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ABSTRACT 

Emergence in Flocking Boids with Graph Theory 

Christian Lambert 

Department of Physics and Astronomy 

Bachelor of Science 

Emergent behavior - behavior exhibited by groups that is not seen in individuals - is a critical 

part of our world and is difficult to model well. We present a dynamic model where a flock of 

simulated birds (boids) exists in two dimensions. Each boid has a constant speed and a fixed 

randomly determined number of neighbors, defined as those boids that influence the direction of 

its motion (consensus). Modifications of the boids’ flight following a specific algorithm 

(frustration) during the simulation results in emergent behavior. The flock of boids is mapped to 

a directed graph. Changing the boids’ neighbors also modifies the graph. Rigorously defined 

sub-flocks are identified using graph theory. Using a new method of frustration, α turns, we can 

enhance the emergent behavior exhibited. Analyzing this emergent behavior is done through 

order parameters that help us understand how ordered the flock or sub-groups of the flock are. 

Analyzing the mapping of the graph to the flock can expand our understanding of how and when 

dynamic emergence occurs in this flocking model. This is done by showing how physical the 

model is in whether the flock splits like we see real flocks of birds doing. Using α turns and the 

nearest neighbor consensus method we find we have emergent behavior within a specific range 

of the model parameters. 
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Chapter 1 Introduction  

This chapter explores what emergence is, what boids are, and why we model them. Then the 

model and its components are discussed. The chapter ends with an explanation of graph theory 

and the portion of graph theory relevant to this thesis. 

1.1 Emergence 

Emergence encompasses coherent behavior exhibited by groups that is not seen in 

individuals. Emergence is the reason rush hour is so much worse than a few drivers on the road. 

Emergence is why a flock of birds flies very differently than a single bird does. Representing the 

world accurately requires understanding emergent behavior.  

Because emergent behavior is exhibited all around us, understanding it allows us to have 

better models of the world. Even people exhibit emergent behavior. From driving in traffic to 

walking around a crowded shopping center, there is emergent behavior all around us. If a mall is 

not very crowded, then you will probably just use simple paths between your destinations. 

However, if it is crowded, there will be a sort of stream of people, and you only go against or 
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cross the flow of people if you must. Having more people around influences your and their 

behavior, causing that behavior to emerge from the interactions within those nearby. Being able 

to accurately model this sort of behavior improves self-driving car algorithms, drone swarm 

flights, and building and pathway designs. 

Emergence results as a coherent form of chaotic, non-linear behavior, like a damped, 

driven, non-linear oscillator. This kind of oscillator does not necessarily exhibit explicit chaotic 

behavior; only in specific scenarios can this chaotic motion be possible. Similarly, with 

emergence, the capacity to exhibit emergence does not mean emergence always manifests. This 

makes modeling emergence difficult because one must create a realistic model, and then vary its 

parameters to determine if the model can express emergent behavior. 

Dynamic phases are common when attempting to model emergence in flocking. A 

dynamic phase in this context appears when the flock is stuck moving in a periodic way. The 

dynamic phase occurs if the periodicity of the motion is short compared to the run time of the 

simulation. Dynamic phases constitute a generalization of phases in statistical mechanics to the 

time-dependent domain.1 We can define order parameters which measure what phase the system 

is in and tell us about the behavior of the group.2 In particular, I use the order parameters defined 

in these other works, 3- 6 and more is discussed in Section 2.6 about order parameters. Emergent 

behavior is not periodic, or the period is much larger than the time the system is examined. For 

example, suppose we are simulating a flock in a constrained area, and is exhibiting emergent 

behavior. Eventually, as the length of the simulation approaches infinity, the state of the flock, 

the position and direction of the boids, will eventually repeat itself. This repetition does not mean 

the boids are in a dynamic phase.  
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1.2 Boids 

Boids are virtual birds, a contraction of birdoid.7 They were created to model emergence in 

bird flocking. In this paper boids refers to individuals within the models, and birds refer to 

actual, physical birds. Boids strip away some of the complexity of fully modeling a bird. The 

only similarity to birds that boids have is how they move, including the rules they follow when 

flying in a flock.  

