.byu.edu/home/
https://scholarsarchive.byu.edu/
https://scholarsarchive.byu.edu/etd
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F8415&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=scholarsarchive.byu.edu%2Fetd%2F8415&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/8415?utm_source=scholarsarchive.byu.edu%2Fetd%2F8415&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu


Superconductivity at its Limit: Simulating Superconductor Dynamics Near the

Superconducting Superheating Field in Eilenberger

and Ginzburg-Landau Theory

Alden Roy Pack

A dissertation submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Mark Transtrum, Advisor
Richard Hennig

Branton Campbell
Eric Hirschmann

Jean-Francois Van Huele

Department of Physics and Astronomy

Brigham Young University

Copyright © 2020 Alden Roy Pack

All Rights Reserved



ABSTRACT

Superconductivity at its Limit: Simulating Superconductor Dynamics Near the
Superconducting Superheating Field in Eilenberger

and Ginzburg-Landau Theory

Alden Roy Pack
Department of Physics and Astronomy, BYU

Doctor of Philosophy

We computationally explore the dynamics of superconductivity near the superheating field in
two ways. First, we use a finite element method to solve the time-dependent Ginzburg-Landau
equations of superconductivity. We present a novel way to evaluate the superheating field Hsh and
the critical mode that leads to vortex nucleation using saddle-node bifurcation theory. We simulate
how surface roughness, grain boundaries, and islands of deficient Sn change those results in 2 and 3
spatial dimensions. We study how AC magnetic fields and heat waves impact vortex movement.
Second, we use automatic differentiation to abstract away the details of deriving the equations of
motion and stability for Ginzburg-Landau and Eilenberger theory. We present calculations of Hsh
and the critical wavenumber using linear stability analysis.

Keywords: superconductivity, superheating field, linear stability analysis, finite element methods,
Ginzburg-Landau theory, Eilenberger Theory
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Chapter 1

Introduction

In the development of new technology materials are often pushed to their limits. Metal in jet turbines

must withstand more heat and stress, batteries must hold more and more charge, etc. Similarly,

superconductors are being pushed to operate at large magnetic fields and high temperatures.

In this dissertation we develop computational methods to bridge the gap between experimental

observations of superconductors in extreme conditions and the theories that describe them. Some

physics is small, fast, and difficult measure accurately in a lab. Though theory brings additional

insight there are limitations to what can be understood using pen and paper. By transforming

theoretical problems into something a computer can process, we find approximate solutions to the

complicated equations that describe superconductivity. In other words, we simulate physics that is

hard to measure.

In the rest of this chapter we review the historical context for the theories we study. Then we

discuss how the various phases of superconductivity are described by these theories and review

recent relevant literature. Having given a brief background, we review our research goals and the

organization of the rest of the dissertation. Finally, we describe the impact of this work on society

and how this work is part of a larger collaboration.

1
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1.1 Historical Context

The two hallmark features of superconductivity are zero resistance and perfect diamagnetism. The

first was discovered by Kamerlingh Onnes in 1911 [1]. The second was found by Walther Meissner

and Robert Ochsenfeld in 1933 and is known as the “Meissner effect” [2].

Since then there has been a large effort to theoretically explain superconductivity. In 1950

Ginzburg and Landau developed a phenomenological theory describing superconductivity as a

Taylor series of a superconducting complex order parameter [3]. Due to its ability to capture

mesoscopic behavior while maintaining relative simplicity Ginzburg-Landau (GL) theory remains a

popular tool for modeling superconductivity today.

Despite the power of GL theory, it does not actually explain how superconductivity arises. The

first theory to describe the microscopic origin of superconductivity is BCS theory [4]. Bardeen,

Cooper, and Schrieffer showed that if there was a net attractive force between two electrons then

they could from Cooper pairs. These Cooper pairs can form a Bose-Einstein condensate that leads

to superconductivity. In this dissertation we are interested in mesoscopic scales so we will not

discuss BCS theory further.

Since then theories have become increasingly complicated in order to correctly match what has

been observed experimentally. Gorkov generalized BCS theory to fit in a quantum field theoretical

framework and showed that GL theory could be derived from microscopic theories in the limit

that the temperature approaches Tc [5, 6]. Eliashberg generalized Gorkov theory to include strong

coupling between electrons and phonons [7].

Though the last two theories are very general, their complexity makes them difficult to work

with computationally. In this dissertation we will focus on two simpler theories. The first is GL

theory. As the simplest of all the theories mentioned, it is easy to make mesoscopic simulations of

defects while still capturing interesting behavior like vortex nucleation. The second is Eilenberger

theory [8]. Eilenberger theory is less complicated than Gorkov theory but is accurate for low
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temperatures unlike GL theory.

In the next section we give an overview of the physics these theories describe. We leave the

specific details of Eilenberger theory to chapter 5 and the details of GL theory to chapter 2.

1.2 Phases of superconductivity

This section is intended as a reference for terminology the reader may not be familiar with. It

follows a similar section from my masters thesis. [9].

The utility of these two theories is their ability to mesoscopically describe superconductivity.

Both can be formulated as differences between the free energy of the superconducting and nonsuper-

conducting states. (In the future any time we mention free energies we mean the difference between

the superconducting and nonsuperconducting free energies). These free energies depend on an order

parameter ∆ and a magnetic vector potential A. The order parameter is related to the local density

of superconducting electrons and the curl of the magnetic vector potential gives the magnetic field.

For GL theory the order parameter is often referred to as ψ . The characteristic lengths of ∆ and A

are the coherence length ξ and the penetration depth λ respectively. In Eilenberger theory ξ and λ

depend on temperature.

Taking the first variation of the free energies with respect to ∆ and A produces equations of

motion used to calculate ∆ and A. The second variation contains information on the stability of the

system. For small magnetic fields ∆ will be nonzero, indicating a superconducting state. For large

magnetic fields ∆ will drop to zero, indicating a loss of superconductivity.

The critical magnetic field Hc occurs when the contributions of the magnetic field cancel out

the contributions of ∆ in the free energy. Below Hc the system persists in a purely superconducting

state (Meissner state). Above Hc it is energetically favorable to allow magnetic flux into the

superconductor. Depending on the geometry it is possible for superconductivity to persist beyond
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Hc in a metastable state due an energy barrier [10]. The magnetic field at which the metastable state

vanishes is the superheating field Hsh.

The intermediate behavior between superconducting and nonsuperconducting states is deter-

mined by κ = λ

ξ
. Type I superconductors are characterized by κ < 1√

2
while type II superconductors

have κ > 1√
2
. Transtrum numerically created Fig. 1.1 within GL theory based on an infinite super-

conducting slab (half of space filled with vacuum and half of space filled with a superconducting

material) [11]. As the external magnetic field increases, a type I superconductor has only one critical

field strength Hc. Type II superconductors have two critical field strengths, Hc1 and Hc2. Between

these two field strengths is a mixed state. In this state it is energetically favorable for vortices,

filaments of magnetic field, to enter the surface of the material and form a vortex lattice. These

vortices are nonsuperconducting in the center. As they move through the material, they dissipate

heat. The second critical field marks where all superconductivity is lost.

We are interested in the transition from superconducting states to mixed states for type II

superconductors. We will simulate the physics near Hsh as this is the largest field attainable by a

Type II superconductor before vortices form.

1.3 Literature review

We are not the first to contribute to calculations of Hsh and simulations of vortex dynamics. GL

theory has plenty of literature because it is one of the simplest methods for identifying the different

behaviors between type I and type II superconductors. Using finite element methods, finite difference

methods, or pen and paper analysis there are many approaches to evaluating Hsh in GL theory

[12–20]. Often slab geometry is assumed: half of space is filled with vacuum and the other half

with a superconductor. Generalizations to study the impact of surface indentations on the flux entry

field (Hsh) have also been performed [21–24].
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Figure 1.1 In Eilenberger and Ginzburg-Landau theory type I superconductors are charac-
terized by κ < 1√

2
while type II superconductors have κ > 1√

2
. Type I superconductors

have a single critical magnetic field Hc while type II have two: Hc1 and Hc2. Between those
two critical magnetic fields is a mixed state of both superconducting and nonsupercon-
ducting regions. Vortices, or filaments of magnetic field, reside in the nonsuperconducting
regions. It is possible to be in a metastable state with magnetic fields greater than the
critical field (known as the superheating field) as an energy barrier must be crossed for
state transitions to occur. This diagram was produced within Ginzburg-Landau theory.
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GL theory also does a good job of simulating vortex dynamics. The impact of L shaped

domains, pinning sites, and surface indentations all have been done previously [25–35]. This

continues to be an active area of research as many applications need material specific simulations of

superconductors.

For Eilenberger theory there is much less literature on calculations of Hsh. The challenge

of evaluating Hsh has been performed for large κ in both the clean [36] and dirty [37] limits.

Generalizing to low and intermediate values of κ was attempted previously but the results were not

completely converged for low temperatures [38]. One reason for the lack of literature is the sheer

complexity in deriving the first and second variations of the Eilenberger free energy. Another is that

accurate evaluations of Hsh can be very computationally expensive. See chapter 5 for more details.

1.4 Research Goals

The goal of this dissertation is to computationally study the behavior of superconductors in large

magnetic fields. This has two parts, to simulate vortex dynamics in Ginzburg-Landau theory and

to use automatic differentiation to abstract away the process of evaluating the first and second

variations in Ginzburg-Landau and Eilenberger theory.

The first project relies very heavily on experimental observations performed by our collaborators

at the Center for Bright Beams (CBB) as well as Sam Posen at Fermi National Lab. (See section

1.6 below.) They have observed a large variety of defects in Nb3Sn superconducting resonant

frequency (SRF) cavities including surface roughness, grain boundaries, and islands of depleted Sn.

We want to know how this impacts Hsh. Another aspect to consider is that SRF cavities operate in

AC magnetic fields. It is hypothesized that very high frequencies don’t give vortices enough time to

nucleate [39], leading to larger Hsh. We will simulate how AC fields impact Hsh. Finally, there are

also open questions as to how the initial cooling influences how much residual flux remains in the
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SRF cavity. We will show that temperature gradients can move vortices.

The second project stems from the fact that SRF cavities operate well below Tc. The value

of Hsh may differ at lower temperatures where GL theory is inaccurate. One of the challenges

of using Eilenberger theory is the complicated derivation of the first and second variations. To

avoid these complications we propose a new method that evaluates these variations using automatic

differentiation. We first show how this works for GL theory and then apply it to Eilenberger theory.

1.5 Organization

Chapter 2 is a paper that presents a new method for evaluating Hsh using saddle-node bifurcation

theory and TDGL theory. We present the TDGL equations and explain how to introduce variations

of Tc. We show that our new approach matches previous calculations of Hsh and kc. We then show

how surface roughness and internal variations of Tc quantitatively impact Hsh. We also give an

example of how defects can lead to an increase in Hsh in 3 dimensions.

In chapter 3 we will review a paper that shows how our work fits in with other work performed at

CBB. Our contribution comes from section IV where we run simulations of grain boundaries found

in Nb3Sn. These simulations are based on experimental images and calculations of Tc provided by

our collaborators. We observe that vortices prefer to nucleate in grain boundaries. We show that for

large applied fields the vortices fill up the grain boundaries until they get pushed into the grains

themselves.

In chapter 4 we generalize our formulation to include parameters besides Tc. We simulate how

islands of deficient Sn concentration reduce Hsh if they are near the surface. We show how AC fields

can lead to vortex anti-vortex annihilation and demonstrate the dependence of Hsh on frequency.

Finally we simulate a temperature wave during the cooling of an SRF cavity and show how they

push vortices.
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In chapter 5 we present a new method for evaluating Hsh using linear stability analysis and dual

numbers. We first test this in GL theory and show we can match previous calculations of Hsh and kc.

We then extend this work to Eilenberger theory.

In chapter 6 we review the impact of this research, discuss limitations of this work, and propose

future projects.

1.6 Broader Impacts of Research

The broader impacts of this research has not changed from my Masters to PhD. For this reason the

following section comes mostly from my Masters thesis [9].

Imaging is an essential component of medicine, engineering, and science. The smaller the

object the more difficult the acquisition of a clear image. Biologists studying proteins, engineers

developing semiconductor technology, and physicists studying magnetic materials all need bright,

coherent, and tunable x-ray beams for their research [40–42]. A common source for x-ray beams

is synchrotrons. Unfortunately the current size and costs of these accelerators restricts their

accessibility to researchers.

This work is part of a collaboration with the Center for Bright Beams (CBB), an NSF funded

science and technology center, which seeks to increase the quality and decrease the cost of beams

produced by accelerators. There are three main areas of improvement targeted by this center:

beam creation, beam acceleration, and beam storage. Our efforts are directed at the field of beam

acceleration. We explore how small defects lead to quenching of superconducting radio frequency

cavities.

Beam acceleration is the process of speeding up charged particles to relativistic velocities. This

is done in accelerators by using superconducting radio frequency (SRF) cavities [43]. Fig. 1.2

portrays what SRF cavities look like. This image shows a series of cavities all connected together.
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Beam exits with a higher velocity. 

Electron beam enters here. 

Electromagnetic standing wave pulses to accelerate beam. 

The beam receives a boost at each peak. 

 Superconducting Resonant Cavity 

Figure 1.2 Diagrammatic sketch of a series of superconducting radio frequency cavities
connected together. The inside of the cavities are plated with niobium, a superconductor.
An AC current is tuned so that an entering bunch of electrons is accelerated at the center
of each cavity.

The interiors of the cavities are plated with a superconductor, such as niobium. An AC current

running through the cavities creates internal electromagnetic fields. The frequency of the AC current

is tuned such that an entering cluster of electrons receives a boost of energy at the center of each

cavity. The electrons are then used as an electron beam, or deflected to produce x-rays.

Much of the costs of operating SRF cavities comes from large cryogenic facilities that cool

them to around 2 degrees kelvin, well below the boiling point of liquid helium. The largest

electromagnetic fields and highest frequencies are achieved at this temperature, producing the

brightest beams. Raising this operating temperature by improving SRF cavity stability would

eliminate large portions of the cryogenic facilities, decreasing the size and cost of maintaining
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accelerators.

Superconducting materials like Nb and Nb3Sn face limitations from material inhomogeneities

[44, 45]. Upon transitioning to a superconducting state magnetic fields can be trapped by imperfec-

tions. Applied AC currents move the trapped fields, thereby dissipating heat and lowering cavity

quality. Some of these inhomogeneities include grain boundaries, surface roughness, and variations

in Sn concentrations. Experts in cavity design need to know which material inhomogeneities are the

most influential in reducing cavity stability.

Building and testing SRF cavities is expensive and the physics behind dynamic superconductivity

is difficult to measure. By using numerical methods we can paint a picture of what should happen

experimentally. We can simulate how material inhomogeneities influence accelerator performance

and guide development efforts.

1.7 Note on Collaborative efforts

Much of the Ginzburg-Landau work is based on foundational code I developed during my masters

thesis [9]. The capabilities of this code are well suited for simulating defects in Nb3Sn cavities of

interest to the Center for Bright beams. As our collaboration with the Center for Bright Beams grew

it became apparent that there was more work than I could handle if I wanted to work on Eilenberger

theory. Thankfully the complexity of Ginzburg-Landau theory and finite-element methods is

abstracted away in the code. Instead of performing all these tasks by myself, Dr. Transtrum and

I recruited undergraduate students to help out. They tweak the domain’s geometry, applied field,

included defects etc, run the simulation and then analyze the results. My task was to supervise

their efforts by teaching them how to use the code, fixing any bugs beyond their reach, and helping

interpret results. Some industrious students have added new functionality to the code. For this

reason much of the Ginzburg-Landau results have joint ownership between many students and
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myself. I will give credit where it is due.



Chapter 2

Time-Dependent Ginzburg-Landau

simulations

Here we include a paper demonstrating our ability to model the impact of surface roughness and

variations of Tc on Hsh. This contains the background necessary to understand how our code works.

Of important note is our use of saddle-node bifurcation theory to evaluate Hsh and the critical mode

that leads to vortex nucleation, ability to simulate interior material inhomogeneities, and simulation

of defects in 3 dimensions. As of this writing, the manuscript has been accepted at PRB with some

pending edits but a copy is available at arXiv, https://arxiv.org/abs/1911.02132. There are some

minor differences between this document and what becomes published due to differences in editing

suggestions. We have permission from PRB to include this paper.
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Role of surface defects and material inhomogeneities for vortex nucleation in
superconductors within time-dependent Ginzburg-Landau theory in 2 and 3

dimensions
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We use Time-Dependent Ginzburg-Landau theory to study the nucleation of vortices in type II
superconductors in the presence of both geometric and material inhomogeneities. The supercon-
ducting Meissner state is meta-stable up to a critical magnetic field, known as the superheating field.
For a uniform surface and homogenous material, the superheating transition is driven by a non-local
critical mode in which an array of vortices simultaneously penetrate the surface. In contrast, we
show that even a small amount of disorder localizes the critical mode and can have a significant
reduction in the effective superheating field for a particular sample. Vortices can be nucleated by
either surface roughness or local variations in material parameters, such as Tc. Our approach uses
a finite element method to simulate a cylindrical geometry in 2 dimensions and a film geometry in
2 and 3 dimensions. We combine saddle node bifurcation analysis along with a fitting procedure to
evaluate the superheating field and identify the unstable mode. We demonstrate agreement with
previous results for homogenous geometries and surface roughness and extend the analysis to in-
clude variations in material properties. Finally, we show that in three dimensions, surface divots
not aligned with the applied field can increase the super heating field. We discuss implications for
fabrication and performance of superconducting resonant frequency cavities in particle accelerators.

I. INTRODUCTION

A hallmark feature of type-II superconductors is a
phase transition from a purely superconducting (i.e.,
Meissner) state to a mixed state characterized by arrays
of magnetic vortices. The mixed state can be understood
as the compromise in the competition between magnetic
pressure and the condensation of Cooper pairs. If the
characteristic length scales for these phenomena are ap-
propriately separated, a balance is struck in which fila-
ments of magnetic field and small, non-superconducting
cores are trapped by vortices of supercurrent. This con-
figuration is thermodynamically stable between a lower
and upper critical field (Hc1 and Hc2 respectively). Olsen
et. al. beautifully captured this behavior using magneto-
optical imaging [1]. For time-independent configurations,
a stable array of vortices can be achieved, while for al-
ternating magnetic fields, vortex motion leads to heat
dissipation [2].

Ginzburg-Landau (GL) theory succinctly captures the
relevant physics for describing the Meissner and vortex
states, as well as the transition between the two. The
theory is described by two characteristic length scales,
the London penetration depth λ and the superconduct-
ing coherence length ξ. For materials in which the ra-
tio κ = λ/ξ (known as the GL parameter) is less than

1/
√

2 the material is type I and will transition directly
from the Meissner state to the nonsuperconducting state.
However, for type II superconductors (κ > 1/

√
2) the

material transitions first to a mixed, vortex state. The

∗ a.pack@byu.edu
† mktranstrum@byu.edu

density of vortices increases with larger applied magnetic
field until the system transitions to a nonsuperconduct-
ing state at Hc2.

Although vortices are thermodynamically stable for
fields above Hc1, surface effects lead to an energy barrier
to vortex nucleation [3]. The Meissner state can persist
above Hc1 up to a maximum magnetic field, known as the
superheating field Hsh above which the energy barrier
vanishes. For homogenous materials with smooth sur-
faces, this transition is driven by critical perturbations
with a characteristic wavenumber kc. For applications
requiring a Meissner state (i.e., for which vortex nucle-
ation is detrimental), Hsh is the fundamental limit to
performance. As such, estimates ofHsh within Ginzburg-
Landau theory have a long history [4–12]. This technique
has since been extended to Eilenberger theory in both the
clean [13] and dirty [14] limits. Often real systems have
rough surfaces and interior defects that don’t match this
geometry. The role of surface roughness on Hsh in two di-
mensional geometries with surface defects has been stud-
ied extensively within Ginzburg-Landau theory [15–18].
There has also been considerable effort to simulate vor-
tex nucleation and subsequent dynamics for more compli-
cated domains within time-dependent Ginzburg-Landau
(TDGL) theory [19–29].

Particle accelerators are an application of importance
to a wide variety of fields [30–32] to which quantitative
studies of the superheating field and vortex motion are
particularly relevant. Superconducting Radio Frequency
(SRF) cavities transfer energy to particle beams. Large
AC currents running along the interior surface of the cav-
ity induce electromagnetic fields that are timed to boost
particle bunches as they pass through [33]. Traditionally
cavities have been fabricated from Nb, but engineering
advances have pushed these cavities to near their funda-
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mental limits [34].