We model boids to better understand emergent behavior because it is easy to 

observationally compare those models to real flocks of birds. This is done by calculating order 

parameters and by visual inspection of the accompanying animation. Order parameters are a 

measure of how ordered a system is according to a metric. Multiple order parameters can be used 

to describe a system, and they need not necessarily agree. Often a combination of order 

parameters is needed with a visual inspection to determine if the model is emergent. Order 

parameters also tell us if the emergence is transient, meaning they signal emergence for only a 

portion of the simulation, and a dynamic phase for the rest of the simulation.3 

A group in Italy has observed flocks of starlings to determine the specific rules that 

starlings follow while flying in flocks.8 We aim to translate rules observed in real birds to 

improve models of emergence. These rules - observed by Attanasi et al.1 - are the basis for our 

model. We also use the rules to judge how realistic and physical the model is. When needed we 

deviate from the rules to get our model to exhibit emergent behavior. While it is technically 

feasible to have a model that demonstrates emergent properties without following physical rules, 

we strive to create emergent models that could be used to for physical situations. 
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1.3 The Model 

1.3.1 Consensus 

Consensus refers to the way the boids influence one another’s motion in an average 

fashion. We base our rules for consensus3-6 on the observational study by Attanasi et al.1 They 

found that birds follow each other in a very specific way. Birds have flockmates - other birds 

they follow. The number of a bird’s flockmates remains almost constant throughout the flight of 

the flock. This is true regardless of the physical distance between the birds. The number of 

flockmates tends to be small, typically in the range of six to seven. In our case boids that are 

modeled in this way are called “topological” neighbors.  

1.3.2 Frustration 

Frustration is intended to provide a counter-balance to consensus. It is a similar idea to 

that of frustration in solid-state physics. For example, favored configurations of spin-states in a 

lattice could be frustrated by the geometry of the lattice, making it difficult or impossible for the 

lattice to stay in the lowest energy configuration.9 Frustration in our model was created to 

“frustrate” the boids in following the rules defined for consensus. Its overall effect is to adjust 

the velocities of the boids in a way that is intended to transform the phase-like behavior induced 

by the consensus rules to the emergent behavior exhibited by the model.3  

1.3.3 The Original Model 

The original model3, 5 uses an exact interpretation of the rules for consensus and a simple 

frustration model. The strict interpretation of the rules for consensus is as follows. Each boid is 

assigned a fixed number of flockmates at the beginning of the simulation, and they do not change 
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at any point in time. The flockmates are effectively randomly assigned at the beginning of the 

simulation.5 The exact method of assignment is detailed in Section 2.1 below. The frustration 

used is a simple U-turn. When a boid is selected to be frustrated, the direction of its velocity is 

reversed. The rules for selecting a boid to be frustrated are detailed in Section 2.4. 

Using consensus without frustration leads to dynamic phases. The possible dynamic 

phases are linear, and clockwise and counter-clockwise phase-locked rotations.3, 5 Topological 

neighbors were used, and they are discussed further in Section 2.1. Briefly, topological neighbors 

are the most like what is seen in nature8 where the neighbors are fixed and are not constrained by 

distance.  

Results of this model exhibit emergence5 often enough that it is reasonable to conclude that 

it is an emergent model. To identify emergence we must first determine if the flock is trapped in 

a dynamic phase by analyzing the order parameters. If it is not in a dynamic phase, then it is 

most likely exhibiting emergent behavior. Visual analysis of the accompanying animation 

confirms this. This analysis is qualitative; we look for periodic behavior to determine if the 

simulation is emergent. One weakness of this model is that it does not always stay emergent. It 

may exhibit emergent behavior for a certain amount of time, but then get locked into a dynamic 

phase.3, 5 

1.4 Graph Theory 

A graph is a mathematical construct used to describe relationships between items in a set. 