To more efficiently reach higher accelerating gradients,
the accelerator community is exploring new materials for
next-generation cavities [35]. Of particular interest is
Nb3Sn, which theoretically has Hsh = 425[mT ] and Tc =
18[K] (compared to Niobium which has Hsh = 219[mT ]
and Tc = 9.2[K]) [36]. In practice current Nb3Sn cavities
perform far-below theoretical limits [34, 37].

In addition to surface roughness, the alloyed nature
of these materials often leads to variations in material
parameters, such as Sn concentration, that can have a
strong effect on the superconducting properties [38–43].
To guide future development and keep pace with experi-
mental advancements, more sophisticated theoretical and
computational tools are needed to identify the relevant
physics for vortex nucleation and quantify their effect on
Hsh in real materials. They need to be flexible enough
to not only capture the impact of surface roughness, but
also interior material inhomogeneities. These advances
also offer an opportunity to validate theories of tradi-
tional superconductors in extreme conditions.

In this paper, we perform bifurcation analysis of the
Meissner state using TDGL and a finite-element formula-
tion. Our method quantitatively confirms previous esti-
mates of Hsh derived in the symmetric, time-independent
theory. We account for asymmetric geometries, such as
surface divots, and variation in material parameters in
two and three dimensions. We show that local reductions
in the superconducting critical temperature is a poten-
tially important nucleation mechanism in inhomogenous
alloyed superconductors. Our method identifies the crit-
ical fluctuations that drive the vortex nucleation. Unlike
the symmetric case in which arrays of vortices nucleate in
tandem, a small amount of disorder acts as a nucleation

site for individual vortices, indicating that near Hsh, the
free energy surface has several shallow directions. We
quantify this effect for both surface roughness and ma-
terial inhomogeneity, a result that will guide the man-
ufacture of precision samples to maximize performance.
Finally, in three dimensions we show that the relative
orientation of defects and the external field has a strong
role in vortex nucleation. We demonstrate that defects
aligned perpendicular to the applied field lead to an in-
crease in Hsh.

The rest of this paper is organized as follows. Sec-
tion II formulates the time-dependent Ginzburg-Landau
(TDGL) equations to account for spatial variations in Tc
and introduces the two- and three-dimensional geome-
tries we consider. We use saddle-node bifurcation anal-
ysis to efficiently identify the critical modes that drive
vortex nucleation and estimate Hsh. In section III we
first confirm that our simulations for homogenous sys-
tems match previous work. Then we report on the effect
of surface roughness and material inhomogeneity in two
and three dimensions. Finally, in section IV, we discuss
implications and limitations of our approach and poten-
tial future extensions.

II. METHODS

A. Problem Formulation

The time-dependent Ginzburg-Landau (TDGL) equa-
tions are a series of partial differential equations relat-
ing the superconducting order parameter to the electric
potential and magnetic vector potential on mesoscopic
scales. Although originally a phenomenological theory,
the equations can be rigorously derived from the time-
dependent Gorkov equations [44]. The TDGL equations
in Gaussian units described by Kopnin in [45] are

−Γ
(∂ψ
∂t

+
2ieφ

~
ψ
)

=− |α|ψ + β|ψ|2ψ + γ
(
− i~∇− 2e

c
A
)2
ψ (1)

j =
c

4π
∇×∇×A

=σn

(
− 1

c

∂A

∂t
−∇φ

)
+ 2eγ

[
ψ∗
(
− i~∇− 2e

c
A
)
ψ + ψ

(
i~∇− 2e

c
A
)
ψ∗
]
. (2)

These equations depend on the order parameter ψ, the
magnetic vector potential A, and the electric potential φ
all of which can vary in space and time. The rest of the
quantities are material parameters and fundamental con-
stants: Γ is the rate of relaxation of the order parameter,
e is the charge of an electron, ~ is Planck’s constant di-
vided by 2π, c is the speed of light, α is a material-specific
constant proportional to 1−T/Tc (T is temperature and
Tc is the critical temperature), β is anther material pa-
rameter that is approximately constant with respect to
Tc, γ is related to the effective mass of the cooper pairs,

and σn is the conductivity of the normal electrons.

Typically, all physical constants can be absorbed into
the units of fields. However, we relax this assumption
in order to model spatial variations in Tc by allowing
α(r) ∝ 1 − T/Tc to vary in space over a range of val-
ues. This has been done previously to model pinning
sites by setting α(r) to zero at fixed points in the do-
main [20, 26–28]. We define α(r) = α0a(r) where α0 is a
reference value (to be subsumed by units), and a(r) is a
dimensionless number characterizing the spatial material
variation. The quantities α0 and a(r) are defined with
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respect to some reference point in the bulk material such
that a(r0) = 1 and α(r0) = α0. With this convention,
α0 can be absorbed into the units of the field. Values
of a less than one correspond to a local Tc less than the
reference value with a < 0 corresponding to Tc less than
the operating temperature. The critical temperature of

Nb3Sn can depend strongly on the local concentration of
Sn[43], so local reductions in Tc are an important poten-
tial mechanism for vortex nucleation.

With these modifications and assuming our boundary
conditions are a fixed applied magnetic field on the sur-
face with no current leaking into vacuum, we arrive at

∂ψ

∂t
+ iφψ =− aψ + |ψ|2ψ +

(−i
κ0
∇−A

)2

ψ (3)

j =∇×∇×A

=− 1

u0

(
∂A

∂t
+

1

κ0
∇φ
)
− i

2κ0
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2A (4)

(
i

κ0
∇ψ + Aψ

)
· n =0 on surface (5)

(∇×A)× n =H× n on surface (6)

−
(
∇φ+

∂A

∂t

)
· n =0 on surface, (7)

where we have introduced two new constants, u0 and κ0.
The constant u0 = τψ/τj is the ratio of the timescales for
variations in the order parameter and the current. They
are defined as,

τψ =
Γ

|α0|
(8)

τj =
βσn

8e2γ|α0|
=

σn
8e2γψ2

0

. (9)

The constant κ0 is the Ginzburg-Landau parameter, the
ratio of the penetration depth λ0 and the coherence
length ξ0. All of these are defined with respect to the
reference point r0.

Eqs.(3)-(7) are a set of coupled partial differential
equations in three dimensions. A common simplifica-
tion is to assume a symmetry in the z-direction and only
consider variations in the x-y plane. This assumption
leads to a two-dimensional formulation which greatly re-
duces the computational overhead, but does limit the
types of geometries that can be simulated. We perform
both two-dimensional and three-dimensional simulations
in this paper.

We numerically solve the TDGL equations using a
finite element method (FEM) implemented in FEniCS
[46]. Because the TDGL equations are diffusion-like, the
time-step is implemented through an implicit formula.
We use a backwards Euler formula, but higher order
backwards difference formulas could also be applied. A
more detailed description of previous methods is given
by Gao et. al. [25].

One reason for the large variety of FEM formulations
is the need to choose a gauge. Although physical quan-
tities should remain the same in different gauges, the

efficiency and accuracy of numerical methods with each
gauge varies. We follow the formulations and conventions
of Gao et. al. [25, 47]. Although the TDGL equations
are nonlinear, by using solutions from the previous time
steps, each time step can be formulated as a series of lin-
ear equations. For the two-dimensional case, the prob-
lem can be reduced to a series of Laplace and diffusion
equations of coupled scalar fields which we implement
as Lagrange elements. In three dimensions, the problem
also reduces to a series of linear equations; however, the
geometric nature of the magnetic field and vector po-
tential in 3D require they be modeled as Ravier-Thomas
and Nedelec elements of different orders. The complexity
of the three-dimensional formulation incurs a substantial
computational cost (both in time and memory).

In the two dimensional case, we define two geometries:
an infinite cylinder and a thin film. In these geometries
the magnetic field points in the ẑ direction, i.e., perpen-
dicular to the plane of simulation. Fig. 1 show these cross
sections. For large radii and wide films these geometries
approximate an infinite flat surface [4].

In the 3D case we consider a rectangular box cut out
of a thin film as in Fig. 2. This is done by extending the
domain of simulation along the z axis (the inner solid
box). In this geometry we can orient the applied mag-
netic field in many directions along the surface of the
film. The process of meshing these geometries is given in
the appendix.

We take as initial conditions the case of a perfectly su-
perconducting material in the absence of an applied field.
We raise the applied magnetic field exponentially to val-
ues near Hsh in order to capture the dynamics of vortex
nucleation. The time dependence of the magnetic field is
Ha(t) = Hmax(1−e−t/τ ). This allows us to quickly raise
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Ha

Ha

Ha

FIG. 1. Two Dimensional Geometries. We consider an
infinite superconducting cylinder (left) and an infinite super-
conducting film (right). In both cases, the magnetic field is
perpendicular to the plane of simulation and does not vary
spatially. Boundary conditions require matching the applied
magnetic field on the surface. For the film (right), we have
periodic boundary conditions on the left and right sides.

Ha

Ha

FIG. 2. Three Dimensional Geometry. We generalize
the 2D film geometry by extending the x-y plane along the ẑ
direction. In this geometry we are free to rotate the direction
of the magnetic field.

the field but slow down close to the asymptotic value H
where vortex nucleation is sensitive to small fluctuations
in ψ and A.

B. Inhomogeneities

This formulation allows for a wide variety of potential
simulations. We go beyond the bulk geometry [4–12] by
considering the influence of surface roughness and spatial
variations of Tc (α).

We introduce surface roughness in two ways. First we
model the surface of a wire (cylinder) as a Gaussian pro-
cess (random sum of sinusoidal functions). Second, mo-
tivated by observed morphology of grain boundaries [48],
we introduce a divot with a cutout of the form Ae−|x|/σ.

FIG. 3. Spatial Dependence of a(r). The dependence
of the GL equations on the critical temperature comes from
a coefficient a. We model the influence of Sn segregation as a
local suppression of the superconducting critical temperature
by allowing a to vary spatially. Here we show the value of
a throughout the domain. a < 1 leads to a reduction of the
superconducting order parameter.

Examples of these geometries are shown along with re-
sults in the next section and are described further in the
appendix.

We model spatial variations of Tc within the cylindrical

geometry as a Gaussian function a(r, θ) = 1−Be−θ2
2s2 ( rR )l,

see Figure 3. B is the lowest value of alpha, s sets the
width of our defect, R is the cylinder radius, and l adjusts
how quickly a drops off radially. This “line” of lowered
Tc mimics the effect of Sn segregation in the grain bound-
aries of Nb3Sn cavities [49].

C. Bifurcation Analysis and Mode Extraction

One of the contributions of this work is a method
for calculating Hsh for arbitrary geometries and mate-
rial properties. The superheating field occurs when the
meta-stable Meissner state becomes unstable to a criti-
cal fluctuation. At Hsh, the free energy landscape near
the Meissner state transitions from a local minimum to a
saddle point, and dynamics exhibit a saddle-node bifur-
cation. The free energy flattens (to lowest order) in the
direction characterizing the critical fluctuation that nu-
cleates magnetic vortices. Because the free energy land-
scape is flat near the bifurcation, simulation dynamics
are slow for applied fields near Hsh. Rather than solve
the TDGL equations near the bifurcation, we use normal-
form theory to quickly extract Hsh from simulations with
applied fields below Hsh.

The normal form of the saddle-node bifurcation is

dx

dt
= −r + x2 (10)
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where r is the bifurcation parameter [50] and, in our case,
an implicit, unknown function of the applied field. x is
some combination of finite element degrees of freedom
that becomes the unstable, critical fluctuation.

Eq. (10) is stable for r > 0 and unstable for r < 0.
Near the bifurcation, the system decays to equilibrium
with a characteristic rate γ = 1

2
√
r
. We extract the crit-

ical mode, x by first finding the meta-stable Meissner
state for applied fields below Hsh. We then perturb the
state with random white noise and extract the slowest
mode and the decay rate γ using a fitting procedure [51].
Repeating this calculation for several different applied
fields, we then extrapolate to find the applied field at
which r becomes zero. We also apply an iterative tech-
nique to improve the numerical stability of this method.
We repeatedly amplify the remaining noise and relax the
system to cleanly separate the decaying mode and iden-
tify γ and r (see [52]). One of the benefits of this method
is that it avoids running simulations where r ≈ 0 and the
timescale diverges.

III. RESULTS

A. Agreement with Previous Work

We first demonstrate that our formulation correctly
reproduces several known qualitative and quantitative
results. We reproduce vortex nucleation and numerical
estimates of Hsh using a cylindrical geometry without
defects. Fig. 4 illustrates magnetic vortices shortly after
nucleation for an applied magnetic field of Ha = 0.8

√
2Hc

and a cylinder of radius 20λ with κ = 4. Note that mag-
netic fields will always be measured in units of

√
2Hc

where Hc is the thermodynamic critical field. We will
drop the

√
2Hc from now on.

As described in section II C we extract the slowest de-
caying mode for fluctuations in the order parameter be-
low but near Hsh. Fig. 5 shows this mode for a radius
of 20λ. This pattern is roughly sinusoidal on the surface
with a wavenumber kc that we estimate from the num-
ber of times the pattern crosses zero. Fluctuations in
this mode drive the transition from the Meissner state to
the vortex state. Notice that the mode is non-local. The
coordination of multiple penetrating magnetic vortices
lowers the barrier to entry for any single vortex.

The procedure for calculating Hsh and kc differ from
those based on linear-stability analysis in the time-
independent case [4]. Here, using bifurcation analysis,
we extract the numerical value of the bifurcation param-
eter r using the observed decay rate of the critical mode.
Repeating this for several different applied fields gives an
empirical relationship between r and Ha, represented in
Figure 6. The superheating field occurs at Ha such that
r = 0. We estimate Hsh by fitting empirical estimates
of r(Ha) to a second-order polynomial and solving for
r = 0. We also calculate kc by counting the number of
sign changes in the critical mode in Fig. 5. Table I sum-

FIG. 4. Vortex Nucleation. The order parameter above
Hsh after vortex nucleation for the cylinder geometry. We
raise the magnetic field to a fixed value. If the magnetic field
is larger than Hsh vortices nucleate. For the smooth cylinder
there is no preferred location for vortex nucleation. They
penetrate uniformly around the surface.

FIG. 5. Critical Fluctuation. We raise the magnetic field
to a value below Hsh. The system is stable and small added
perturbations decay away. We extract the slowest decaying
mode by adding a small random perturbation. This mode
is the critical fluctuation that drives the phase transition at
Hsh. Note that the alternating pattern of low and high values
roughly match the pattern of vortices in Figure 4 and previous
calculations of kc in bulk geometries.

marizes our calculations of Hsh and kc for varying κ and
compares them to previous estimates from [4].

In addition to linear stability analysis, previous work
has also used the time-dependent theory to estimate the
entry field [15–29]. An advantage of using the time-
dependent theory, is the ability to explore rough geome-
tries. Typically, the field is raised until vortices nucleate,
but efficiently and accurately determining the transition
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Hsh = 0.722

FIG. 6. Extracting Hsh. Varying the applied magnetic
field changes the decay rate of the slowest decaying mode. We
use that decay rate to find the bifurcation parameter r. This
bifurcation parameter changes sign when the system loses sta-
bility. Extrapolating the bifurcation parameter r to zero gives
Hsh.

Cylinder Hsh Slab Hsh Absolute Relative Difference
κ = 2 0.803 0.7980 0.00615
κ = 4 0.721 0.7233 0.00320
κ = 6 0.683 0.6879 0.00711
κ = 8 0.660 0.6663 0.00944

Cylinder kc Slab kc
κ = 2 0.975 1.1423 0.1465
κ = 4 2.125 2.31769 0.0831
κ = 6 3.125 3.27868 0.0468
κ = 8 3.925 4.15077 0.0544

TABLE I. Numerical Results. Hsh and kc for different
values of κ calculated using bifurcation analysis with a cylin-
der of radius 40. For comparison, we include estimates from
[4] where Hsh and kc were found using linear stability anal-
ysis with time-independent Ginzburg-Landau theory and a
slab geometry. Due to the added complications of fitting the
decay rate of the critical mode we are accurate to about three
decimal places. We do not know the accuracy of the previ-
ous work as it was not provided. We evaluate the relative
difference between these values. Note that as κ increases our
values of Hsh decrease and our values of kc increase giving
the correct qualitative behavior.

point can be tedious as the relevant time scales diverge
near Hsh. The bifurcation analysis we describe above ex-
tracts the same information without having to explicitly
nucleate vortices. In the next section we demonstrate
qualitative agreement to previous studies.

B. Random Surfaces

Vortex nucleation is a surface effect; surface roughness
changes how vortices nucleate. Fig. 7 shows a simula-
tion that captures vortex nucleation for a random sur-
face. Note that Ha = 0.7 for this simulation and is less

FIG. 7. Vortex Nucleation for Rough Surfaces. The
norm squared of the order parameter just after vortex nucle-
ation on a very rough cylinder. When we add surface rough-
ness to the cylinder, vortices penetrate in the troughs of the
surface.

FIG. 8. Critical Mode for the Rough Surface. Adding
surface roughness to the cylinder localizes the slowest decay-
ing mode. Vortices nucleate at the same location where the
slowest decaying mode has the highest magnitude.

than Hsh for the symmetric case. Also note that the crit-
ical fluctuation is no longer a periodic array. Instead the
mode is large at concave regions of the surface, where
the vortices first form (See Fig. 8). Using bifurcation
analysis we calculate Hsh= 0.566 for this geometry, a
significant reduction in the value for a smooth surface
(Hsh= 0.72).

The roughness in Figure 7 is somewhat extreme, but
illustrates the relevant physics in qualitative agreement
with previous results. Although, less roughness leads to
a smaller reduction in Hsh, we find that even a very small
roughness leads to a large, qualitative change in the crit-
ical mode. Indeed, even very small, individual divots act
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FIG. 9. Vortex Nucleation for Small Roughness. Even
a little roughness qualitatively changes the vortex nucleation
pattern. The applied field is tuned so that initially only one
vortex nucleates.

FIG. 10. Critical Mode for Small Roughness. Even a
small amount of surface roughness localizes the critical mode.
The critical mode is centered where the first vortex enters.
Compare with Fig.9.

as nucleation points for vortices, as illustrated in Fig-
ures 9 and 10.

C. Single Divot

It has long been known that surface roughness is a rel-
evant parameter for vortex nucleation within GL theory.
To explore which geometric properties affect nucleation,
we introduce a single exponential cut out on the surface
of the cylinder. We vary the height and depth of this
defect and calculate the corresponding reduction in Hsh.
Results are summarized in Fig. 11; divots that are nar-
row and deep lead to the largest reduction in Hsh. A

FIG. 11. Role of Geometry in Vortex Nucleation. The
ratio of Hsh in the presence of a divot to the bulk value. A
value of one means the divot has no impact. A value less than
one means the divot is reducing Hsh. Divots that are thin and
deep are the most detrimental.

FIG. 12. Hshvs. Opening Angle. Scatter plot of many
calculated values of Hsh as the opening angle of the divot
changes. There are multiple values of Hsh for individual open-
ing angles. This means the amount that a divot reduces Hsh

can not be explained just in terms of opening angles. The
size of the divot relative to vortex size or the local curvature
of the cylinder may also have an impact.

similar study assuming large κ and using London theory
also found single divots to be detrimental [17].

An alternative parametrization of the divot geometry
is in terms of the opening angle. A potential hypothesis is
that the opening is the relevant parameter determining
vortex nucleation; however, Figure 12 shows that this
is not the case. We see that individual opening angles
can have multiple values of Hsh. We hypothesize other
factors such as the size of the divot relative to vortex size
or to the local curvature of the cylinder impact Hsh.

D. Variations of Tc

In addition to surface roughness, material inhomo-
geneities also act as nucleation sites. We model varia-
tions in material properties by spatially varying α(r) ∝
1− T/Tc as described in section II B. Fig. 13 shows that
for Ha > Hsh vortices first nucleate where Tc is lowest on
the surface. Similar to surface roughness, even a small,
local reduction in Tc leads to a localization in the critical
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FIG. 13. Nucleation Due to Material Inhomogeneity.
Plot of the norm squared of the order parameter above Hsh

when a(r) varies as shown in Fig. 3. Vortices nucleate in
regions of low a ∝ 1− T/Tc (i.e., lower Tc).