They are comprised of nodes and edges.10 When I refer to a graph, I mean a set of edges and 

nodes. Plot refers to what is more commonly called a graph. In Figure 1 below, each node is 

labeled is a circle, and the arrows between nodes are the edges. Nodes are items within the set, 

and edges are information about the relationship between two nodes. An edge may have a cost 
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associated with traversing it, or going from one node to next, often in the form of a number. This 

number is termed a weight.10 Figure 1 does not have any weight labels. An edge may be one-

directional, termed a directed edge, or bi-directional, or undirected edge.10 All the edges used in 

this thesis are directed. For simplicity I will shorten directed edge to edge from this point on.  

 

 

Figure 1 Graph example. Black circles represent nodes, and arrows denote a relationship between nodes. 

There are directed edges between the nodes. No weights are shown. 

Operations can be performed on graphs to give information about the relationships 

between the graph elements. Operations traverse the edges of a graph following specific 

algorithms. These operations can give information about the shortest path between two nodes, 

the cost from going from one node to another, and many other things.10 We use one algorithm to 

find self-contained sub-graphs, called strongly connected components. More is said about these 

in Section 1.5 below, and more can be found in any textbook on graph theory, such as Discrete 

Mathematics and its Applications.10 
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A flock of boids under our model has a one-to-one mapping to a directed graph. Each 

boid is represented as a node. The flockmate relationships between the nodes are edges. In the 

initial model, the edges all have weights of one. There is exactly one edge from a boid to each of 

its flockmates, and the flockmate does not necessarily have an edge back to the boid. This means 

the relationship is not reciprocal. For the purposes of consensus, each boid is considered to have 

an edge of weight one to itself. We do not consider boids beyond one edge away to be 

flockmates, so the label flockmate is not transitive.  

Our graph can be represented as a matrix, the adjacency matrix, where the elements of the 

matrix are the edges between nodes in the graph. Each element’s value is the weight of the edge. 

This matrix will be defined in detail in Section 2.1 and illustrated in Figure 3. Other methods of 

storing the graph information are possible, but this is the most compact form and the most 

convenient for calculations. 

1.5 Strongly Connected Components 

Strongly connected components are self-contained sub-graphs. A strongly connected 

component is a set of nodes whose edges allow access to every other node in the component.10 

Strongly connected component is what is meant by self-contained sub-graph. Edges pointing to 

nodes outside the strongly connected component are not prohibited and are quite common. 

Calculating strongly connected components is neither trivial nor intuitive. Knowledge of 

how this is done and how it is implemented is not necessary for this thesis. Those who wish to 

know more may consult a textbook on graph theory.10 

Strongly connected components tell us which parts of the graph have strong relationships. 

In the context of a flock of boids, a strongly connected component is a set of boids that often 

behave as a discrete sub-flock. For this thesis, strongly connected component and sub-flock 
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mean the same thing and may be used interchangeably. This also means that if one boid turns, 

that turn propagates throughout the whole strongly connected component due to consensus. The 

strength of that influence is highly dependent on the longest path between boids in the strongly 

connected component. However, we do not analyze the propagation of a turn, as it does not yield 

any valuable information for studying emergence. 

 

Figure 2 A graph with two strongly connected components identified by the colors surrounding the nodes 

and edges of each component. 

Identifying the strongly connected components of a graph shows us the sub-flocks. In 

Figure 2, the two groups of nodes highlighted in green and blue are separate strongly connected 

components. If we pick any node in either group, you can verify that you can reach any other 

node in that group. Note how you can go from the blue group to the green group, but not back. 

Because of the unidirectional flow from blue to green the two strongly connected components 

are still considered separate. If there was even one edge pointing from the green group to the 
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blue they would be one strongly connected component. The edge from blue to green implies that 

the blue group “follows” the green one in the context of a flock of boids. This means the blue 

and green groups are both sub-flocks. The implications of the splitting of the flock is discussed 

further in Section 2.3. 

1.6 Prior Work at BYU 

There are two theses my work builds off. Wes Kruger3 examined complex behavior and 

consensus with a simple frustration term. The frustration he used was a U-turn with a hard 

boundary. He also introduced the appropriate order parameters. Garett Brown5 examined 

consensus with additional methods of frustration. He used U-turns, specular, and a frustration he 

termed free boids, all with hard and soft boundaries. Both theses worked with topological 

neighbors. 

1.7 Overview 

I now give an overview of the following chapters and sections. In Chapter 2 my methods 

for modeling emergence are discussed. This includes the two consensus models described in 

Section 2.1, how the consensus changes the graph, and what those changes mean in Sec. 2.2 and 

2.3, respectively. Chapter 2 concludes with a depiction of the frustration methods I use in 

Sections 2.4 and 2.5.  

Chapter 3 contains the discussion of results and the conclusions I draw. Section 3.1 

discusses the results, and Section 3.2 contains the discussion of the results of consensus and 

frustration. The conclusions are presented in Section 3.3. Then suggestions for future work are 

given in Section 3.4. 
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Chapter 2 Methodology 

Our model primarily consists of consensus and frustration. We use two models of consensus, 

and two of frustration. Graph theory is used with consensus to analyze the structure of the flock, 

and order parameters are used to analyze the flock’s motion and whether it is exhibiting 

emergent behavior. Each of these is now discussed. 

2.1 Consensus 

The two models of consensus we use are based on observed behaviors of flocks of birds. 8 

Both involve the same basic method of adjusting a boid’s velocity, v. This is accomplished by 

giving the boid the normalized average of its flockmates velocities and its own velocity.5 The net 

effect of this is to change each boid’s direction. This happens in every step of the simulation for 

every boid. The calculations for consensus can be seen in Equations (2)-(4). Equation (1) shows 

the consensus calculations for a flock of n boids each with m neighbors in matrix form with 

adjacency matrix M. The adjacency matrix is a representation of the flockmate relationships 
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within the flock. Equation (2)3, 5 shows this calculation in summation form. The consensus 

calculations are performed every step of the simulation. 

[
 
 
 
𝑣1 x new

′ 𝑣1 y new
′

𝑣2 x new
′ 𝑣2 y new

′

⋮ ⋮
𝑣𝑛 x new

′ 𝑣𝑛 x new
′ ]

 
 
 

=  𝑀 [

𝑣1 𝑥 𝑣1 𝑦

𝑣2 𝑥 𝑣2 𝑦

⋮ ⋮
𝑣𝑛 𝑥 𝑣𝑛 𝑦

]
1

𝑚
  (1) 

𝑣𝑛
′ (𝑡 + 1) =  

1

𝑚
∑𝑣𝑗(𝑡)

𝑚

𝑗=1

  (2) 

Each velocity is normalized to v0,
1 the initial velocity magnitude, which for this thesis is 0.15 

(arbitrary units) as seen in Equation (3). The constant velocity magnitude is a convenient way to 

allow for emergence, as it introduces a non-linearity, which is critical for emergent behavior.3  

𝑣𝑛(𝑡 + 1) =  
𝑣𝑛

′ (𝑡 + 1)

‖𝑣𝑛
′ (𝑡 + 1)‖

 (3) 

     Then the position is updated according Equation (4).3, 4 

𝑟𝑛(𝑡 + 1) =  𝑟𝑛(𝑡) + 𝑣𝑛(𝑡 + 1) (4) 

Topological neighbors are best understood by looking at the adjacency matrix M. Going 

across a row represents the connection from that boid to its flockmates. For example, in Figure 3 

below, if we go across the row labeled B1, that boid is flockmates with boids B2-B5. It is also 

connected to itself represented in M by ones along the diagonal. 