FIG. 14. Reduction in Hsh vs. Material Parameter The
minimum value of a(r) in the weakly-superconducting region
determines the field at which vortices first nucleate. Here we
plot the values of Hsh as blue dots with blue lines connecting
the data points. As the minimum value of a(r) drops, so does
Hsh.

mode.
Variation in Tc can also lead to a significant drop in

Hsh as seen in Fig. 14. As a point of comparison, for
Nb3Sn, the variation in Sn concentration can cause Tc
to vary from about 18K at the optimal stoichiometry to
as low at 6K in Sn depleted regions Sn seen in typical
SRF cavities [38–43]. For an SRF cavity operating near
4K, this means that vortices could nucleate at an applied
field around 0.6, an effect comparable to the extreme
roughness of Figure 7. These results suggest that realistic
variations in Tc could be an important mechanism for
vortex nucleation.

E. Film Geometry

Up to this point, all our results have been reported for
the two-dimensional cylindrical geometry. To control for
the effects of curvature, we repeat our calculations using a
film geometry. We apply the same magnetic fields to the
top and bottom of the rectangular domain and enforce
periodic boundary conditions on the left and right sides.
Our results for the film geometry are nearly identical to
those of the cylinder, indicating that the curvature effects
are minimal.

F. 3D Film

A major limitation of the two-dimensional analysis is
that the magnetic field must be parallel to the defects.

As mentioned in section II A, the 2D geometry is a
cross section of a 3D domain that does not vary in the
ẑ direction. In this geometry it is not possible to sim-
ulate defects that break symmetries in the direction the
magnetic field points, nor is it possible to have defects
oriented differently from the applied field. To consider
magnetic fields perpendicular to defects, we must move
into fully three-dimensional geometries. Because three-
dimensional simulations are more computationally ex-
pensive, we only consider volumes that accommodate a
single vortex. Our geometry is a three-dimensional gen-
eralization of the 2D film. We fix the applied field on the
faces parallel to the z-plane and apply periodic boundary
conditions to the remaining sides. We use a mesh that is
2λ long in the x direction, 1.5λ in the y, and 5λ in the z
direction.

Our results indicate that when defects are perpendicu-
lar to the applied field the superheating field is effectively
raised. In Fig. 15, we observe a vortex nucleating on a
smooth surface at an applied field of Ha = 0.9. The
magnetic field direction is indicated by the black arrow.
However, after introducing a defect perpendicular to the
magnetic field, no vortex nucleates at Ha = 0.9. After
raising the field to Ha = 1.0, the vortex fully enters the
dented film. This demonstrates that the relative orienta-
tion of defects and the applied field also plays a crucial
role in the nucleation mechanism and suggests that the
most dangerous divots are those parallel to the applied
magnetic field.

IV. DISCUSSION AND CONCLUSIONS

This work combines TDGL simulations with bifurca-
tion analysis to study the transition of the metastable
Meissner state to the mixed state of type II supercon-
ductors. We have implemented a finite-element method
that accommodates rough geometries in two- and three-
dimensions, as well as variations in material parameters.
We have demonstrated accuracy by reproducing previous
calculations of Hsh and kc for smooth geometries. The
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FIG. 15. Vortex Nucleation in 3D. Plotting the norm
squared of the order parameter shows that a vortex has nu-
cleated at Ha = 0.9 for the smooth surface but not the dented
surface. At Ha = 1.0 we do see vortex nucleation perpendic-
ular to the divot. This implies that divots perpendicular to
the applied magnetic field could raise Hsh.

flexibility of finite element methods enable simulating ge-
ometries that are more complex, including both rough
surfaces and material inhomogeneities. The bifurcation
analysis allows us to efficiently extract both the super-
heating field as well as the accompanying critical mode
without explicitly simulating vortex nucleation which oc-
curs at diverging time scales.

We have shown that even very small surface roughness
and material inhomogeneity can change the nucleation
mechanism. In smooth geometries, arrays of vortices nu-
cleate together. However, weak perturbations lead to a
localization of the critical model and significant reduction
in Hsh. Future work will further apply these tools to ge-
ometries and material-specific parameters motivated by
experimental observations.

As we are interested in defects about the size of a coher-
ence length we focus on mesoscopic scales. We’ve chosen
the penetration depth as our length scale in our simula-
tions. This means that for increasing κ we must consider
smaller coherence lengths. This further increases mesh
density and makes simulations more computationally ex-
pensive. The value of κ determines how large of a domain
we can simulate. For type-II materials, such as Nb3Sn,
simulations will be primarily limited to mesoscopic scales.

This work has been based on Ginzburg-Landau theory
that has known limitations. Most importantly, GL the-
ory is formally exact only when the system is close to its
critical temperature; however, most SRF cavities oper-
ate well below Tc. Previous work applying Eilenberger
theory to uniform surfaces and materials suggests that
the Ginzburg-Landau predictions are surprisingly accu-
rate (within a few percent) even at very low temperatures
[13]. It is reasonable to expect that the relative effects
of roughness and material inhomogeneity that we have
quantified will hold even at low temperatures, and that
inhomogeneities are likely to be bottlenecks to perfor-
mance.

A critical aspect that we have ignored here is field en-
hancement. The field enhancement effect refers to a lo-
cal increase in the applied field in response to surface

roughness. Our simulations have not accounted for any
field enhancement effects. This would require solving
Maxwell’s equations in the vacuum region outside the su-
perconductor. This could be added in future work, but
is beyond the scope of this study.

This analysis is a step toward sample-specific time-
independent calculations of Hsh that includes not only
surface defects, but spatially varying material parame-
ters. We have shown that realistic variations in Tc can
lower the barrier to vortex nucleation in ways similar to
surface roughness and such effects are likely to be present
in alloyed superconductors. We present these results as
an exploration of GL theory and as a tool for quantifying
detrimental defects in realistic superconducting samples.
In the future we plan to extend these results to incor-
porate more material parameters and specific geometries
into this framework and how these tools are bringing in-
sight to the development of Nb3Sn cavities.

We thank James Sethna, Danilo Liarte, Matthias
Liepe, Tomas Arias, Sam Posen, Richard Hennig, Nathan
Sitaraman, Michelle Kelley, Aiden Harbick, and Braedon
Jones for helpful discussions. This work was supported
by the US National Science Foundation under Award
OIA-1549132, the Center for Bright Beams.

Appendix: Meshing

We simulate 3 geometries, the 2D cylinder, the 2D film,
and the 3D film. In all of these geometries the mesh is
refined to capture length scales smaller than the order
parameter, otherwise the simulations do not accurately
capture vortex dynamics.

For the smooth cylinder we want to keep the simula-
tion as symmetric as possible to minimize the effect of
numerical noise. Near Hsh small defects in the mesh can
lead to vortex nucleation. For this reason we divide the
domain into concentric circles. Starting with the inner
circle we add points equally around the circumference.
We then add points to the second largest circle such that
if projected onto the inner circle they would be centered
between the first set of points. We repeat this process
adding extra points if the domain becomes too sparse.
Finally, we are interested in dynamics near the surface so
we push interior points radially outward. Fig.16 shows
the end result of this process for a cylinder of radius 10λ.

Once we introduce an inhomogeneity the local defect
dominates global behavior. It is no longer necessary to
keep the mesh symmetric. We can let FEniCS automat-
ically mesh the domain. We can define differing mesh
densities for different regions as in Fig.17. In Fig.20 we
can see the mesh close to the defect.

As a reference for future papers here is how we mesh
the film. The domain is broken up into rectangles. We
found that if we split the rectangles into an upper right
triangle and a lower left triangle then nucleated vortices
came in at an angle. To avoid this we divide each rect-
angle into 4 triangles as seen in the Fig. 18. When we
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FIG. 16. We solve the time-dependent Ginzburg-Landau
equations on a circular cutout of a cylinder. Forcing sym-
metry in the mesh ensures vortices penetrate uniformly. We
refine the mesh near the surface as we are only interested in
initial vortex nucleation. Length is measured in penetration
depths

FIG. 17. We introduce a geometric defect to the cylinder
based on experimentally observed grain boundaries.

introduce a divot the surface gets remeshed and this bias
disappears as seen in Fig. 19

In 3D we only considered a domain that was big enough
for 1 vortex to form. The surface has a symmetric grid

of points. When we introduced a defect we centered the
cusp on a line of vertex points. Interior points were not
symmetric.

FIG. 18. Plot of the film geometry’s mesh. To maintain
symmetry each small square is broken up into 4 triangles.
This prevents biases in vortex movement.

FIG. 19. Here we add a divot to the surface of the film mesh.
Because this breaks symmetry we no longer worry about en-
forcing it in the entire domain. We refine the mesh near the
surface.
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FIG. 20. We etch out an exponential-like function from the
surface of our cylinder to match what is observed experimen-
tally.
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Chapter 3

Grain Boundaries in Nb3Sn

Having developed software capable of simulating vortex nucleation with surface roughness and

material inhomogeneities our next step is to simulate defects found experimentally. The following

paper shows how this project fits into a larger community of researchers studying improvements to

SRF cavities in particle accelerators. Our contribution comes from section IV. We show how vortices

prefer to nucleate along grain boundaries where experimental measurements show an increase in Sn

leading to a decrease in Tc. We find that as the magnetic field increases vortices first form along the

grain boundary. At large magnetic fields the number of vortices increases until they get pushed out

of the grain boundary. As of this writing, the manuscript is under review at PRB and available at

arXiv, https://arxiv.org/abs/2003.03362. We will have permission from PRB to include this paper.
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We study mechanisms of vortex nucleation in Nb3Sn SRF cavities using a combination of ex-
perimental, theoretical, and computational methods. Scanning transmission electron microscopy
(STEM) image and energy dispersive spectroscopy (EDS) of some Nb3Sn cavities show Sn segrega-
tion at grain boundaries in Nb3Sn with Sn concentration as high as ∼35 at.% and widths ∼3 nm
in chemical composition. Using ab initio calculations, we estimate the effect excess tin has on the
local superconducting properties of the material. We model Sn segregation as a lowering of the local
critical temperature. We then use time-dependent Ginzburg-Landau theory to understand the role
of segregation on magnetic vortex nucleation. Our simulations indicate that the grain boundaries
act as both nucleation sites for vortex penetration and pinning sites for vortices after nucleation.
Depending on the magnitude of the applied field, vortices may remain pinned in the grain boundary
or penetrate the grain itself. We estimate the superconducting losses due to vortices filling grain
boundaries and compare with observed performance degradation with higher magnetic fields. We
estimate that the quality factor may decrease by an order of magnitude (1010 to 109) at typical op-
erating fields if 0.03% of the grain boundaries actively nucleate vortices. We additionally estimate
the volume that would need to be filled with vortices to match experimental observations of cavity
heating.

I. INTRODUCTION

Superconducting Radio-Frequency (SRF) cavities are
used in accelerators to transfer energy to beams of
charged particles. Induced magnetic fields are a funda-
mental limit to performance due to stability of the super-
conducting Meissner effect, i.e., perfect diagmagnetism.
For type-II materials, complete flux expulsion is thermo-
dynamically stable up to a lower-critical field, Hc1, and a
mixed state characterized by superconducting vortices is
stable for fields up to an upper-critical field, Hc2. Thus,
by limiting the fields on the walls of the SRF cavities,
the superconductor can be kept in the flux-free Meissner
state, so that surface dissipation is extremely small and
quality factors ∼ 1010 can be achieved. For magnetic
fields parallel to the cavity surface, the superconduct-
ing Meissner state can be maintained above the stability
limit in a metastable state up to a limit (for an ideal sur-
face) of the so-called superheating field Hsh[1]. Hsh has
been studied extensively by the condensed matter com-
munity, primarily in the context of Ginzburg-Landau the-

∗ These authors contributed equally
† mktranstrum@byu.edu

ory at ideal interfaces[2–5]. Because high-power SRF cav-
ities routinely operate in the metastable regime[6], there
has been renewed interested by the condensed matter
community in the behavior of superconductors in large
magnetic fields. Calculations extend results to the semi-
classical theory of Eilenberger theory in both the clean[7]
and dirty[8] limits and Time-Dependent Ginzburg Lan-
dau (TDGL) simulations that account for material[9] and
spatial inhomogeneities[10–13]. In this paper, we explore
the role of grain boundaries (GBs) in SRF cavity perfor-
mance motivated by experimental observations of inho-
mogeneities in real-world SRF cavities. This study brings
together the expertise of many areas of condensed matter
and accelerator physics to explore fundamental physics of
superconductors in extreme conditions and connect those
results to real systems.

Recently there has been significant progress towards
the employment of Nb3Sn in SRF cavities as a higher
performance alternative to the industry standard Nb for
next generation particle accelerator applications [14, 15].
Nb3Sn cavities are prepared with Nb3Sn films ∼2 µm
(nearly 20 penetration depths) thick coated on the sur-
face of Nb cavities using the Sn vapor-diffusion process.
Nb3Sn is an intermetallic alloy with A15 crystal struc-
ture; it is a promising material for next-generation SRF
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cavities in large part because of its large (predicted) su-
perheating field (∼400 mT). It also has a higher critical
temperature (Tc∼18K), making possible a higher quality
factor (Q0, another critical metric of cavity performance)
at a given temperature compared to Nb (Tc ∼9K).

In practice, however, real world Nb3Sn cavities quench
well below the theoretically predicted value. The maxi-
mum accelerating gradient that has been achieved within
these cavities is about 24 MV/m, which corresponds to
the surface magnetic field of ∼98 mT. These cavities ex-
hibit a high Q0 of ∼ 1010 at 4.2 K [14, 16]; however,
in some cavities, Q0 begins to degrade significantly be-
fore the limiting quench field is reached, a phenomenon
described as “Q-slope”[17].

Understanding the mechanism underlying the Q-slope
phenomenon is an important question for cavity develop-
ment. Several mechanisms have been proposed in terms
of imperfections in the Nb3Sn coatings [6, 18, 19] such as
thin grains [20, 21] and Sn-deficient regions [22]. Another
potential mechanism that may have detrimental effects
on the performance of Nb3Sn cavities is Sn segregation at
grain boundaries [23]. In some Nb3Sn coatings, tin con-
centrations as high as ∼35 at.% have been observed in
grain boundaries with the segregated zone extending by
as much as ∼3 nm, comparable to the coherence length of
Nb3Sn (∼3 nm). Because of the inferior superconducting
properties, magnetic flux may penetrate the segregated
region, degrade Q0, and lead to premature quench.

In support of this hypothesis, witness samples coated
with high-performance (quench at ∼24 MV/m with
Q∼1010 at 4.4 K) Nb3Sn cavities at Fermilab did not
show Sn segregation at the grain boundaries in energy
dispersive X-ray spectroscopy (EDS) and in scanning
transmission electron microscopy (STEM). Similarly, a
direct cutout from a high-performance Nb3Sn cavity fab-
ricated at Cornell did not show Sn segregation at grain
boundaries within the detection limit of STEM-EDS. In
contrast, Nb3Sn cavities, which show Sn segregation at
grain boundaries in witness samples coated together with
the cavities, displayed negative Q-slope for accelerating
fields in the 5-15 MV/m range, see Fermilab cavity 1
and 2, Fig. 1. These experimental results, summarized
in Fig. 1, suggest a potential link between Sn segregation
at grain boundaries and cavity performance [23].

Experimentally, it is difficult to isolate the effects of
Sn segregation at grain boundaries from other imper-
fections, such as Sn-deficient regions and surface rough-
ness. To overcome these challenges, we use numerical
tools to theoretically understand the role of segregation
in grain boundaries for SRF cavity performance. We use
density functional theory to estimate the effective Tc of
the material within the segregation zone. Next, we use
time-dependent Ginzburg-Landau simulations with spa-
tial varying material properties motivated by the ab ini-
tio DFT calculations. Time-dependent Ginzburg-Landau
theory allows us to conduct numerical experiments on
a mesoscale that probe the role of grain boundaries
and segregated zones for vortex nucleation, pinning, and

FIG. 1. Q vs E curve of various Nb3Sn SRF cavities coated
at Fermilab and Cornell. The GBs of a witness sample (Fer-
milab Cavity 3) and direct cutout (Cornell Cavity 2) of a
high-performance cavity are characterized in STEM-EDS and
showed no Sn segregation at GBs. On the other hand, wit-
ness samples of Fermilab Cavity 1 and 2, which show Q-slope
starting at 8 MV/m, were found to have Sn segregation at
GBs (reprint from [23]).

quenching. Finally, motivated by our TDGL simula-
tions, we estimate power dissipated by vortex nucleation
within segregated grain boundaries during an RF cycle
and make quantitative comparisons to actual SRF cavi-
ties.

This paper is organized as follows: First, we present
experimental images of defects in Nb3Sn cavities in sec-
tion II. We then report on first principles DFT calcula-
tions of superconducting properties for segregation zones
in section III and time-dependent Ginzburg-Landau sim-
ulations of flux penetration in section IV. We estimate
the effect on cavity performance in section V. Our nu-
merical experiments isolate the effects of Sn-segregated
grain boundaries from potentially confounding mech-
anisms. Our results indicate that the effects of Sn-
segregated grain boundaries alone are consistent with ob-
served behaviors. Specifically, grain boundaries may nu-
cleate and then trap a limited number of vortices, leading
to degredation in the cavity’s quality factor. We conclude
by discussing the implications of these results for cavity
development and further theoretical studies in section VI.

II. EXPERIMENTAL IMAGES OF NB3SN
DEFECTS

The high angle annular dark field (HAADF)-STEM
image in Figure 2 displays a Nb3Sn coating on Nb pre-
pared by the Sn vapor diffusion process using coating
parameters from the early stage of the development of
Nb3Sn films at Fermilab [14]. EDS mapping is performed
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FIG. 2. HAADF-STEM image of a typical ∼2 µm thick
Nb3Sn coating on Nb prepared by Sn vapor-diffusion.

across a GB in a Nb3Sn coating prepared by the same
coating parameters and it reveals that Sn is segregated at
the GB, Figure 3. A maximum concentration of Sn at the
GB is ∼33 at.% and a width of the Sn segregated region
is ∼3 nm. The Gibbsian interfacial excess of Sn is ∼16
atom/nm2. Previous studies on analyses of structures
of Sn-segregated GBs in Nb3Sn employing HR-STEM
and first-principle calculations indicated that most of the
segregated Sn exist as Sn-antisite defects near the GBs
rather than forming Sn-rich phases such as Nb6Sn5 or
other non-equilibrium phases [23, 24].

Another GB from a witness sample of a high-
performance cavity prepared at Fermilab is characterized
by HR-STEM EDS, Fig. 4. It is noted that there is no Sn
segregation at the GB within the detection limit of EDS
(∼1 at.%). This may indicate that there could be a pos-
sible correlation between the Sn segregation at GBs and
cavity performance. It has been reported that Sn segre-
gation is caused by Sn diffusion via GBs due to high Sn
supply and it can be controlled using carefully selected
coating parameters [23].

Also, the dips are formed on the surface at GBs and
HAADF-STEM image in Fig. 5 displays the geometry of
a GB on the top surface. It has ∼80 nm of depth and
∼420 nm of width. The composition and surface rough-
ness change at the GBs, possibly providing pathways for
flux to penetrate through the imperfections. These ex-
perimental observations are the motivation for our ab
initio and Ginzburg-Landau modeling to investigate the
effect of the imperfections on the vortex penetration.

III. THE EFFECT OF TIN-RICH
STOICHIOMETRY ON Tc

The presence of tin-rich stoichiometry near grain
boundaries has been established experimentally, but be-
cause these regions are so small, it is difficult to directly
probe their superconducting properties. We therefore
consider ab initio Tc values calculated using Eliashberg
theory [25] and Density Functional Theory (DFT) [26].

FIG. 3. The HAADF-STEM image and corresponding Nb
and Sn concentration profiles across the GB between Grain 1
and Grain 2. Sn is segregated at the GB up to ∼33 at.% Sn
and the width of the Sn segregated region is ∼3 nm.

FIG. 4. BF-STEM and corresponding Nb and Sn concen-
tration profiles across a GB from a witness sample of high-
performance Nb3Sn SRF cavity prepared at Fermilab.

Ref. [27] presents such results obtained using a Wannier-
based k-point sampling approach[28]. For the experimen-
tally measured stoichiometry range of the A15 phase, the
predicted Tc values are similar to or modestly higher than
experimental values, as described in Table 1. For experi-
mentally inaccessible tin-rich stoichiometry, Tc values fall

FIG. 5. HAADF-STEM image of the cross-section of the top
surface of a Nb3Sn GB.
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FIG. 6. Experimental Tc [29] (grey squares) and calculated Tc

(black circles) for A15 Nb-Sn of different stoichiometries. For
some stoichiometries, multiple possible defect configurations
were considered. The calculated Tc reaches a minimum of
about 5 Kelvin in the tin-rich regime.

to a minimum of about 5K at 31.25% Sn stoichiometry
(Fig. 6). This is well within the range that has been
observed around grain boundaries.

TABLE I. Calculated vs. Measured Tc

Composition Experimental Tc (K) Calculated Tc (K)
18.75% Sn 6 9.2†

20.83% Sn 9.5 11.3
23.44% Sn 16 16.1
25.00% Sn 18 18.2
31.25% Sn n/a 5.3†

† Averaged over multiple configurations.

IV. TIME-DEPENDENT GINZBURG-LANDAU
SIMULATIONS OF VORTEX NUCLEATION

A. Introduction to Methods

Time-dependent Ginzburg-Landau (TDGL) theory is
sophisticated enough to capture vortex dynamics without
becoming too algebraically complicated and computa-
tionally expensive. We solve the TDGL equations using
a finite element method implemented in FEniCS[30, 31].
We follow the finite element formulation described by
Gao et. al[9, 32]. Note that in this formulation length is
measured in units of the penetration depth λ.

This formulation reduces the full three-dimensional
problem into a two-dimensional problem by assuming
symmetry along the z-axis. The magnetic field points
along the z-axis, fixing variations in the order parameter
and magnetic vector potential to the x-y plane.

We consider the film geometry seen in Figure 7. We
take a rectangular cross-section lying in the x-y plane.
We enforce periodic boundary conditions on the left and
right side. On the top and bottom, we enforce Dirichlet
boundary conditions for the magnetic field and Neumann
boundary conditions for the order parameter.

FIG. 7. The black square interior to the film geometry marks
our domain of simulation. It lies perpendicular to the applied
magnetic field Ha. We assume there are no variations in the
direction of Ha so that we can simulate a 2D domain.

We model geometric defects by removing an exponen-
tial cut out from the top and bottom of the film. The

region removed is given by de−
|x|
w where d is the depth

of the cut out and w determines the width.The depth
and width are chosen to match experimentally observed
geometries.

To capture Sn segregation we allow Tc to vary over
the domain. This is done by varying the α ∝ T/Tc − 1
parameter as described in [9]. To mimic the distribu-
tion of material inhomogeneities shown in Figure 3, we
introduce α′ = (T/Tc − 1)/αref ≤ 1 in the GB region
|x| ≤ ξ/2 and αref = −1 elsewhere. The projection of
this onto the mesh is shown in Figure 8.

The Ginzburg-Landau parameter for Nb3Sn is κ =
λ/ξ ∼26, which is challenging to simulate because of
the extreme separation in length scales that require a
very refined mesh. However, the relevant physics for vor-
tex nucleation are variations in material parameters on
length scales comparable to the superconducting coher-
ence length, ξ. Therefore, we have simulated a moderate
type-II material (κ = 4) but scaled the width of the seg-
regated region (i.e., depleted Tc) so that its dimensions
relative to ξ are the same as that observed in Figure 3.
Although these assumptions may affect quantitative de-
tails, we expect the qualitative results are the same for
more extreme type-II materials.

B. Vortex Nucleation in Grain Boundaries

To simulate the nucleation of vortices into a grain
boundary, we set the value of the magnetic field at the
top and bottom boundary such that it is low enough that
an array of vortices do not penetrate directly into the
bulk, but large enough for vortices to enter into the grain
boundary[9]. As we evolve in time (assuming a constant
applied field), two different behaviors are observed de-
pending on the magnitude of the applied field. In the
first scenario, vortices enter into the grain boundary at
the geometric divot. With increasing field, the spacing
between vortices decreases until it reaches critical levels.
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FIG. 8. Projection of α′ = 1 − T/Tc onto a mesh, where
α′ = 0 (i.e., T ≈ Tc) in the region |x|/λ ≤ 0.125 and α = 1
elsewhere. The width of this region comes from experimental
observations.

In the second scenario, vortices first fill the grain bound-
ary, as in the first case, but then begin to penetrate into
the grain from the boundary.

Once a vortex has penetrated into the grain boundary,
it is pushed from the surface, allowing more vortices to
come in after it. Once space is available, another vortex
penetrates. This continues until the vortices have filled
the grain boundary, i.e. an optimal spacing between the
vortices inside grain boundary has been achieved. This is
illustrated by the sequence in Figure 9. Note that vortices
are manifest as regions in which the order parameter is
reduced to near zero at their center and exponentially
decay radially outward to unity.

If the applied magnetic field is sufficiently high, vor-
tices will also begin to penetrate into the bulk once the
grain boundary has been filled. See, for example, the bot-
tom of Figure 9. The field at which vortices penetrate
from the grain boundary into the grain is dependent on
the distribution of α′ = 1 − T/Tc. The shallower the
slope of α′ the lower the applied field needs to be to nu-
cleate vortices into the grain from the grain boundary.
These results are summarized in the phase diagram in
Figure 10. Comparing with results from section III, for a
segregated region with Tc ∼ 5K in a cavity operating at
T = 4.2K (T/Tc ∼ 1), we observe a non-trivial region of
the phase diagram that admits flux trapped at the grain
boundary.

The value of the applied field at which the vortices first
leave the grain boundary and penetrate the bulk depends
on the properties in the transition zone between the seg-
regated and non-segregated region. If the transition form
α′ < 1 (segregated region) to α′ = 1 (non-segregated re-
gion) is very sharp (as the blue solid curve in Figure 11),
then vortices will be trapped in the grain boundary for
larger fields. However, if the transition is more gradual
(such as the orange dashed curve), then it is easier for
vortices to escape the boundary and penetrate the bulk.
Figures [8, 9, 10] were generated with a very sharp inter-

FIG. 9. Sequence of behaviors for increasingly large applied
magnetic fields. An applied magnetic field is set as a bound-
ary condition to the top and bottom of the film, with periodic
boundary conditions on the right and left sides. At moderate
applied magnetic fields, vortices penetrate only into the grain
boundary from the geometric defect (top). At higher fields, a
critical vortex spacing is reached (second pane) above which
vortices begin to penetrate the bulk from the grain bound-
ary (third pane). Finally, having entered the bulk, vortices
disperse and fill the grain with an equilibrium distribution
(bottom).

face.

V. ESTIMATES OF VORTEX DISSIPATION AT
GRAIN BOUNDARIES

Inhomogeneous properties of superconductors have
high impact on the performance of SRF cavities, affect-
ing figures of merit such as the residual resistance due
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FIG. 10. Phase diagram of TDGL predictions for flux pen-
etration in the presence of the grain boundary, interpolated
from simulations at α′ = −1, 0, 1. At small applied fields, no
flux penetrates (blues). At intermediate fields, flux penetrates
but is constrained to the grain boundary (yellow). At suffi-
ciently high fields, the flux penetrates from the grain bound-
ary in to the bulk material (red).

FIG. 11. Profiles of potential α′ for the transition between
the segregated and non-segregated regions. Sharp transitions
(such as the blue solid curve) keep the vortices constrained
to the boundary for larger applied fields. A more shallow
transition (such as the orange dashed curve), however, allow
vortices to escape into the grain more easily.

to trapped magnetic flux [33–35], and the superheating
field [1, 2, 7, 36–38]. Grain boundaries well aligned with
the surface magnetic field can become weak spots for the
nucleation of superconducting vortices (see Fig. 12), and
could be ultimately responsible for the quench of an SRF
cavity. In this section, we discuss simple estimates for the
power dissipation and heat diffusion due to nucleation of
vortices at grain boundaries in Nb3Sn cavities.

We start with an estimate for the power dissipated in
an SRF cavity when a grain boundary is filled with n su-
perconducting vortices. We assume of order O(n) vortex
lines are annihilated once per cycle, their energy is lost,
and the power dissipated per vortex line is simply the
drop in the energy of the outside magnetic field times the

FIG. 12. Illustrating vortex nucleation (red lines) in a super-
conductor (light gray region) subject to a surface magnetic
field H. Vortex entry starts at regions where superconduc-
tivity is weakest (dark gray regions, here representing grain
boundaries).

RF frequency. Our estimate gives a rough estimate for
the actual power dissipated by vortices at grain bound-
aries, if the field reaches high enough values for them to
enter.

The drop in magnetic energy when a vortex line of
length D nucleates into the superconductor is given by:

∆E =

∣∣∣∣∣

∫
1

2µ

(
B − Φ0D

V

)2

dV −
∫
B2

2µ
dV

∣∣∣∣∣

≈ BΦ0D

µ
, (1)

where V is the volume, µ is the permeability of free
space, Φ0 is the fluxoid quantum, and λ is the pen-
etration depth. Note that ∆E is also approximately
the work done by the external magnetic field to push
a vortex into the bulk of the superconductor: W ≈
fL · D · λ = (Φ0B/(µλ))Dλ = ∆E, where fL is the
Lorentz force per length. Thus, our calculation gives
the vortex dissipation at grain boundaries assuming that
the vortices do not leave the grain boundary as the ex-
ternal field drops and changes sign, as our simulations
indicate, and as one would expect for vortices that en-
ter a distance more than λ, past the surface nucleation
barrier. The total energy drop for a grain boundary of
linear size D with vortices spaced by λ (see Fig. 12) is
∆EGB ≈ ∆E(D/λ) = BΦ0D

2/(µλ), and the power dis-
sipated per grain boundary is given by

PGB ≡ f∆EGB =
BΦ0

µ

fD2

λ
, (2)

where f is the cavity frequency. For a 1.3GHz Nb3Sn
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cavity with typical grain size of D ≈ 1µm, we find PGB ≈
621nW at B = 60mT.

Note that our estimate relies on the assumption that
vortices quickly fill the grain boundary before being an-
nihilated during the RF cycle. If the vortex line relaxes
slowly, the RF field might vanish and change sign before
vortices had time to fill the grain boundary, and our as-
sumption would not be valid. We now show that that is
not the case — vortices move at extremely high speeds
in the typical environment of Nb3Sn SRF cavities.

Consider the one-dimensional motion of a “train” of N
vortices moving through a grain boundary towards the
superconductor interior (see Fig. 13). Assuming over-
damped dynamics, the equations of motion for each vor-
tex line i of velocity vi read:

ηv1 = fL − f2,1,
ηv2 = f1,2 − f3,2,

...

ηvN−1 = fN−2,N−1 − fN,N−1,
ηvN = fN−1,N ,

where fL = Φ0Hrf/λ is the Lorentz force per length
at the surface, Hrf is the surface magnetic field, η =

Φo
2/(2πξ2ρn) is the Bardeen-Stephen viscosity [39], ρn is

the resistivity of the normal state and fi,j is the repulsion
force from vortex i into vortex j. Thus,

〈v〉 ≡ 1

N

N∑

i=1

vi =
fL
Nη

=
2π

µΦ0

ρnξ
2

λ

Brf
N

. (3)

For Nb3Sn at Brf = 60mT, we find 〈v〉 = 2.4µm/ns and
〈v〉 = 24µm/ns for ten vortices and one vortex, respec-
tively. The average velocity of the vortex train is clearly
high enough for vortices to quickly fill in the grain bound-
ary during the RF cycle, but the numerical value should
be taken with a grain of salt. The Bardeen-Stephen for-
mula is not valid at these high speeds, which also exceed
the pair-breaking limit of the superconducting conden-
sate [40]. In recent work [41], Gurevich and Sheikhzada
consider the dynamics of Abrikosov-Josephson vortices
to model the dissipation by vortices at grain boundaries.

fL

f1,2f2,1 f3,2 fN,N-1 fN-2,N-1 fN-1,N
...

FIG. 13. Illustrating a “train” of N vortex lines (blue disks)
moving through a grain boundary (dark gray) of a supercon-
ductor (light gray). The first vortex is subject to a surface
Lorentz force from the RF field and each vortex is repelled by
its nearest neighbors.

Grain boundary activation might be associated with
the degradation of the quality factor Q of SRF cavities

at high fields. We now use our estimates to calculate the
number of active grain boundaries needed to deplete Q
by a certain amount.

The quality factor is given by Q = GBrf
2/(2µ2P ),

where P is the dissipated power per unit area and G is
a geometry factor. We break up the total surface area
s of the cavity into N blocks, so that s = NsGB , where
sGB is the average area occupied by one grain boundary.
Assume inactive and active blocks dissipate power P1 and
P1 +PGB , respectively, where by active block we mean a
block with a grain boundary filled with vortices. For M
active blocks,

Q =
GBrf

2

2µ2(NP1 +MPGB)/(NsGB)

=
GBrf

2sGB
2µ2(P1 + xPGB)

, (4)

where x ≡ M/N is the ratio of active grain boundaries.
In the absence of active grain boundaries, we assume Q =
Q1 is constant (i.e. P1 ∼ Brf 2), so that

P1 =
GBrf

2sGB
2µ2Q1

. (5)

Plugging Eq. (5) into Eq. (4) and solving for x, we find

x =
GsGBBrf

2

2µ2PGB

(
1

Q
− 1

Q1

)
. (6)

Figure 14 shows a plot of the percentage of active grain
boundaries (100x, blue curve) as a function of Brf cor-
responding to the artificial Q-slope profile shown in the
yellow curve (using Nb3Sn parameters with Q1 = 1010,
sGB = 0.5µm2 and G = 278Ω). Note that about 0.03%
of the surface grain boundaries need be filled with vor-
tices for Q to drop from 1010 to 109 for Nb3Sn at about
66mT.

0 10 20 30 40 50 60 70
10-4

10-3

10-2

10-1

100

Brf [mT]

x
[%

],
Q
/
Q
1

FIG. 14. Estimated percentage of active surface grain bound-
aries (blue curve) as a function of Brf , corresponding to the
quality factor profile displayed in the yellow curve for Nb3Sn
with Q1 = 1010.

We end this section with a simple model calculation
of the steady-state thermal heating at a grain bound-
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ary. Figure 15 illustrates our model for thermal diffu-
sion near an active grain boundary. Light and dark gray
regions represent cross sections of Nb and Nb3Sn lay-
ers, respectively. The Nb surface is in contact with a
low-temperature He bath. The Nb3Sn surface is in con-
tact with vacuum, and is subject to a parallel oscillat-
ing magnetic field. The grain boundary is represented
by a blue rectangle of linear size D. Red arrows repre-
sent the direction for heat diffusion in our model. First,
we assume one-dimensional heat diffusion away from the
grain boundary up to a distance r ≈ D. We expect
the heat front to attain a semi-spherical shape for dis-
tances r ' D. We then assume three-dimensional heat
diffusion away from a half-sphere of radius D for dis-
tances D ≤ r ≤ R1. For r ≤ R1 we consider the Nb3Sn
thermal conductivity κ = κNb3Sn. At last, we assume
three-dimensional heat diffusion away from a half-sphere
of radius R1 for distances R1 ≤ r ≤ R2, with κ given
by the Nb thermal conductivity κNb. Note that our as-
sumptions are stronger when R2 � R1 (R2/R1 ∼ 103 for
typical Nb3Sn/Nb SRF cavities).

RF field

Helium bath

Nb

Nb3Sn

D R1
R2

FIG. 15. Sketch of our model for heat diffusion near an active
grain boundary (blue rectangle at the top center). The light
and dark gray regions correspond to cross sections of Nb and
Nb3Sn. Red arrows represent the direction for heat diffusion.
Heat fronts move along one dimension for distances smaller
than the grain size D, and three dimensions otherwise.

The equilibrium temperature profile can then be cast
from the stationary solutions of the heat equation in each
region:

T (r) =





ζ(r), for 0 ≤ r ≤ D,
c/r + d, for D ≤ r ≤ R1,

e/r + f, for R1 ≤ r ≤ R2,

(7)

where c, d, e and f are constants, and ζ(r) is the station-
ary solution of the one-dimensional heat equation (the
Nb3Sn thermal conductivity strongly varies with temper-
ature in this region [42], which complicates the problem
of finding an analytical solution for ζ(r)) [43]. Note that
we relax the definition of the coordinate r here, which
should be interpreted as a lateral distance away from the
grain boundary for 0 ≤ r ≤ D, and a depth coordinate
towards the Helium bath for distances r > D.

To calculate ζ(r), we use Fourier’s law — Q̇ =

−κ dT/dr, where Q̇ is the heat flux. The stationary solu-
tion of the heat equation can be found from the solution
of dQ̇/dr = 0, i.e.

−κNb3Sn(T )
dT

dr
= a, (8)

where a is constant.
The thermal conductivity κNb3Sn(T ) in the supercon-

ducting layer has two important contributions: a phonon
contribution and an electronic component (carried by
superconducting quasiparticles). The low-temperature
phonon thermal conductivity is strongly dependent on
the morphology of the crystal [44]; in clean insulating
crystals it is dominated by scattering off grain bound-
aries and sample boundaries, and varies as T 3. Scat-
tering off impurities can cut off the contribution of high-
frequency phonons, or even resonantly cut off certain fre-
quency bands. All of these mechanisms lead to a thermal
conductivity that monotonically increases with temper-
ature, so we avoid the complexity by using a constant
phonon thermal conductivity k1, giving a lower bound for
the conductivity and hence an upper limit to the heating.
The electronic portion of the thermal conductivity k2 in
the normal metal at low temperatures is roughly indepen-
dent of temperature, and is set by the electronic mean-
free path. In the superconductor, it decreases exponen-
tially as exp(−∆(0)/kBT ), as seen experimentally [42].
Using the BCS relation between the gap and the transi-
tion temperature, we therefore use

κNb3Sn(T ) = k1 + k2 exp (−1.76Tc/T ). (9)

We use the normal electron thermal conductivity k2 =
2 × e1.76 W/m·K from [42]. Because the electronic con-
tribution is negligible at the operating temperature of
the cavity, we set k1 = 10−2W/m·K as the approximate
total thermal conductivity of Nb3Sn at 2K [42]. Both of
these constants are dependent upon the preparation of
the film, and also could vary from one region of the film
to another as the growth conditions or the underlying Nb
grain orientations vary.

Integration of Eq. (8) results in

Π (T ) = −a r + b, (10)

where b is constant, and

Π (T ) =k1 T + k2 T e
−1.76Tc/T

+ 1.76 k2 TcEi

(
−1.76

Tc
T

)
, (11)

with Ei(x) ≡
∫∞
−x[e−t/t]dt denoting the exponential inte-

gral function. ζ(r) is then the solution of Eq. (10) for T .
Note that our simple model assumes that the quasipar-
ticles and the phonons remain at the same effective tem-
perature (the inelastic electronic mean free path is small),
and that both remain diffusive (the elastic phonon and
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electron mean free paths are small). Violating either of
these assumptions would likely lower the transport of en-
ergy away from the grain boundary, making the heating
more dangerous.

We focus our attention on grain-boundary activation
and ignore other sources of power dissipation (which
could be added later using the principle of superposi-
tion). Thus, we assume that the heat flux is the power
dissipated per grain boundary (PGB) per unit area. We
use Fourier’s law to determine the coefficients a, c and e
in Eqs. (7) and (10). For 0 ≤ r ≤ D, Q̇ = PGB/D

2, so
that:

a =
PGB
D2

. (12)

For D ≤ r ≤ R1 (R1 ≤ r ≤ R2), Q̇ = PGB/2πr
2, κ =

κNb3Sn (κNb) and dT/dr = −c/r2 (−e/r2), so that:

c =
PGB

2πκNb3Sn
, e =

PGB
2πκNb

. (13)

To find f , we use T (R2) = THe, where THe is the tem-
perature of the Helium bath:

f = THe −
PGB

2πκNbR2
. (14)

To find d and b, we use the continuity of T (r) at r = R1

and r = D, respectively (we ignore the Kapitza resistance
at the interface between Nb3Sn and Nb). Thus,

c/R1 + d = e/R1 + f ⇒ d =
e− c
R1

+ f, (15)

and

b = aD + Π
( c
D

+ d
)
. (16)

Figure 16 shows temperature profiles (Eq. (7)) near an
active grain boundary for Nb3Sn/Nb systems at B =
60mT. Note that the temperature of an active grain
boundary increases to about 10K near the boundary sur-
face for a Helium temperature of 2K. Although this in-
crease in temperature is not large enough to drive Nb3Sn
into the normal state, it certainly has significant impact
on the superconducting properties. Also, note that the
temperature decays to nearly THe as r approaches twice
the grain size D, suggesting that heating due to grain-
boundary activation is mostly localized.