 

Figure 3 Sample n x n adjacency matrix for topological neighbors with n boids and four flockmates for 

each boid. A one represents a connection between the boid represented by the row and the boid 

represented by the column, and a zero represents no connection. In addition, each boid points to itself. 
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Nearest neighbors are named so because each boid’s flockmates are a subset of their physical 

nearest neighbors. The algorithm we use for determining a boid’s flockmates is as follows. First, 

we find the nearest m neighbors of boid a by calculating the Euclidean distance between them 

then randomly select n of them to be boid a’s flockmates. These n boids remain boid a’s 

flockmates for l steps, where l is a number greater than or equal to one called the recalculation 

interval. After l steps, the flockmates are recalculated. This repeats for as long as the simulation 

runs.11  

Both models of consensus can be represented as an adjacency matrix. Figure 3 shows what 

an adjacency matrix for a topologically connected flock looks like. An adjacency matrix for 

nearest neighbors would also have ones along the diagonal, but the other ones representing the 

boid’s flockmates would be found distributed along in the rest of the row. 

The adjacency matrix is also able to represent the graph that the flock maps to.  

2.2 Manipulating the graph  

By manipulating the edges, or flockmate relationships, between boids and how they are 

assigned, we can influence the behavior of the consensus. The weights of the edges are used in 

the averaging for consensus. In Figure 3, each edge between the topological neighbors would 

have a weight corresponding to the one or zero in the matrix, where each row represents the 

connections a boid has. If an edge has a weight of zero, it is considered to not be present for 

calculating strongly connected components. This makes sense when considering how the 

averaging for consensus works. If the weight of a boid’s contribution is zero it is effectively not a 

flockmate. 

Dynamic edges can be used instead of a static edge weight to simulate changes within the 

graph. This is effectively assigning a function to be the weight of an edge. In Figure 4 below, I 



 

 

21 

have plotted a sample of the functions I used as dynamic weights. I used a sine wave, a 

normalized summation of sine waves of varying frequency, square waves, both with an even 

period and with an uneven period. Each of these varied with time. Values tended to be positive, 

but occasionally negative values were allowed. Negative values create a repulsion between 

boids, while positive values create an attraction. The edge weights are substituted in for the 

values of the adjacency matrix, and then the consensus calculation turns into a weighted average 

after also dividing the new velocities by the sum of the weights in each row. This, in effect, turns 

M from a static matrix into a matrix of functions. Other functions used included position-based 

weight values and time and position dependent weights. These functions would give M time 

and/or position dependence corresponding to the dependence of the function used. 

 

Figure 4 Sample plots of functions used for dynamic edges. 

 

The effectiveness of dynamic edges is discussed in Section 3.1. Allowing edges to vary 

between zero and non-zero values changes the structure of the graph with the convention that a 
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zero-weighted edge is not currently traversable. This changes the strongly connected components 

of the graph by effectively removing zero-weighted edges from the graph. Dynamically weighted 

edges were only used with static neighbors, meaning the neighbors were never recalculated as 

they are for nearest neighbors. The flockmates were not necessarily topological neighbors, but 

they were fixed throughout the simulation. The goal of these dynamic edge weights was to 

simulate the nearest neighbor method without needing to do the nearest neighbor calculations. 

2.3 Graphs 

Strongly connected components are self-contained sub-graphs, and in the context of 

flocking boids, tell us what the structure of the flock looks like. This structure is determined by 

flockmate relationships. There are two types of strongly connected components we observe in 

flocks of boids: large and trivial. We define a large strongly connected component as one with at 

least n + 1 nodes, or boids as there is a one-to-one mapping between boids and nodes, where n is 

the number of flockmates used. The reason for this definition is that n + 1 boids can exclusively 

be flockmates with each other. Any fewer and at least one of them would have at least one 

flockmate external to the group. Therefore n + 1 is the smallest possible independent sub-flock. 

Typically, the strongly connected components have many more boids than n + 1. A trivial 

strongly connected component is a strongly connected component with fewer than n + 1 boids. 

The most common trivial component is with just one boid. In this case no boids have the single 

boid as a flockmate, so this boid is influenced by, but does not influence, the rest of the flock. 

When there are two or more non-trivial strongly connected components, the flock has split as 

discussed in Section 1.5. 