A temperature rise of 10K at the grain boundary is
over half of the critical temperature of the film, sug-
gesting that larger grain boundaries or multiple nearby
boundaries could raise the temperature high enough to
quench the cavity. Cavities with tin-rich grain bound-
aries and more pristine grain boundaries show the same
quench fields, suggesting that another mechanism con-
trols the quench fields of existing Nb3Sn cavities. If the
excess dissipation in the cavities with tin-rich boundaries
is due to vortex penetration (Fig. 14), one would expect
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FIG. 16. Temperature as a function of distance from the
grain boundary for the Nb3Sn/Nb system at a bath of 2K
(blue) and 4K (yellow). Vertical dashed lines correspond to
D = 1µm, R1 = 2µm and R2 = 3mm, from left to right.
Bottom and top red dashed lines correspond to THe = 2K
and 4K, respectively. We have used temperature-dependent
κNb3Sn given by Eq. (9), κNb = 10W/m·K, and PGB = 621nW
at B = 60mT, according to our previous estimates.

rare events with large or multiple grain boundaries would
happen, suggesting that our grain-boundary heating es-
timate is unduly pessimistic. Alternatively, it remains
possible that the grain boundaries have high superheat-
ing fields, and the excess dissipation has another expla-
nation. In any case, our estimates suggest that vortex
entry at grain boundaries should be expected for tin-rich
boundaries well below the superheating field for a perfect
crystal, and that the subsequent heat release should be
important both as a contribution to the overall dissipa-
tion and as a quench mechanism for the cavity.

VI. CONCLUSION

In this work we have presented an interdisciplinary,
multi-scale study of vortex nucleation in Sn-segregated
grain boundaries and its subsequent effect on SRF perfor-
mance. Scanning transmission electron microscopy im-
ages and energy dispersive spectroscopy show Sn concen-
tration as high as ∼35 at.% and widths ∼3nm in chemical
composition in grain boundaries. We used density func-
tional theory to estimate the effective critical tempera-
ture for the material in the segregation zone and find that
the effective Tc can be reduced to as low as 5 K for Sn
concentrations in excess of∼30 at.%. Next, we used these
calculations as inputs into time-dependent Ginzburg-
Landau simulations. These simulations demonstrate that
grain boundaries can act as nucleation sites for magnetic
vortices. The grain boundaries then act as a kind of
pinning sites for vortices after nucleation. The pinning
is non-traditional, however, as vortices are free to move
vertically along the grain boundary, but are constrained
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from moving laterally into the bulk. We have seen that
for a range of applied fields, vortices may nucleate at but
remain constrained to the grain boundary. These vortices
will nucleate and annihilate once per RF cycle, and we
estimate the superconducting losses of this phenomenon
at the scale of SRF cavities. We have shown that as long
as vortices do not penetrate the bulk grain, losses are
localized near the grain boundary and will not lead to
a global quench. However, the annihilation process each
cycle will lead to a reduction in the quality factor that
increases with larger applied fields, consistent with the
experimentally observed Q-slope.

SRF cavities are an important application area that
require multi-disciplinary talents to address. This study
has leveraged the skills of accelerator physicists, material
scientists, and condensed matter theorists with expertise
across a range of scales to explore a question fundamen-
tal to the advancement of next-generation SRF material,
Nb3Sn. This study has presented evidence that segrega-
tion zones in grain boundaries play an important role in
cavity performance. Understanding the mechanism be-
hind the Q-slope will motivate new manufacturing proto-
cols and help constrain the design space of future cavities.

VII. ACKNOWLEDGEMENT

We would like to thank Matthias Liepe, Michelle Kel-
ley, and Richard Hennig for helpful conversations. This
research is supported by the United States Department
of Energy, Offices of High Energy. Fermilab is oper-
ated by the Fermi Research Alliance LLC under Con-
tract No. DE-AC02-07CH11359 with the United States
Department of Energy. This work made use of the EPIC,
Keck-II, and/or SPID facilities of Northwestern Univer-
sitys NUANCE Center, which received support from the
Soft and Hybrid Nanotechnology Experimental (SHyNE)
Resource (NSF ECCS-1542205); the MRSEC program
(NSF DMR-1121262) at the Materials Research Center;
the International Institute for Nanotechnology (IIN); the
Keck Foundation; and the State of Illinois, through the
IIN. This work was supported by the US National Sci-
ence Foundation under Award OIA-1549132, the Center
for Bright Beams.

[1] D. B. Liarte, S. Posen, M. K. Transtrum, G. Catelani,
M. Liepe, and J. P. Sethna, Superconductor Science and
Technology 30, 033002 (2017).

[2] M. K. Transtrum, G. Catelani, and J. P. Sethna, Phys-
ical Review B 83, 094505 (2011).

[3] S. J. Chapman, SIAM Journal on Applied Mathematics
55, 1233 (1995).

[4] A. J. Dolgert, S. J. Di Bartolo, and A. T. Dorsey, Phys-
ical Review B 53, 5650 (1996).

[5] L. Kramer, Physical Review 170, 475 (1968).
[6] S. Posen, N. Valles, and M. Liepe, Physical review letters

115, 047001 (2015).
[7] G. Catelani and J. P. Sethna, Physical Review B 78,

224509 (2008).
[8] F. P.-J. Lin and A. Gurevich, Physical Review B 85,

054513 (2012).
[9] A. R. Pack, J. Carlson, S. Wadsworth, and M. K.

Transtrum, arXiv preprint arXiv:1911.02132 (2019).
[10] A. Y. Aladyshkin, A. Mel’Nikov, I. Shereshevsky, and

I. Tokman, Physica C: Superconductivity 361, 67 (2001).
[11] L. Burlachkov, M. Konczykowski, Y. Yeshurun, and

F. Holtzberg, Journal of applied physics 70, 5759 (1991).
[12] D. Y. Vodolazov, Physical Review B 62, 8691 (2000).
[13] P. Soininen and N. Kopnin, Physical Review B 49, 12087

(1994).
[14] S. Posen and D. L. Hall, Superconductor Science and

Technology 30, 033004 (2017).
[15] S. Posen and M. Liepe, Physical Review Special Topics-

Accelerators and Beams 17, 112001 (2014).
[16] S. Posen, J. Lee, O. Melnychuk, Y. Pischalnikov, D. Sei-

dman, D. Sergatskov, and B. Tennis, in 19th Int. Conf.
on RF Superconductivity (SRF’19), Dresden, Germany,
30 June-05 July 2019 (JACOW Publishing, Geneva,
Switzerland, 2019) pp. 818–822.

[17] G. Müller, H. Piel, J. Pouryamout, P. Boccard, and
P. Kneisel, in Proceedings of the Workshop on Thin Film
Coating Methods for Superconducting Accelerating Cavi-
ties (2000).

[18] A. Gurevich, Superconductor Science and Technology 30,
034004 (2017).

[19] D. L. Hall, New Insights into the Limitations on the Effi-
ciency and AchievableGradients in Nb 3 Sn SRF Cavities
(Cornell University, 2017).

[20] J. Lee, S. Posen, Z. Mao, Y. Trenikhina, K. He, D. L.
Hall, M. Liepe, and D. N. Seidman, Superconductor Sci-
ence and Technology 32, 024001 (2018).

[21] Y. Trenikhina, S. Posen, A. Romanenko, M. Sardela, J.-
M. Zuo, D. Hall, and M. Liepe, Superconductor Science
and Technology 31, 015004 (2017).

[22] C. Becker, S. Posen, N. Groll, R. Cook, C. M. Schlepütz,
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Chapter 4

Material-Specific Ginzburg-Landau

Simulations

4.1 Abstract

This chapter extends GL simulations of defects and vortex dynamics. We adapt our formulation

to accommodate material-specific parameters. Next we simulate regions of depleted Sn near the

surface of a superconducting film and show that as the defect gets deeper into the film it has less of

an impact on Hsh. We call these “islands of deficient Sn”. We simulate AC fields and observe an

increase in Hsh with higher frequencies. We also observe vortex antivortex annihilation. Finally, we

simulate the process of cooling an SRF cavity by simulating a temperature wave. We observe that

this wave can push vortices.

4.2 Introduction

As discussed in chapter 2 working with the GL equations usually involves absorbing many constant

parameters into the units of length and time. Allowing variations in these parameters leads to a

37
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different process of nondimensionalization. Up to this point we’ve considered variations in geometry

by adding surface roughness and change material by varying the critical temperature through the

parameter α ∝ 1− T
Tc(r)

. These have been useful for a general qualitative understanding of how

defects impact superconductor performance but a quantitative material-specific simulation requires

spatial and temporal variations of the other parameters.

To do so we need to reconsider our formulation. The GL equations are derived by taking the

first variation of the GL free energy and setting it to zero [46]. This requires an integration by parts

to move spatial derivatives off the variations and onto the functions we are solving for. This process

also defines the boundary conditions. If we introduce spatial dependence to parameters on terms

with derivatives then the integration by parts will change the equations of motion and boundary

conditions. For this reason we postpone adding spatial variations to the effective mass until chapter

5.

The next step is to discretize the equations. Previously we followed Gao’s mixed finite element

formulation [47]. The trick to this formulation is to not only solve for ∆ and A but for σ = ∇×A

and θ = ∇ ·A by taking the curl and divergence of the equation for A. Unfortunately adding

spatial dependencies to terms of the form f (r)∂A
∂ t means that when we take spatial derivatives of the

equations we get ∇ · ( f (r)∂A
∂ t ) = ∇ f (r) · ∂A

∂ t + f (r)∂θ

∂ t . Now, what is supposed to be just an equation

for θ also contains time derivatives of A. The details on how we work around this are given in

appendix A.

In this new formulation we can vary the penetration depth λ0, the critical magnetic field Hc0,

the conductivity σ , the decay rate of the order parameter Γ, the temperature T , and the critical

temperature Tc. Values for some of these parameters in bulk material are given in table 4.1. As we

saw in chapter 3 these values may change in defects.

Notice σ and Γ are not included in this table. In principle these parameters can be calculated

from DFT. For now we set σ = 1. As Γ sets the time scale, we use Kopnin’s rough estimate
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Hc (T) Tc (K) λ0 (nm) ξ0 (nm)

Nb 0.82 [50] 9.26 [51] 50 [52] 22 [53]

Nb3Sn 30 [54] 18.3 [55] 111 [56] 4.2 [56]

Table 4.1 Table of values of the critical magnetic field Hc, critical temperature Tc, pene-
tration depth λ0, and coherence length ξ0 for Nb and Nb3Sn. Note that Nb3Sn has both a
larger critical magnetic field and a larger critical temperature. In theory Nb3Sn cavities
could out perform Nb cavities.

of u = τ∆

τ j
= 5.79 in the dirty limit. Tinkham and Kopnin provide formulas for converting these

parameters into α , τ∆, etc [48, 49].

4.3 Islands of Deficient Sn

Simulations in this section were run by Braedon Jones.

Islands of deficient Sn in the surface of SRF cavities have been observed experimentally [57].

One such defect is shown in the yellow circle in figure 4.1. From chapter 3 we know that variations

of Sn concentration in the Nb3Sn layer can lead to a reduction in Tc.

We want to know how the size, location, and variations in Sn concentration each impact the

superheating field. To do so we will use the film geometry discussed in chapter 2. As a reminder,

we enforce periodic boundary conditions on the left and right of the domain. We also enforce fixed

applied fields and zero current leaking off the top and bottom of the domain. We model the decrease

of Tc in this region through α . We define α as a 2D error function as follows,

α = 1.0−0.5B

(
−er f

(
γ

((
x− cx

xR

)2

+

(
y− cy

yR

)2

−1

))
+1

)
(4.1)

where B is the lowest value of α , γ determines the slope of the transition between regions, cy and cx

indicate the center of the island and xR and yR are the heights and widths of the island.
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Figure 4.1 Experimental image of the surface of a Nb3Sn cavity. Nb3Sn cavities are made
by depositing Sn onto a Nb cavity and heating the surface to allow diffusion of Sn into
the bulk Nb. This produces a layer of Nb3Sn. The yellow circle shows an island defect.
Our collaborators hypothesize these are islands of deficient Sn. The red box outlines a
grain boundary. We simulated grain boundaries in a previous chapter. In this chapter we
simulate the islands of depleted Sn. Image used with permission with added indicators for
clarity [57].
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Figure 4.2 Figure showing α . The reduction in Tc due to an island of depleted Sn is
modeled as a reduction in α , a parameter in the Ginzburg-Landau equations. We adjust
the size, depth, position, and slope of α to explore what kinds of islands are the most
detrimental. In this case the slope is so high that α behaves as a step function. D indicates
the distance of the top of the defect to the top of the domain. We apply a magnetic field on
the top and bottom of the domain and assume periodic boundary conditions on the left and
right sides of the domain.

We can adjust the position, shape, slope, and depth of α to see which parameters have the

greatest impact on Hsh. Figure 4.2 shows an example of α with very steep slope (essentially a step

function). Unless otherwise stated κ = 4, u = 1, yR = 1, xR = 2, the minimum of alpha reaches 0.5,

and has a very steep slope essentially behaving as a step function. Our evaluation of the superheating
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Figure 4.3 Plot of Hsh vs. the distance of the top of the island of deficient Sn from the top
of the superconducting film with varying island size. For all sizes the impact of the island
drops off when the island is 2λ below the surface. Larger islands have a broader range of
values that reduce Hsh.

field is identical to the process in chapter 2.

We explore how islands of varying size, depth, and slope impact Hsh as we move the island

from outside the film to its interior. Our measure of “distance” is how far the top of the island is

from the top of the film. This is marked as D in figure 4.2. A negative distance means the top of

the island is above the film’s top surface. In the figures of this section we observe that the greatest

reduction in Hsh occurs as the island lies halfway into the film. As the island gets deeper into the

film the reduction in Hsh shrinks until at about 2λ the island no longer has a significant impact.

In figure 4.3 we vary the size of the island. The larger the island the more Hsh is reduced. There

is also a larger range of distances with which Hsh is reduced.

In figure 4.4 we vary the depth of α . This is equivalent to removing more Sn, causing an increase

of Tc. We observe that the lower α becomes the greater the reduction in Hsh.

In figure 4.5 we vary the slope with which α varies. This simulates how quickly the material

transitions from Nb3Sn to Nb. We observe that steep slopes reduce Hsh the most.
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Figure 4.4 Plot of Hsh vs. the distance of the top of the island of deficient Sn from the
top of the superconducting film with varying reductions of Tc. Islands with lower alpha
represent greater reductions in Tc due to deviations from pure Nb3Sn. The greater reduction
in alpha leads to a greater reduction in Hsh.

Figure 4.5 Plot of Hsh vs. the distance of the top of the island of deficient Sn from the top
of the superconducting film with varying reductions of island slope. Islands with a quick
change from Nb3Sn to depleted Sn have a greater reduction on Hsh. This effect is not as
pronounced as varying the reduction in Tc.
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4.4 AC Fields

Simulations in this section were run by Cole Abbot.

There are two proposed ways to improve SRF cavities, raising Hsh [44] or increasing the AC

current’s frequency [39]. The second proposal is based on the finite time it takes vortices to form.

Theoretically at high frequencies there would not be enough time for a vortex to penetrate.

Another concern that has arisen is the possibility of vortex antivortex annihilation. Vortices

nucleating into grain boundaries could become pinned by defects. When the magnetic field swaps

sign a new set of vortices with opposite magnetic field could enter and annihilate the pinned vortices.

This could be a mechanism for cavity heating. (See chapter 4)

Both of these concerns can be analyzed using AC fields in our simulations. To do so we use the

film geometry. We apply an AC magnetic field on the top and bottom of the film. Care is taken to

insure the numerical time step is much smaller than the period of oscillation.

Our bifurcation algorithm can not calculate Hsh for oscillating fields, but we can observe when

the order parameter drops to zero on the surface. Varying the frequency and strength of the applied

magnetic field we let our simulations run for several periods to determine if the order parameter

gets close to zero. If so we infer that we are above Hsh.

There are a wide variety of vortex behaviors depending on the magnitude of the applied magnetic

field and the frequency with which it is applied. For small magnetic fields the order parameter

drops only near the surface. For medium magnetic fields and high frequencies vortices enter but

are quickly pulled out with the change of magnetic field. For medium magnetic fields and low

frequencies vortices enter and move deep into the film. When the magnetic field crosses zero some

vortices exit the material. Then antivortices penetrate and annihilate with the vortices that remain.

In figure 4.6 we plot the magnetic field during vortex antivortex annihilation. In the top right of the

image we can see a region of positive magnetic field right next to a region of negative magnetic

field. These two vortices are just about to come together and annihilate. For very large magnetic
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Figure 4.6 Plot of the magnetic field inside a film during vortex antivortex annihilation
on a square domain. We apply a sinusoidal magnetic field on the top and bottom, and
periodic boundary conditions on the left and right. For sufficiently large magnetic fields
vortices form. When the magnetic field switches signs the vortices that form have opposite
orientation. The yellow spots are vortices and the purple spots are antivortices. On the top
right we can see a vortex and antivortex pair about to annihilate each other. This interaction
may produce extra heat.

fields the surface partially quenches twice over each period.

To answer the question of whether or not frequency has an impact on Hsh, we ran many

simulations varying the magnitude of the applied magnetic field and the frequency. In figure 4.7 the

white dots indicate the order parameter did not drop to zero, meaning we are below Hsh. The blue
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Figure 4.7 A comparison of whether or not the order parameter reaches zero for a given
applied field and frequency. Theoretically if the time it takes for the applied field to
oscillate is much shorter than the time for a vortex to nucleate than raising the frequency
of the applied field could prevent vortex nucleation. White dots indicate that for a given
applied field and frequency the order parameter never reaches zero, indicating vortices
never form. Blue dots indicate the order parameter does reach zero, meaning vortices
formed or there is quenching. The red dots indicate simulations that failed to run correctly.
As the frequency increases the applied magnetic field must increase before the order
parameter reaches zero.

dots indicate the opposite. We can see that as the frequency increases the required magnetic field

for the order parameter to drop to zero also increases. Red dots indicate simulations that did not

correctly run. As a reminder Hsh has units of
√

2Hc.

4.5 Temperature Waves

Simulations in this section were run by Aiden Harbick.

Before cooling, SRF cavities contain magnetic flux from outside sources such as the earth’s
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Figure 4.8 Plot of the temperature profile, order parameter, and magnetic field in a
superconducting film as the temperature profile moves left to right. We enforce a fixed
magnetic field on the top and bottom and periodic boundary condition on the left and
right. The temperature profile is designed so that it is large in the middle and drops
to zero towards the left and right edge. The region where the temperature is high is
nonsuperconducting with zero order parameter and large magnetic field. Vortices form
where the temperature is not too high but not too low. As the temperature profile moves
left to right, vortices to the right of the temperature peak are pushed along. This simulates
how vortices could be expelled from SRF cavities during cooling.

magnetic field. After cooling, the Meissner effect pushes out most of the magnetic flux. Variations

in the cooling process can change how much flux remains trapped [58].

With the new capability to vary temperature over time we explore how temperature waves

influence the movement of magnetic vortices. We use the film geometry. Our simulations start in a

purely superconducting state. We then switch on a spatially periodic temperature gradient and a

magnetic field. Once the system has reached a steady state, we move the temperature gradient from

right to left. We also introduce defects and observe when vortices get pinned despite the moving

temperature wave.

In figure 4.8 we see a temperature wave moving to the left. Where the temperature is high the

order parameter is zero and there is a large magnetic field. Where temperature is low the order

parameter approaches one and the magnetic field is expelled. As the temperature wave moves left to

right two vortices are pushed along with it.
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Figure 4.9 Plot showing how a vertical grain boundary at x = 0 prevents vortices from
moving with the temperature wave. This is due to the vortices inside the grain boundary
repelling the vortices inside the wave.

We simulate how defects affect the movement of vortices during cooling. We add a grain

boundary right in the path of the heat wave. In figure 4.9 we see two vortices on the right of the

grain boundary. They are unable to follow the temperature wave as vortices in the grain boundary

repel them.
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4.6 Conclusion

Generalizing our method to include material-specific parameters enables us to simulate a wide

variety of phenomena of interest to the CBB. Our simulations of islands of deficient Sn showed they

are only detrimental if close to the surface. The AC simulations demonstrate that the frequency of

the applied AC magnetic fields changes Hsh. Finally we’ve shown how vortices can get trapped by

grain boundaries during the process of cooling.

Working with undergraduate students we were able to produce many more simulations than we

could have between Mark and I. We expect at least one publication from these results. We hope this

software will continue as a powerful tool for enable undergraduate students in performing valuable

research.



Chapter 5

Evaluating Hsh Directly From Free Energies

5.1 Motivation

As mentioned in chapter 1, the equations of motion and stability for GL and Eilenberger theory are

computed as first and second variations of a free energy. There are two reasons to evaluate these

variations computationally. The first is that varying parameters on terms with spatial derivatives

usually requires a rederivation of the first variation. We avoid this by computationally evaluating

the extrema.

The second reason is to abstract away complicated details in Eilenberger theory. GL theory

assumes that the system has temperatures close to Tc. This is a major limitation as many applications,

including SRF cavities, operate at low temperatures far from Tc. To obtain qualitatively correct

values for Hsh at low temperatures we must use Eilenberger theory.

Eilenberger theory also has the ability to include information about the Fermi surface. With

high-throughput screening and density functional calculations one could find new superconducting

materials with large Hsh.

50
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5.2 Introduction

For GL theory we define the free energy Ω(A,∆) to be a functional of the magnetic vector potential

A and the complex order parameter ∆. In Eilenberger theory the free energy depends on A, ∆, and

several Green’s functions f , f̄ , and g. We write the first variation as δΩ and the second variation as

δ 2Ω.

For GL theory the variations are fairly straightforward [12, 15, 46]. Eilenberger theory is much

more complicated with dependencies on the Fermi surface, Matsubara frequencies, and Green’s

functions [8, 36, 38]. We abstract away the details of the first and second variations by evaluating

them computationally . Some ways to do this include using a symbolic solver, taking numerical

derivatives using finite differences, or automatic differentiation. The challenge of symbolic solvers

is that it produces very messy formulas. Transcribing these formulas often introduces human error.

The drawback to numerical derivatives is their limited accuracy. Every nested derivative introduces

more numerical error. Automatic differentiation avoids the messiness of symbolic solvers and the

inaccuracies of numerical derivatives. For this reason we use automatic differentiation whenever we

can.

The power of automatic differentiation comes from dual numbers. Dual numbers have the form

a+bε where a and b are real numbers and ε has the property ε2 = 0. Consider the function f (x).

Replace x with a dual number to produce f (x+ε) = f (x)+2ε f ′(x). For example, x2→ (x+ε)2 =

x2 + εx. Any terms with coefficients ε contribute to the first derivative with respect to x. The details

in how to implement this on a computer can be found elsewhere. (See [59].)

We have written our code in Julia and unfortunately some basic libraries are not compatible

with dual numbers. For example, the tools we use for inverting matrices and calculating eigenvalues

are incompatible. When we need to take derivatives of functions that contain these processes we

use finite difference methods. Nonetheless, automatic differentiation is a vital tool for maintaining

accuracy and speed.
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An added benefit to using computational methods to evaluate variations in GL theory is the

ability to include spatial dependence in parameters on terms with spatial derivatives. We are

specifically interested in the effective mass. The effective mass is related to the mean free path [63].

Changing the mean free path in the surface of an SRF cavity may be a way to raise Hsh [64]. In

chapter 4 we added spatial dependence to all the material parameters in GL theory except the

effective mass. This was due to the added complication of the effective mass altering boundary

conditions and the equations of motion. This is automatically taken care of when we evaluate the

variations computationally.

This chapter is organized as follows. In section 5.3 we describe the slab geometry and boundary

conditions of the superconductor. We also discuss the general steps for evaluating the equations of

motion and stability using automatic differentiation. In section 5.4 we describe how this is done

in GL theory. In section 5.5 we show that we can match previous calculations of Hsh and kc in

GL theory. We also show how we can easily include the effective mass and discuss implications

for new SRF cavity materials. In section 5.6 we apply our method to Eilenberger theory. We

describe how the Eilenberger equations relate A and ∆ to the Green’s functions. We linearize the

Eilenberger equations as an approximate solution for small applied fields. We explain how solving

the Eilenberger equations leads to a simplification of the free energy. Finally, we describe the

sensitivity equations and how to use them to evaluate the second variation. In section 5.7 we present

our results for Eilenberger theory. In section 5.8 we conclude the chapter.

5.3 General Problem Set Up

Though the specific details of GL and Eilenberger theory differ the overall process of solving for

the first and second variations is very similar. This section describes the steps that both methods

share as an outline for the sections that follow. In this process we define a geometry and boundary
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conditions, discretize the functions of interest, and describe how to take variations with respect to

the degrees of freedom. This allows us to evaluate the equations of motion and the stability of the

system.

We consider a superconducting slab. Half of space is filled with a superconducting material and

the other half is vacuum. We apply a magnetic field along the surface of the superconductor and

assume there are not any variations along the direction the magnetic field points. By symmetry the

order parameter and magnetic vector potential only vary with the depth into the superconductor [15].

For the Meissner state deep in the superconductor A→ 0 and ∆→ ∆0 (to be defined later). Though

the exact details of the boundary conditions (BCs) at the superconductor/vacuum interface may vary

depending on the theory of interest, they typically involve assuming a fixed applied field ∇×A ∝ Ha

and zero current leaking into vacuum. The second assumption often leads to n̂ ·∇∆ = 0 at the

interface [46]. In Eilenberger theory there are more boundary conditions defining how the Green’s

functions behave.

As we need to be able to enforce Dirchlet and Neumann BCs we choose to discretize A and ∆

using piecewise cubic Hermite interpolating polynomials (PCHIPs) [60]. Notationally we write this

as A(x)→ ∑i Aiφi(x), ∆(x)→ ∑i ∆iφi(x) where φi are the basis functions and Ai,∆i are the degrees

of freedom (DOFs). (In the future we will assume repeated indices are summed.) The domain is

divided into segments. The endpoints of each segment are locations where we solve for the DOFs

(function values and their derivatives). The basis functions interpolate between endpoints. The

advantage of PCHIPs is they maintain continuity up to the second derivative of the function being

interpolated. We apply BCs by directly forcing the respective DOFs to fixed values. For ease of

notation we will define ψ(x) = ψiφi(x) to represent either A or ∆. This notation holds for all of the

following sections. In Eilenberger theory we represent the Green’s functions as η(x) = ηiφi(x).

For many terms in the free energy we can evaluate the spatial integration beforehand as follows

∫
ψ(x)2dx = ψi

∫
φi(x)φ j(x)dxψ j = ψiMi jψ j. (5.1)
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Precompiling these matrices greatly speeds up calculations. Our discretized free energy is now a

function of the DOFs, Ω(ψi).

The next step is to solve for the equations of motion. We want to find for what DOFs δΩ(ψi) =

dψi
dΩ

dψi
= 0. We do this using dual numbers [61] by replacing each ψi with ψi+εδψi where ε2 = 0.

Expanding Ω we get,

Ω(ψi + εδψi) = Ω(ψi)+ εδψi
dΩ(ψi)

dψi
. (5.2)

All terms that are first order in ε contribute to the first variation. The second variation can be taken

by setting ψi→ ψi + εδψi + ε ′δψ ′i and keeping terms of order εε ′. In the future I will assume εs

are implicitly included with each δψi.

Setting the first variation to zero for general δψi is equivalent to finding for what values of ψi

the quantity dΩ(ψi)
dψi

= 0. This is a multidimensional root finding problem. We use a Levenberg-

Marquardt algorithm to solve for what ψi we get dΩ(ψi)
dψi

= 0 [62].

Having solved the first variation we now want to know if our solution is stable. We evaluate the

stability of our system by considering the second variation,

δ
2
Ω(ψi) = δψi

δ 2Ω

δψiδψ j
δψ j. (5.3)

This is the Hessian. Note that in the first variation we never actually evaluate what δψ are. We

know that δψ are small but we don’t know what sort of spatial dependence they have. The exact

form of δ 2Ω

δψiδψ j
depends on assumptions we make about δψ . In general δψ depends on spatial

directions other than depth into the superconductor [15]. By expanding δψ as a Fourier series, the

smallest eigenvalue changes with the wavenumber k. The system may be stable for some values of

k but not others.

We can think of the second variation as a matrix equation. The stability is determined by the

minimum eigenvalue of δ 2Ω

δψiδψ j
. If this eigenvalue is positive then the system is stable. If it is

negative then the system is unstable. The eigenvectors corresponding to the negative eigenvalues
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are the combination of DOFs that lead to the system’s transition to another state (vortex state,

nonsuperconducting state). Varying k one can then find the smallest applied field where the

minimum eigenvalue first crosses zero. This occurs at Hsh and the critical wavenumber kc.

A rough sketch of the process is described below.

1. Define Ω(ψi)|k=0 = Ω0

2. Use dual numbers to evaluate δΩ0.

3. Have solver adjust DOFs to find δΩ0 = 0.

4. Use this as input into Ω(ψi)|k 6=0 = Ωk.

5. Use dual numbers to evaluate δ 2Ωk.

6. Evaluate minimum eigenvalue of δ 2Ωk.

7. Adjust Ha and k until Ha is smallest value that has an eigenvalue slightly above zero.

5.4 Ginzburg-Landau Problem set up

With the general problem set up we next consider how this works for GL theory. Assume the

vacuum/superconductor interface occurs at the x = 0 plane and the magnetic field points in the ẑ

direction. The nondimensionalized GL free energy is defined as

Ω[∆,A] =
∫

x>0
d3r
(
ξ

2(∇∆)2 +
1
2
(1−∆

2)2 +∆
2A2 +(Ha−λ∇×A)2), (5.4)

where ∆ is the order parameter, A is the magnetic vector potential, Ha is the applied magnetic field,

ξ is the coherence length, and λ is the penetration depth [12]. We have chosen a gauge such that the

order parameter is real. Both ∆ and A depend only on x [15]. Assuming Ha = Haẑ we can reduce

A = Ay(x)ŷ.



5.4 Ginzburg-Landau Problem set up 56

We discretize our functions using PCHIPs on a domain from x = 0 to x = L. The free energy

becomes,

Ω(∆i,Ayi) =ξ
2
∆i∆ jD2i j +

1
2
(L−2∗∆i∆ jM2i j +∆i∆ j∆k∆lM4i jkl) (5.5)

+∆i∆ jAykAylM4i jkl +H2
a L−2λHaAyiDi +λ

2AyiAy jD2i j (5.6)

where

M2i j =
∫

x>0
d3rφi(x)φ j(x) (5.7)

M4i jkl =
∫

x>0
d3rφi(x)φ j(x)φk(x)φl(x) (5.8)

Di =
∫

x>0
d3r

dφi(x)
dx

(5.9)

D2i j =
∫

x>0
d3r

dφi(x)
dx

dφ j(x)
dx

. (5.10)

(5.11)

The second variation involves an operator discretized as a matrix acting on δψ [12]. By symme-

try δψ doesn’t depend on z [15]. The y dependence of δψ can be written as a Fourier expansion

where δψ = δψc(x)cos(ky)+δψs(x)sin(ky). In particular δ∆ = δ∆c(x)cos(ky)+δ∆s(x)sin(ky)

and δA = ŷ(δAyc(x)cos(ky)+δAys(x)sin(ky))+ ẑ(δAzc(x)cos(ky)+δAzs(x)sin(ky)). Reinserting

ψ → ψ +δψ into the free energy these terms decouple into two identical groups. This means we

only solve for δ∆c(x),δAyc,δAzs as δ∆c(x) = δ∆s(x) etc. When integrating over y we evaluate the

average value of the free energy over 1 period,
∫ 2π

k
0 dy f (ky) k

2π
. Having Ωk the next step is to use

our algorithm to solve the first variation and evaluate the stability using the second variation.
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5.5 Ginzburg-Landau Results

5.5.1 Matching

Our primary objective in using automatic differentiation with GL theory is to show how well our

calculations match previous work. Though our methodologies differ, the geometry, boundary condi-

tions, and fundamental theory are identical to a different article [12]. By reproducing calculations

of Hsh and kc evaluated previously, we show our method is accurate. In figure 5.1 we compare the

estimated values of Hsh from our new method (red stars) to the previous values (blue line). Note

that we match very well for a range of values of κ .

Similarly in figure 5.2 our values for kc line up well with previous calculations. We hypothesize

the deviation at higher values of κ is due to the need to refine grid spacing for larger κ .

5.5.2 Spatially Varying Effective Mass

Our secondary objective in using automatic differentiation is to explore how spatially varying mass

influences Hsh. As mentioned in chapter 4, generalizing parameters on terms with spatial derivatives

can lead to changes in the equations of motion and boundary conditions. One benefit of the methods

in this chapter is the ability to solve the equations of motion without working out the details of the

first variation. We can add spatial variations to any parameters without altering the algorithm. This

allows us to include a spatially varying effective mass.

We nondimensionalize the GL free energy so that the parameter m(r) represents deviations

away from the bulk value of the effective mass. We define m(r) to be some value m0 on the surface

and have m(r) linearly approach one at some x0 as shown in figure 5.3. In figure 5.4 we calculate

the ratio of Hsh with varying effective mass to Hsh with an effective mass of 1. As the ratio of

the new effective mass over the old effective mass increases Hsh increases. This suggests that if

accelerator scientists could recreate this effective mass profile then theoretically they could reach
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Figure 5.1 Comparison of calculated values of Hsh directly solving the equations of motion
and stability conditions (blue line) vs. values evaluated using automatic differentiation
(red stars). The new results match the old results very nicely. We only compared a few
values before moving on to Eilenberger theory.
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Figure 5.2 Comparison of previously calculated values of kc (blue line) vs. values
evaluated using automatic differentiation (red stars). The new results don’t match the old
as well as Hsh possibly due to the need for finer grid spacing for larger κ .
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Figure 5.3 Plot of the ratio of the new effective mass over the effective mass for the
bulk material. We simulate a superconductor/vacuum interface at z = 0. Theoretically the
surface of a superconductor could be doped with impurities to raise the effective mass.
Deep inside the superconductor the ratio of the effective masses approach one.

higher magnetic fields.
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Figure 5.4 Plot of Hsh dependence on varying effective mass. me is the base mass value
and meff is the new effective mass. The ratio Hsh(meff)

Hsh(me)
increases as meff increases. This

suggests that a doped surface layer that increases the effective mass could be used to raise
Hsh.
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5.6 Eilenberger Problem set up

5.6.1 Free Energy

The Eilenberger free energy is fairly complicated [36]. Written out it is,

Ω =ν

∫
d3r
{

κ2
0

3
[H−Ha]

2 + |∆|2 log
(

T
Tc

)
(5.12)

+
∫
(dn)

[ |∆|2
ωn
−∆

† f − f̄ ∆−2ωn(g−1) (5.13)

−gn
(

∇ log
f
f̄
−2iA

)]}
. (5.14)

We have the order parameter ∆, magnetic vector potential A, applied magnetic field Ha and

interior field H = ∇×A. Unlike Ginzburg-Landau theory we can now include dependence on the

temperature T . Several physical constants include the critical temperature Tc, the density of states

at the Fermi energy ν , and the analogous Ginzburg-Landau parameter at zero temperature κ0. We

have a dependence on several Green’s functions f , f̄ and g. These are functions of ∆ and A. The

way they relate to each other is determined by the first variation. The quantities ωn = 2πT (n+ 1
2)

are the Matsubara frequencies. The outer integral is evaluated for all space and the second integral

is shorthand for
∫
(dn) = 2πT ∑n

∫
ρ(n)dn where n goes from 0 to ∞ and dn = sin(θ)dθdφ . We

will assume ρ(n) = 1
4π

. We could generalize this to include a dependence on the Fermi surface but

this is outside of the current scope. We will also set ν to 1 for convenience.

5.6.2 Geometry

Once again we consider slab geometry. This time we define the slab/vacuum interface to be

at the z = 0 plane. We assume all quantities depend only on z (except the perturbations δψ).

The applied field lies in the x̂ direction. We assume the magnetic vector potential has the form

Ay(z)ŷ such that ∇×A = −A′y = Ha at z = 0. Assuming the material is a clean superconductor

we can also assume spectral boundary conditions on the Green’s functions. This means that
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f (ω,n,z = 0) = f (ω,m,z = 0) where m = n− 2(n · ẑ)ẑ. (In other words mx = nx, my = ny, and

mz =−nz.)

5.6.3 First Variation

The first and second variations of Eilenberger theory are a little different from GL theory. The

correct extrema of the Eilenberger free energy are not found by taking variations with respect to ∆,

A and the Green’s functions simultaneously [8]. Instead, following Eilenberger, we take variations

with respect to ∆ and A and set this to zero to derive the self consistent equations. Similarly, we

take variations with respect to the Green’s functions and set this to zero to derive the Eilenberger

equations.

Because of this it is easier to split these functions into two groups. Let ψ be either ∆ or A and

let η be any of the Green’s functions. Assuming δΩ

δψ
= 0 and δΩ

δη
= 0 we get,

δΩ = δψ
δΩ

δψ
+δη

δΩ

δη
(5.15)

= δψ0+δη0 = 0. (5.16)

To fit this into our algorithm we directly solve δΩ

δη
= 0 for fixed ψ , treating η as a function of ψ .

When we discretize the problem we solve for the degrees of freedom ψi and ηi.

Solving the Eilenberger equations reduces the number of terms needed in the free energy to

solve for ψ . To see why, we split the free energy Ω into 3 parts, Ω1(ψ),Ω2(ψ,η), and Ω3(η). Let

Ω′ = Ω1 +Ω2 and Ω′′ = Ω2 +Ω3. We first solve δΩ′′
δη

= 0 using the Eilenberger equations. Next

we need to solve for δΩ′
δψ

= 0 using automatic differentiation. As Ω′ has no dependence on Ω3 we

can ignore those terms when evaluating the free energy.

This greatly reduces the computational work required to evaluate the free energy. It is impossible

to evaluate ∇ log( f
f̄ ) with precompiled matrices. Thankfully these terms don’t contribute to Ω′ and

so we can ignore them.
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When taking the first variation we first calculate ηi from ψi. We don’t evaluate ηi with ψi +δψi

because those terms get eliminated in the Eilenberger equations. After evaluating ηi we evaluate the

free energy terms with ψi +δψi. We numerically solve for when the first variation with respect to

ψi is zero.

The Eilenberger equations are described in the next section. As a reference we include the

self consistent equations below. We never directly solve them except when considering boundary

conditions. The self consistent equation for the order parameter and magnetic vector potential are,

∆ log
T
Tc

+2πT ∑
n

[∆

ω
−
∫

dnρ(n) fn
]
= 0 (5.17)

∇×H+
i2πT

κ2
0

∑
n

∫
3gn ·dn = 0. (5.18)

5.6.4 Eilenberger equations

The origin and need to solve the Eilenberger equations is described in the previous section. Here we

explain how we solve them. In this section we need to differentiate between A and ∆ as well as

between the Green’s functions so we drop the ψ and η notation temporarily. We treat the Green’s

functions as functions of A and ∆. In general the Eilenberger equations are

{ω +n · [∇− iA(r)]} f (ω,n,r) = ∆(r)g(ω,n,r) (5.19)

{ω−n · [∇+ iA(r)]} f̄ (ω,n,r) = ∆
†(r)g(ω,n,r) (5.20)

g2 + f f̄ = 1 (5.21)

but for our geometry it reduces to

ωn fn +nz
∂

∂ z
fn− iAyny fn = ∆gn (5.22)

ωn f̄n−nz
∂

∂ z
f̄n− iAyny f̄n = ∆gn (5.23)

2nz
∂

∂ z
gn = ∆ fn−∆ f̄n (5.24)
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where we have taken the gradient of the last equation and assumed ∆ is real. The subscript n

indicates we are considering the nth Matsubara frequency.

Next we need to consider boundary conditions. Spectral boundary conditions at z = 0 mean

the solutions to these equations are equivalent to the equations made by replacing nz with −nz as

follows,

ωn fn−nz
∂

∂ z
fn− iAyny fn = ∆gn (5.25)

ωn f̄n +nz
∂

∂ z
f̄n− iAyny f̄n = ∆gn (5.26)

2nz
∂

∂ z
gn =−∆ fn +∆ f̄n. (5.27)

Note that these new equations could also be made by swapping fn↔ f̄n. This means that at z = 0

fn = f̄n.

To enforce these boundary conditions it’s easier to consider S = fn+ f̄n and D = fn− f̄n. Taking

the sum and difference of the first two Eilenberger equations produces new equations for S and D as

follows,

ωS+nz
∂

∂ z
D− iAynyS = 2∆gn (5.28)

ωD+nz
∂

∂ z
S− iAynyD = 0 (5.29)

2nz
∂

∂ z
gn = ∆D. (5.30)

Enforcing spectral boundary conditions is simply D(0) = 0.

The other set of boundary conditions to consider are what happens deep inside the superconduc-

tor. Deep inside we assume a purely superconducting state. There are no physical variations here so
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we can assume η is smooth and A→ 0. The Eilenberger equations greatly simplify as,

ω fn = ∆gn (5.31)

ω f̄n = ∆
†gn = ∆gn (5.32)

=⇒ fn = f̄n (5.33)

g2
n + f 2

n = 1 (5.34)

=⇒ gn =
√

1− f 2
n (5.35)

=⇒ ω fn = ∆

√
1− f 2

n (5.36)

=⇒ fn =
∆√

ω2 +∆2
. (5.37)

To find ∆ we have to consider the self consistent equation, We assume everything is smooth

such that ρ(n) = 1
4π

the n dependence drops and we get

∆ log
T
Tc

+2πT ∑
n

[∆

ω
− fn

]
= 0 (5.38)

=⇒ ∆ log
T
Tc

+2πT ∑
n

[∆

ω
− ∆√

ω2 +∆2

]
= 0 (5.39)

=⇒ log
T
Tc

+2πT ∑
n

[ 1
ω
− 1√

ω2 +∆2

]
= 0. (5.40)

This is a transcendental equation that tells us how to calculate ∆ deep within the superconductor

Once ∆ is found the other quantities deep in the superconductor are given as,

fn =
∆√

ω2 +∆2
(5.41)

gn =
ω√

ω2 +∆2
(5.42)

This converts to

S =
2∆√

ω2 +∆2
(5.43)

D = 0 (5.44)

gn =
ω√

ω2 +∆2
(5.45)
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Similar to the GL case we discretize this by assuming ψ = ψiφi(z), ηiφi(z) where φi(z) are

PCHIPs. We project the Eilenberger equations onto the φi(z) basis. This turns the Eilenberger

equations into a matrix equation.



nzDMi j ωMi j− inyAMi j 0

ωMi j− inyAi j nzDMi j −2∆Mi j

0 −∆Mi j 2nzDMi j



·




S j

D j

g j




= 0

where

Mi j =
∫

z>0
d3rφi(z)φ j(z) (5.46)

DMi j =
∫

z>0
d3rφi(z)

dφ j(z)
dz

(5.47)

Ai j =
∫

z>0
d3rφi(z)φ j(z)φk(z)Ayk (5.48)

∆Mi j =
∫

z>0
d3rφi(z)φ j(z)φk(z)∆k. (5.49)

We enforce boundary conditions by removing DOFs that we know from the left hand side of this

equation and subtracting them on the right hand side. Given A and ∆ we solve this matrix equation

to find f , f̄ , g. This is required before we can take the computational variations with respect to A

and ∆. (See subsection 5.6.3).

5.6.5 Integrating Over the Fermi Sphere

The previous subsection showed how to calculate η for a given Matsubara frequency and a single

point on the Fermi surface. (Once again η is a substitute for f , f̄ , and g). The free energy depends

on an infinite sum of Matsubara frequencies and the entire Fermi surface. The sum over Matsubara

frequencies can be truncated for large n. The next step is to discretize the integral over the Fermi

surface.
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Consider the integral
∫

η(θ ,φ)sin(θ)dθdφ . We discretize this integration following ref. [65].

The author breaks the integral up into a sum,

∫
η(θ ,φ)sin(θ)dθdφ =

π

m

2m

∑
j=1

m

∑
i=1

wiη(θi,φ j) (5.50)

where θi are chosen such that cos(θi) are the points and wi are the weights of a Gauss-Legendre

quadrature. In general this sum considers the entire Fermi sphere.

Thankfully our system exhibits lots of symmetries that reduce the integration over the whole

Fermi sphere to a single octant. We’ve already seen that nz↔−nz is equivalent to fn↔ f̄n leading

to fn(nz) = f̄n(−nz). One can also show that ny↔−ny is equivalent to η ↔ η∗ where the star

indicates the complex conjugate. There is no dependence on nx so nx↔−nx means η(nx) =η(−nx).

Table 5.1 shows how η gets mapped between octants and also shows convenient combinations of

Green’s functions that often lead to cancellations in the free energy.

5.6.6 Linearized Equations

We check the accuracy of our evaluated η by considering the linearized Eilenberger equations. This

holds if we consider a very small applied field. Assume all quantities in the purely superconducting

state are perturbed by a small amount, ∆→ ∆0 + δ∆(z), A→ δA, f → f0 + δ f (z), etc. Any

products of δ quantities can be ignored as too small. This simplifies the Eilenberger equations and
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θ\φ 0− π

2
π

2 −π π− 3π

2
3π

2 −2π

0− π

2 nz,ny, f , f̄ ,g nz,ny, f , f̄ ,g nz,−ny, f ∗, f̄ ∗,g∗ nz,−ny, f ∗, f̄ ∗,g∗

−∆ f −∆ f̄ −∆ f −∆ f̄ −∆ f ∗−∆ f̄ ∗ −∆ f ∗−∆ f̄ ∗

−gnz
∇ f

f +gnz
∇ f̄

f̄ −gnz
∇ f

f +gnz
∇ f̄

f̄ −g∗nz
∇ f ∗

f ∗ +g∗nz
∇ f̄ ∗

f̄ ∗ −g∗nz
∇ f ∗

f ∗ +g∗nz
∇ f̄ ∗

f̄ ∗

2ignyAy 2ignyAy −2ig∗nyAy −2ig∗nyAy

π

2 −π −nz,ny, f̄ , f ,g −nz,ny, f̄ , f ,g −nz,−ny, f̄ ∗, f ∗,g∗ −nz,−ny, f̄ ∗, f ∗,g∗

−∆ f̄ −∆ f −∆ f̄ −∆ f −∆ f̄ ∗−∆ f ∗ −∆ f̄ ∗−∆ f ∗

gnz
∇ f̄

f̄ −gnz
∇ f

f gnz
∇ f̄

f̄ −gnz
∇ f

f g∗nz
∇ f̄ ∗

f̄ ∗ −g∗nz
∇ f ∗

f ∗ g∗nz
∇ f̄ ∗

f̄ ∗ −g∗nz
∇ f ∗

f ∗

2ignyAy 2ignyAy −2ig∗nyAy −2ig∗nyAy

Table 5.1 Table showing how the Eilenberger Green’s functions get mapped over the
octants of the Fermi surface. These Green’s functions are found by solving the Eilenberger
equations. Assuming a slab geometry and a clean superconductor the Eilenberger equations
exhibit many symmetries. These symmetries allow us to reduce the number of octants we
integrate over by up to a factor of 8.
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self consistent equations as shown below,

ω f0 +ωδ f +nz∇δ f − inyδA f0 = δ∆g0 +∆0δg+∆0g0 (5.51)

=⇒ ωδ f +nz∇δ f − inyδA f0 = δ∆g0 +∆0δg (5.52)

ω f̄0 +ωδ f̄ −nz∇δ f̄ − inyδA f̄0 = δ∆g0 +∆0δg+∆0g0 (5.53)

=⇒ ωδ f̄ −nz∇δ f̄ − inyδA f̄0 = δ∆g0 +∆0δg (5.54)

2nz∇δg = ∆0( f0 +δ f − f̄0−δ f̄ )+δ∆( f0− f̄0) (5.55)

=⇒ 2nz∇δg = ∆0(δ f −δ f̄ ) (5.56)

δ∆ log(
T
Tc
)+2πT ∑

n
(
δ∆

ω
−
∫

dn
1

4π
δ f ) = 0 (5.57)

−κ2
0

3
δA′′+2πT ∑

n

∫ dn
4π

nyiδg = 0. (5.58)

Let’s make a further simplifying assumption. Assume we apply a very small magnetic field

and assume the magnetic potential vector has the form Ay = A0 exp(−z/λ ) where A0 = Haλ .

Assume that ∆ remains a constant, δ∆ = 0. Assume that the Green’s functions have the form

f = fr0 + fr1 exp(−z/λ )+ i fi1 exp(−z/λ ) where fr1 and fi1 are small numbers such that terms

with the product of themselves or A0 can be ignored. Assume similar arguments for f̄ and g. Note

that fr0 is the value of f as z→ ∞. So fr0 = f̄r0 =
∆

ω2
n+∆2 , and similarly gr0 =

ωn
ω2

n+∆2 . This means

that ωn fr0−∆gr0 = 0.

Substituting this into the Eilenberger equations we get six equations for the real and imaginary
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parts of η ,

ω fr1−nz fr1/λ = ∆gr1 (5.59)

ω fi1−nz fi1/λ −nyA0 fr0 = ∆gi1 (5.60)

ω f̄r1 +nz f̄r1/λ = ∆gr1 (5.61)

ω f̄i1 +nz f̄i1/λ −nyA0 f̄r0 = ∆gi1 (5.62)

−2nzgr1/λ = ∆( fr1− f̄r1) (5.63)

−2nzgi1/λ = ∆( fi1− f̄i1). (5.64)

Solving the six linearized Eilenberger equations we find,

fr1 = 0 (5.65)

fi1 =
Hany∆λ 2(nz +λω)√

∆2 +ω2(−n2
z +λ 2(∆2 +ω2))

(5.66)

f̄r1 = 0.0 (5.67)

f̄i1 =
Hany∆λ 2(−nz +λω)√

∆2 +ω2(−n2
z +λ 2(∆2 +ω2))

(5.68)

gr1 = 0 (5.69)

gi1 =−
Hany∆2λ 3

√
∆2 +ω2(−n2

z +λ 2(∆2 +ω2))
(5.70)

There are two unknowns left, λ and ∆. Both can be found using the self consistent equations.

We saw how this worked previously with ∆. For λ we need to consider the self consistent equation

for A. Plugging in our simplified A and g we get,

−κ0
3

Ha

λ
− 4πT

m ∑
n,i, j

ny,i, jgi1,n,i, j = 0. (5.71)

where we have included notation indicating a sum over Matsubara frequencies and angles. We can

plug in gi1 and solve the transcendental equation to find λ . With λ and δ we have all we need to

evaluate our linearized η .
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5.6.7 Second variation

Up till now we’ve described the steps necessary to evaluate the first variation. Now we explain

how to solve the second variation. The second variation depends on ψ , η , δψ , and δη . We treat

δη as functions of ψ , η , and δψ . The equations used to calculated δη are derived by replacing

ψ → ψ +δψ and η +δη in the Eilenberger equations as given below,

(ω +n · (∇− iŷAy))δ f −∆δg = i f n ·δA+gδ∆ (5.72)

(ω−n · (∇+ iŷAy))δ f̄ −∆δg = i f̄ n ·δA+gδ∆ (5.73)

2n ·∇δg−∆δ f +∆δ f̄ = f δ∆− f̄ δ∆. (5.74)

These are the sensitivity equations and can be solved in a manner similar to the Eilenberger equations.

Note that the terms in the right hand side make it so that in general the sensitivities do not share the

same symmetries on the Fermi surface as the Eilenberger equations.

Solving the sensitivity equations reduces the terms needed in the free energy to solve for the

Hessian. We saw before that solving the Eilenberger equations is the same as setting δΩ′′
δη

= 0

Similarly solving the sensitivity equations is setting δ
δΩ′′
δη

= δψ
δ 2Ω′′
δηδψ

+δη
δ 2Ω′′
δη2 = 0. If we expand

out the whole second variation we get,

δ
2
Ω = δ

2
Ω
′+δ

2
Ω
′′ (5.75)

= δ
2
Ω
′+0 (5.76)

= δψ
2 δ 2Ω1

δψ2 +δψδη
δ 2Ω2

δηδψ
. (5.77)

(By inspection of Ω it’s clear that variations of Ω2 are zero except for δψδη .)

Similar to the GL case the form of δψ and δη can be treated as a Fourier series expansion

with y dependence. We define δ∆ = δ∆c(z)cos(ky)+δ∆s(z)sin(ky) and δA = ŷ(δAyc(z)cos(ky)+

δAys(z)sin(ky))+ ẑ(δAzc(z)cos(ky)+δAzs(z)sin(ky)). Similarly δη = δηc(z)cos(ky)

+δηs(z)sin(ky) This time Ayc,Azs, and ∆c may not decouple from Ays,Azc, and ∆s due to interactions
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with δηc and δηs. The details for evaluating the Hessian are very similar to what we do for GL

theory.

5.7 Eilenberger Results

5.7.1 Convergence of Constants

One challenge of Eilenberger theory is figuring out if for a given temperature the solutions are

evaluated at the correct number of Matsubara frequencies and points on the Fermi surface. We

described in section 5.6.4 how to evaluate the value of ∆(z) deep inside the superconductor from an

infinite sum of Matsubara frequencies. We call this ∆T . In practice we must truncate this sum for

an approximate value of ∆T . This means ∆T is a function of the number of Matsubara frequencies

used, Nω . We define the error of ∆T to be |∆T (Nω)−∆T (Nω−1)|. In figure 5.5 we show how

this error drops as the number of Matsubara frequencies increases. This calculation is done at

t = T
Tc
= 0.95.

The number of Matsubara frequencies required to reach a given accuracy depends on temperature.

Figure 5.6 shows the number of Matsubara frequencies needed to achieve an error under 10−8. Note

that Nω increases very quickly at low temperatures.

We discussed how to evaluate the penetration depth λ in section 5.6.6. This quantity depends

on Nω , the temperature, and κ0. For our formulation length is measured in ξ0, the coherence length

at zero temperature. For this reason if κ0 varies, only λ and λ0 vary. For now we assume κ0 = 1.

The penetration depth also depends on m, the number of points used in each octant to evaluate the

integral over the Fermi surface. We call the approximated penetration depth λT . Similar to ∆T ,

using many Matsubara frequencies reduces the error. Increasing m also changes the value of λT in

a way that converges at large m. To see this we increase Nω until λT stops varying by 10−8. We

then increase m until λT once again stops varying significantly. In figure 5.7 we see how raising m
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Figure 5.5 Plot of the log10 error of ∆T as the number of Matsubara frequencies used to
evaluate it increases. ∆T is the value of the order parameter deep inside the superconductor.
In theory this requires summing over all Matsubara frequencies. Truncating the sum
introduces error which we define as |∆T (Nω)−∆T (Nω−1)|. We see that as the number
of Matsubara frequencies increases the error decreases.
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Figure 5.6 Plot showing the number of Matsubara frequencies required to reduce the error
of ∆T below 10−8 as temperature varies. Note the sharp increase of Nω for small T

Tc
.
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Figure 5.7 Define m as the number of points used to integrate the Fermi surface. We plot
the decrease in error of the penetration depth λT as m increases. This is calculated at
t = T

Tc
= 0.1.

reduces the error. Note that we double m due to the way we take advantage of symmetries when

integrating over the Fermi surface. This calculation was done at t = 0.1.

The calculation of ∆T was done previously by another author [38]. Our methods are identical for

∆T , but our approach to evaluating λT differs. The previous work uses the definition λ =−Ay(0)
A′y(0)

.

The values of Ay(0) were found by directly solving the Eilenberger equations and self consistent

equations at low magnetic fields. In figure 5.8 we compare our new calculations with the old. We

have the same qualitative behavior of λT . It increases with temperature and approaches one at t = 0.

We set m = 16 and varied Nω to ensure our values were converged with errors below 10−9. Other

quantities like the critical magnetic field, coherence length, and κ for general temperatures can be

calculated from ∆T and λT [38].
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Figure 5.8 Comparison of estimated values of the penetration depth λT with our approach
solving the linearized Eilenberger equations and a former approach defining λ =− A(0)

A′y(0)
[38]. The qualitative behavior between the old and new results are the same. As t → 0,
λ → 1 and as t gets larger so does λ . We set m = 16 and varied Nω to ensure our values
were converged. We also have κ0 = 1 with length measured in ξ0.
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5.7.2 Solutions of Variations

Though we’ve shown that Nω and m play a large role in determining convergence of our solutions,

it is convenient to start with small Nω and m and worry about running large scale simulations once

we’ve convinced ourselves everything is working. In the following results we assume T = 0.95Tc,

Nω = 1, and m = 2 unless otherwise stated.

First we confirm our calculations of the Green’s functions match our linearized formulation.

In figure 5.9 we plot the imaginary parts η for Ha = 10−5. We do not plot the real parts as they

are close to zero as expected. We can see that the estimated values follow our full calculation of

η nicely. The deviations between the functions appear to be concentrated where we can’t enforce

boundary conditions for the linearized estimates.

At larger applied fields the real parts of η become nontrivial. In figure 5.10 we see the real parts

of g and in figure 5.11 we see the real parts of f and f̄ . In figure 5.12 we see the imaginary parts of

η are larger applied fields. Notice that f = f̄ at z = 0 showing we are enforcing spectral boundary

conditions.

Next we look at solutions of the first variations. In figure 5.13 we see ∆. Note how it drops off

only at the surface. In figure 5.14 we see Ay. Deep in the superconductor Ay = 0 as expected.

Finally we give an example of how our estimates of Hsh compare to GL theory. GL theory is

valid for temperatures close to Tc. Near Tc the penetration depth and coherence length diverge in

Eilenberger theory. We must extrapolate the value of κ(T ) and Hsh in Eilenberger theory as T → Tc

or t = 1. In figure 5.15 we show how we extrapolate our values of Hsh to t = 1. The absolute

difference between the GL value and the EI value is 0.0140.
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Figure 5.9 Plot of the imaginary parts of the Eilenberger Green’s functions along with the
estimated values found using the linearized Eilenberger equations for Ha = 10−5. There
is not a lot of literature with which to compare our evaluations of the Green’s functions.
For this reason it is beneficial to check that our results match approximate solutions at low
applied fields. The full solutions match the approximated linearized solution very well
except at z = 0. This is because we do not enforce spectral boundary conditions in the
linear approximation. The real parts of the Green’s functions are close to zero and so we
do not plot them.
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Figure 5.10 Plot of the real part of g. As expected deep inside the superconductor g
approaches a constant value. Near the surface the magnetic field pulls g away from that
constant value.
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Figure 5.11 Plot of the real part of f and f̄ . Similar to g, these functions approach a
constant value deep inside the superconductor. Note that at z = 0 we find that f = f̄ ,
indicating spectral boundary conditions are correctly being enforced.
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Figure 5.12 Plot of the imaginary part of all the Green’s functions. These functions
approach zero deep inside the superconductor at zero. We also observe that spectral
boundary conditions are met for f and f̄ .
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Figure 5.13 Plot of the order parameter. The order parameter drops near the surface
indicating a reduction in superconducting electrons. Deep inside the order parameter
approaches a constant value, ∆T .
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Figure 5.14 Plot of the magnetic vector potential. Near the surface the magnetic vector
potential is large due to the influence of the magnetic field. We see the Meissner effect as
the magnetic vector potential drops to zero deep inside the superconductor.
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Figure 5.15 Plot of our fit of Hsh as t = T
Tc
= 1. Both the penetration depth and coherence

length diverge at t = 1 requiring us to extrapolate both κ(T ) and Hsh(T ). In this fit we
miss the true value by 0.0140.
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5.8 Conclusion

It is clear that the Eilenberger equations are much more complicated than the TDGL equations.

Using precompiled matrices, taking advantage of symmetries, and parallelizing the code is necessary

to reduce the time to evaluate the first and second variations. We’ve also seen how many terms in

the free energy can be ignored after the Eilenberger equations and sensitivity equations are solved

for.

We tested convergence for the order parameter and penetration depth. To reach an accuracy of

10−8 requires hundreds of Matsubara frequencies and 16 points on each octant of the Fermi surface.

This makes creating qualitatively accurate calculations a daunting task.

To verify if our evaluation of the Green’s functions is correct we compared our solutions to the

linearized Eilenberger equations at low applied fields. We saw that the estimates closely matched

the actual Green’s functions except where we could not enforce boundary conditions. We also

observed that our calculations of ∆ and A match physical behaviors in superconductors.

We’ve shown that we are successfully able to evaluate the Eilenberger Green’s functions and have

compared them to the solutions for the linearized Eilenberger equations. We have also successfully

evaluated the order parameter and magnetic vector potential and seen that they match physical

expectations.

Finally we showed where our current calculations of Hsh in Eilenberger theory compares to GL

theory. The next step would be a long task of running simulations at lower temperatures. This is

tedious and with a little work could be formulated as an undergraduate student project.



Chapter 6

Conclusion

In this dissertation I presented a formulation of the time-dependent Ginzburg-Landau equations that

flexibly captures a diverse set of inhomogeneities. Some defects we explored are surface roughness,

grain boundaries, and islands of Sn deficiency. Using bifurcation theory, we calculated Hsh with

all of these defects, and also captured the underlying mode that causes the transition from the

Meissner state to the vortex state. We showed how this provides insight to a large community of

scientists seeking to develop new SRF cavities made from Nb3Sn. Besides defects, we simulated

the performance of superconducting films in AC magnetic fields. We also showed cooling can lead

to expulsion of trapped magnetic flux.

We provided an alternative method for evaluating the equations of motion and stability of

Ginzburg-Landau and Eilenberger theory. By using automatic differentiation we automated the

process of evaluating the first and second variation of the free energies. We first applied this to

GL theory and showed that we could match previous calculations of Hsh and kc. We also showed

how adding spatial dependence to the effective mass changes Hsh. We repeated the process for

Eilenberger theory. Much of our efforts in Eilenberger theory centered on creating efficient, simple

procedures to minimize the risk of human error and speed up numerical calculations. We’ve

done so by recognizing we can drop some terms of the free energy after solving the sensitivity

87
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equations and Eilenbeger equations. We also exploited symmetries of the Eilenberger equations,

and used preintegration matrices. By linearizing the Eilenberger equations we showed that our full

calculations of the Green’s functions are accurate. We have calculated the order parameter and

magnetic vector potential. Finally, we’ve shown that we can roughly extrapolate the values of Hsh

in Eilenberger theory to the values in GL theory.

6.1 Limitations

One limitation to GL theory is that it is not quantitatively valid at temperatures far from Tc. Despite

this fact, we still observe correct qualitative behavior. We can still run simulations and acquire a

rough idea of how defects, AC fields, and temperature waves impact superconductivity.

Both Eilenberger theory and GL theory fail to capture strong coupling between phonons and

electrons. This requires more complicated theories like Eliashberg theory.

6.2 Possible Extensions

Advances in SRF materials and technology will continuously motivate new simulations. Some

simulations that could be run in the future are,

1. Varying temperature gradients to observe when they are first capable of moving vortices off

pinning sites.

2. Creating a phase diagram of all the different AC magnetic field behaviors.

3. Directly implementing the effective mass into the GL formulation.

4. Simulating Josephson junctions.
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The obvious extension of Eilenberger theory is to evaluate Hsh and kc at a wide range of

temperatures. This would require calculations with lots of Matsubara frequencies. Another extension

is to consider generalized Fermi surfaces evaluated from density functional theory. As the foundation

for this work has been set, we consider this ready to hand off as another project.

Nb3Sn is a strongly coupled superconductor. Using Eliashberg theory, one could include strong

coupling effects. This would require a reformulation similar to what we’ve done with Eilenberger

theory in this thesis.

6.3 In Summary

Computational methods allow us to explore physics in superconductors that is difficult to measure

and hard to study with pen and paper. As our collaborators imaged new defects we’ve adjusted

our simulations to match them. Working together as a team we’ve produced not only data, but an

underlying theory to explain it.

By recruiting undergraduate students, this work will continue to live past my time at BYU.

Some students have already taken the code I wrote beyond what I initially had envisioned. The code

for both the work on GL theory and Eilenberger theory is now kept and maintained on a GitLab

repository managed by my advisor. I hope that as the Center for Bright Beams continues to find

new questions that this work can be adapted to find new answers.



Appendix A

Nondimensionalization of TDGL

The following derivation was taken from Aiden Harbick’s 2019 Summer Report. Used with

permission.

A.1 Nondimensionalizing the Ginzburg-Landau Equations

A.1.1 Initial Equations and Useful Values

We will first nondimensionalize the time independent Ginzburg-Landau equations, listed below (it

should be noted that this section of the appendix is closely related to work done in [46] and [49]):

1
2ms

(
−ih̄∇− es

c
A
)2

ψ +αψ +β |ψ|2ψ = 0 in the domain (A.1)

∇×∇×A− 2πiesh̄
msc

(ψ∗∇ψ−ψ∇ψ
∗)− 4πe2

s
msc2 |ψ|

2A = 0 in the domain (A.2)
(

ih̄∇ψ +
es

c
Aψ

)
·n = 0 on the boundary (A.3)

(∇×A)×n = H×n on the boundary (A.4)

To nondimensionalize these equations, we first start by getting a few useful constants from these

equations. The coherence length, ξ , can be found by looking at equation A.1, and letting A = 0
90
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(and thus ψ will be real):

∇
2
ψ +

1
ξ 2

(
ψ +

β

α
ψ

3
)
= 0 (A.5)

Where ξ 2 = −h̄2

2msα
. The coherence length is the length scale for the variance of ψ .

The penetration depth, λ , can be found by looking at equation A.2 and considering the mate-

rial to be perfectly superconducting, i.e. ψ = ψ0 =
(
−α

β

) 1
2 , this makes the second term in the

equation go to 0 and we get:

∇×∇×A+
1

λ 2 A = 0 (A.6)

Where λ 2 = msc2

4πe2
s |ψ0|2 =

−βmsc2

4πe2
s α

. The penetration depth is a length scale for how deep magnetic field

is able to penetrate into a superconducting material.

We now have the well known Ginzburg-Landau parameter, κ = λ

ξ
=
√

β

2π

msc
esh̄

. The material’s

critical field, Hc =
4πα2

β
also becomes a useful constant later.

A.1.2 Nondimensionalization

To nondimensionalize the GL equations, we make a number of coordinate transformations: x = λx′

(and therefore ∇ = 1
λ

∇′), A =
√

2HcλA′, and ψ =
√
−α

β
ψ ′. Doing this to equation A.1:

1
2ms

(
−ih̄
λ

∇
′−
√

2Hcλes

c
A′
)2√−α

β
ψ
′+α

√−α

β
ψ
′+β

√−α

β

3

|ψ ′|2ψ
′ = 0 (A.7)

Dropping the primes and dividing by α

√
−α

β
gives:

1
2msα

(
−ih̄
λ

∇−
√

2Hcλes

c
A

)2

ψ +ψ−|ψ|2ψ = 0 (A.8)

If we bring the 1
2msα

into the parentheses of the first term (square rooting it of course), and expand

out the λ s and Hc, you will see that the term in front of A goes to 1, and the term in front of the ∇
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goes to −i
κ

, so the final equation is:

(−i
κ

∇−A
)2

ψ +ψ−|ψ|2ψ = 0 (A.9)

If we make the same transformations for equation A.2, we get the following:
√

2Hc

λ
∇×∇×A′+

2πiesh̄α

mscλβ

(
ψ ′∗∇′ψ ′−ψ

′
∇
′
ψ ′∗
)
+

4πe2
s α

msc2β
|ψ ′|2
√

2HcλA′ = 0 (A.10)

Once again dropping the primes and then multiplying by λ√
2Hc

gives:

∇×∇×A+
2πiesh̄α

msc
√

2Hcβ
(ψ∗∇ψ−ψ∇ψ

∗)+
4πe2

s αλ 2

msc2β
|ψ|2A = 0 (A.11)

Expanding Hc and λ again makes the coefficients in front of the second term reduce to i
2κ

, and the

terms in front of |ψ|2A reduce to 1:

∇×∇×A+
i

2κ
(ψ∗∇ψ−ψ∇ψ

∗)+ |ψ|2A = 0 (A.12)

For the first boundary condition, it follows the same process as for the first term in equation A.9,

and doing the transformations for the last boundary equation, there will be
√

2Hc in front of both

terms, which cancel, so the final nondimensionalized equations are:

(−i
κ

∇−A
)2

ψ +ψ−|ψ|2ψ = 0 (A.13)

∇×∇×A+
i

2κ
(ψ∗∇ψ−ψ∇ψ

∗)+ |ψ|2A = 0 (A.14)
(

i
κ

∇ψ +Aψ

)
·n = 0 (A.15)

(∇×A)×n = H×n (A.16)

A.1.3 α and β Spacial Dependence

Now we want to let α and β vary with space, this can represent different materials, or material

defects. To do this, we make the transformations α = α0a(r) and β = β0b(r), where α0 and β0 are
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constant reference values with the same units as α and β , and a and b are dimensionless functions

of position. Returning to our definitions of ξ and λ , we see that setting A = 0 in equation A.1 and

collecting terms gives:

∇
2
ψ +

1
ξ 2

0

(
aψ +

β0

α0
bψ

3
)
= 0 (A.17)

Where ξ 2
0 = −h̄2

2msα0
. To find the other length scale we once again let the material be perfectly

superconducting, but this time in terms of the reference α and β ; ψ = ψ0 =
(
−α0
β0

) 1
2 , this makes

equation A.2 go to:

∇×∇×A+
1

λ 2
0

A = 0 (A.18)

Where λ 2
0 = msc2

4πe2
s |ψ0|2 =

−β0msc2

4πe2
s α0

. Similarly, Hc becomes Hc0 =
4πα2

0
β0

, and κ0 =
λ0
ξ0

=
√

β0
2π

msc
esh̄

. We

then do the same process as we did before, but replacing any λ , ξ , κ , or Hc with λ0, ξ0, κ0, or Hc0.

This will result in almost the same equations, but with an a and a b in front of the ψ and |ψ|2ψ

terms:
(−i

κ0
∇−A

)2

ψ +aψ−b|ψ|2ψ = 0 (A.19)

∇×∇×A+
i

2κ0
(ψ∗∇ψ−ψ∇ψ

∗)+ |ψ|2A = 0 (A.20)
(

i
κ0

∇ψ +Aψ

)
·n = 0 (A.21)

(∇×A)×n = H×n (A.22)

A.1.4 Time Dependent Ginzburg-Landau Equations

The Time Dependent Ginzburg-Landau equations are as follows:

1
2ms

(
−ih̄∇− es

c
A
)2

ψ +αψ +β |ψ|2ψ +Γ

(
∂ψ

∂ t
+

iesφ

h̄
ψ

)
= 0 in the domain (A.23)

∇×∇×A− 2πiesh̄
msc

(ψ∗∇ψ−ψ∇ψ
∗)− 4πe2

s
msc2 |ψ|

2A+
4πσn

c

(
1
c

∂A
∂ t

+∇φ

)
= 0 in the domain

(A.24)
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(
ih̄∇ψ +

es

c
Aψ

)
·n = 0 on the boundary (A.25)

(∇×A)×n = H×n on the boundary (A.26)

−
(

∇φ +
∂A
∂ t

)
·n = 0 on the boundary (A.27)

We will start with α and β constant in time and space. To nondimensionalize these equations, we

first use the same definitions for λ , ξ , κ , and Hc as we defined in section A.1.1. We also make

the same change of variables as in section A.1.2 in addition to letting t = τ∆t ′ and φ = φ0φ ′; For

equation A.23, this gives us:

1
2ms

(
−ih̄
λ

∇
′−
√

2Hcλes

c
A′
)2√−α

β
ψ
′+α

√−α

β
ψ
′+β

√−α

β

3

|ψ ′|2ψ
′

+Γ

√−α

β

(
1
τ∆

∂ψ ′

∂ t ′
+

iesφ0φ ′

h̄
ψ
′
)
= 0 (A.28)

Dropping the primes and dividing by α

√
−α

β
gives:

1
2msα

(
−ih̄
λ

∇−
√

2Hcλes

c
A

)2

ψ +ψ−|ψ|2ψ

+
Γ

|α|

(
1
τ∆

∂ψ

∂ t
+

iesφ0φ

h̄
ψ

)
= 0 (A.29)

The first three terms reduce down to the same terms as in equation A.9. We then let τ∆ = Γ

|α| and

φ0 =
h̄

esτ∆
to get the final equation:

(−i
κ

∇−A
)2

ψ +ψ−|ψ|2ψ +
∂ψ

∂ t
+ iφψ = 0 (A.30)

Making the same coordinate transformations for equation A.24:
√

2Hc

λ
∇×∇×A′+

2πiesh̄α

mscλβ

(
ψ ′∗∇′ψ ′−ψ

′
∇
′
ψ ′∗
)
+

4πe2
s α

msc2β
|ψ ′|2
√

2HcλA′

+
4πσn

c

(√
2Hcλ

cτ∆

∂A′

∂ t ′
+

φ0

λ
∇
′
φ
′
)

= 0 (A.31)
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Dropping the primes and then multiplying by λ√
2Hc

gives:

∇×∇×A+
2πiesh̄α

msc
√

2Hcβ
(ψ∗∇ψ−ψ∇ψ

∗)+
4πe2

s αλ 2

msc2β
|ψ|2A+

4πσn

c

(
λ 2

cτ∆

∂A
∂ t

+
φ0√
2Hc

∇φ

)
= 0

(A.32)

Once again the first 3 terms go the same as A.12. We then define τ j =
σnβms
e2

s |α|
, which gives:

∇×∇×A+
i

2κ
(ψ∗∇ψ−ψ∇ψ

∗)+ |ψ|2A+
τ j

τ∆

∂A
∂ t

+
4πσnφ0√

2Hcc
∇φ = 0 (A.33)

If we define u = τ∆

τ j
, then the coefficients in front of the time derivative go to 1

u , and it turns out that

if we substitute in the value for φ0 we found earlier, the coefficients in front of the ∇φ go to 1
uκ

:

∇×∇×A+
i

2κ
(ψ∗∇ψ−ψ∇ψ

∗)+ |ψ|2A+
1
u

(
∂A
∂ t

+
1
κ

∇φ

)
= 0 (A.34)

So the final equations are:

(−i
κ

∇−A
)2

ψ +ψ−|ψ|2ψ +
∂ψ

∂ t
+ iφψ = 0 (A.35)

∇×∇×A+
i

2κ
(ψ∗∇ψ−ψ∇ψ

∗)+ |ψ|2A+
1
u

(
∂A
∂ t

+
1
κ

∇φ

)
= 0 (A.36)

(
i
κ

∇ψ +Aψ

)
·n = 0 (A.37)

(∇×A)×n = H×n (A.38)

−
(

∇φ +
∂A
∂ t

)
·n = 0 (A.39)

A.1.5 α and β vary with time and space

If we now let α = α0a(r, t) and β = β0b(r, t), we can do the same thing as we did in section A.1.3,

and let ξ 2
0 = −h̄2

2msα0
, λ 2

0 = msc2

4πe2
s |ψ0|2 = −β0msc2

4πe2
s α0

, Hc0 =
4πα2

0
β0

, and κ0 =
λ0
ξ0

=
√

β0
2π

msc
esh̄

. Additionally

we also let τ∆0 =
Γ

|α0| , τ j0 =
σnβ0ms
e2

s |α0| , u0 =
τ∆0
τ j0

, and φ0 =
h̄

esτ∆0
. We can then follow the same steps as
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above with these new values and we get:

(−i
κ0

∇−A
)2

ψ +aψ−b|ψ|2ψ +
∂ψ

∂ t
+ iφψ = 0 (A.40)

∇×∇×A+
i

2κ0
(ψ∗∇ψ−ψ∇ψ

∗)+ |ψ|2A+
1
u0

(
∂A
∂ t

+
1
κ0

∇φ

)
= 0 (A.41)

(
i

κ0
∇ψ +Aψ

)
·n = 0 (A.42)

(∇×A)×n = H×n (A.43)

−
(

∇φ +
∂A
∂ t

)
·n = 0 (A.44)

To get these equations to the forms used in the rest of this report, we simply let φ = κ0θ , and then

drop the subscripts on u and κ .

A.2 Material Specific Formulation Derivation

A.2.1 Equations for Spatially Varying Material Coefficients

Below is the formulation from [47]:

γ

(
∂ψ

∂ t
− iκ0θψ

)
+

(
i

κ0
∇+A

)2

ψ−aψ +b|ψ|2ψ = 0 (A.45)

1
u0

(
∂A
∂ t
−∇θ

)
+∇×σ +

i
2κ0

(ψ∗∇ψ−ψ∇ψ
∗)+ |ψ|2A = ∇×H (A.46)

1
u0

∂σ

∂ t
−∇

2
σ +

i
2κ0

∇× (ψ∗∇ψ−ψ∇ψ
∗)+ |ψ|2σ −A ·∇×|ψ|2 =−∇

2H (A.47)

1
u0

(
∂θ

∂ t
−∇

2
θ

)
+

i
2κ0

∇ · (ψ∗∇ψ−ψ∇ψ
∗)+ |ψ|2θ +A ·∇|ψ|2 = 0 (A.48)

Where ∇×A = σ and ∇ ·A = θ , and equations A.47 and A.48 are found by taking the curl and

divergence of equation A.46. If we want to let the electrical conductivity vary with space, we insert

a dimensionless constant that we will call s to represent it into equation A.46 (normally we just
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nondimensionalize the conductivity out, but if we want to let it vary in space/time we use this term):

s
u0

(
∂A
∂ t
−∇θ

)
+∇×σ +

i
2κ0

(ψ∗∇ψ−ψ∇ψ
∗)+ |ψ|2A = ∇×H (A.49)

The complication here is that since s varies with space, taking equation A.49’s curl and divergence

would result in multiple time derivative terms, which would create problems with solving it via

Finite Element. To fix this, we will bring s into the time derivative and now let ∇× sA = Σ

and ∇ · sA = Θ, and therefore ∇×A = 1
s (Σ−∇s×A) and ∇ ·A = 1

s (Θ−A ·∇s). With these

transformations, equations A.45 and A.46 become:

γ

(
∂ψ

∂ t
− i

κ0

s
(Θ−A ·∇s)ψ

)
+

(
i

κ0
∇+A

)2

ψ−aψ +b|ψ|2ψ = 0

(A.50)

s
u0

(
∂A
∂ t
−∇

(
1
s
(Θ−A ·∇s)

))
+∇×

(
1
s
(Σ−∇s×A)

)
+

i
2κ0

(ψ∗∇ψ−ψ∇ψ
∗)+ |ψ|2A

= ∇×H

(A.51)

Taking the curl of Equation A.51 gives:

1
u0

(
∂Σ

∂ t
−∇s×∇

(
1
s
(Θ−A ·∇s)

))
−∇

2
(

1
s
(Σ−∇s×A)

)
+

i
2κ0

∇× (ψ∗∇ψ−ψ∇ψ
∗)

+ |ψ|2 1
s
(Σ−∇s×A)−A ·∇×|ψ|2 =−∇

2H

(A.52)

This equation could be further expanded if doing so improves finite element speed or stability, but

we will leave it in this form for right now, in order to be able to solve this, we will have to define ∇s

by hand as well as s, since numerical methods do not deal well with higher than first order derivative

terms. It should also be noted that this term is no longer decoupled, as there is a Θ term in it. Taking
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the divergence of Equation A.51:

1
u0

(
∂Θ

∂ t
− s∇

2
(

1
s
(Θ−A ·∇s)

)
−∇

(
1
s
(Θ−A ·∇s)

)
·∇s
)
+

i
2κ0

∇ · (ψ∗∇ψ−ψ∇ψ
∗)

+ |ψ|2 1
s
(Θ−A ·∇s)+A ·∇|ψ|2 = 0

(A.53)

So equations A.50, A.51, A.52, and A.53 are the new equations we can now solve to simulate

multiple specific materials or specific material properties, as long as we provide both s and ∇s.

A.2.2 Adding Time Dependence to Conductivity

It seems likely that the conductivity varies with temperature, and therefore varies with time, so

it would be useful to also add time dependence to s. To do this while maintaining the positional

dependence, we simply have to add an extra term into our equations to be able to still move the s

into the time derivative, as s∂A
∂ t = ∂ sA

∂ t −A∂ s
∂ t . Much like we have to provide ∇s for the position

dependence, we will also have to provide ∂ s
∂ t . The curl of A∂ s

∂ t is ∂ s
∂ t

1
s (Σ−∇s×A)+∇

∂ s
∂ t ×A and

the divergence of A∂ s
∂ t is ∂ s

∂ t
1
s (Θ−A ·∇s)+A ·∇∂ s

∂ t . Thus the final equations become:

γ

(
∂ψ

∂ t
− i

κ0

s
(Θ−A ·∇s)ψ

)
+

(
i

κ0
∇+A

)2

ψ−aψ +b|ψ|2ψ = 0 (A.54)

1
u0

(
∂ sA
∂ t
−A

∂ s
∂ t
− s∇

(
1
s
(Θ−A ·∇s)

))
+∇×

(
1
s
(Σ−∇s×A)

)
+

i
2κ0

(ψ∗∇ψ−ψ∇ψ
∗)

+ |ψ|2A = ∇×H

(A.55)

1
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(
∂Σ

∂ t
− ∂ s

∂ t
1
s
(Σ−∇s×A)−∇

∂ s
∂ t
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(
1
s
(Θ−A ·∇s)

))
−∇

2
(

1
s
(Σ−∇s×A)

)

+
i

2κ0
∇× (ψ∗∇ψ−ψ∇ψ

∗)+ |ψ|2 1
s
(Σ−∇s×A)−A ·∇×|ψ|2 =−∇

2H

(A.56)
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1
u0
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∂Θ

∂ t
− ∂ s

∂ t
1
s
(Θ−A ·∇s)−A ·∇∂ s

∂ t
− s∇

2
(

1
s
(Θ−A ·∇s)

)
−∇

(
1
s
(Θ−A ·∇s)

)
·∇s
)

+
i

2κ0
∇ · (ψ∗∇ψ−ψ∇ψ
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(A.57)
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