There are two ways for the flock to meaningfully split. The two meaningful splits, along 

with an example of a trivial strongly connected component, are shown in Figure 5 below. For 
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simplicity, not all nodes or edges are shown, and only two strongly connected components are 

detailed. On the left we find an example of a partial split, because the blue group has a 

connection to the green group, as shown by the edge highlighted in red. When a change in 

direction happens in any boid in a strongly connected component, that change propagates 

throughout the component. It also propagates to any other boids or groups with edges pointing to 

a member of the component. In this example, any changes in the green group propagate to the 

blue group. However, any changes in the blue group do not propagate the other way. If the 

changes in the blue group did propagate, there would be one strongly connected component, not 

two. In the other example, the two groups are not connected at all. This means the flock has a 

total split, where the strongly connected components act completely independently of each other. 

When I refer to splits in this paper I mean multiple large strongly connected components. 

 

Figure 5 (left) A graph with two large strongly connected components, with the blue component 

“following” the green one because of the red edge. (center) Two large strongly connected components 

that are independent. (right) A trivial strongly connected component. 
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2.4 Frustration 

Frustration provides an additional influence that allows the model to exhibit more realistic 

and emergent behavior. Going back to the non-linear oscillator analogy, frustration corresponds 

to the damping force. It, along with the normalization of the boids’ velocity, provides for the 

non-linearities necessary for emergence to be possible.3 

We use a boundary for the flock’s motion to induce frustration. We construct a basin that 

restricts the flock’s motion using the equation 

(
𝑟𝑖
𝑅
)

𝑓

> 𝐶, 0 ≤ 𝐶 ≤ 1, (5) 

where ri is the magnitude of boid i’s position, R is the radius of the basin, f is a predetermined 

number, and C is a random number between zero and one. The basin is the space in which the 

boids are allowed to move. If C = 1, then the basin has a steep wall where the boids will only 

turn when they are at the edge of the basin. When C is between zero and one the basin becomes 

soft, and the boids have a probability of turning at any point in the basin. I only used a soft basin 

model. Larger values for f corresponds with stronger frustration and steeper sides of the basin. 

Figure 6 and Figure 7 show the shapes of the basin for different values of f. Figure 7 shows the 

radial cross section of the distributions shown in Figure 6. 
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Figure 6 Turn probability examples for different values of f in Eq. (5). The colors are the 

probability of turning, and the axes are scaled to be a fraction of the basin size in arbitrary units. 

From left to right, f is 1, 5, and 10. 
 

 

Figure 7 Radial cross section of maps in Figure 6. The horizontal axis is the radial distance as a 

fraction of the basin size, and the vertical axis is the probability of turning due to frustration. 

From left to right, f is 1, 5, and 10. 

 

  A soft basin looks less like the flock is in a bowl and more like natural turning. This 

probability distribution determines the chosen frustration method (described in the next section), 

takes effect for the current step of the simulation. 

2.5 Frustration methods 

Frustration provides for turns in the boids’ motion, which can be classified as either 

smooth turns or sharp turns. A sharp turn takes very few steps to occur, often taking only one 

step. Smooth turns take many steps to complete. There are many ways to do sharp or smooth 
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turns, but only two of them are discussed here. For more frustration methods, see Garrett 

Brown’s Honors Thesis.3  

Sharp turns are best seen with the U-turn frustration method. A U-turn is exactly what it 

sounds like, the boid simply makes an instantaneous U-turn. This is done by reversing the 

direction of the boid’s velocity. This is not entirely physical for real birds, but groups of other 

animals, like fish, do exhibit such behavior.3  

Alpha turns are an attempt to make the boids’ motion smoother since that is more 

realistic. The equation for α turns is as follows: 

                                       𝜃𝑛𝑒𝑤 = 𝜙 − 𝜋 + 𝛼 ∗ 𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (6) 

With θnew being the new direction of the velocity, θcurrent being the current velocity direction, ϕ 

being the angle of the current position of the boid in polar coordinates. The parameter α can be 

any number. More about α is detailed in Section 3.2.2. 

 Consensus and frustration help us create an emergent model, and graph theory helps us 

analyze how physical our model is in one respect, but none of this helps us determine if a model 

is truly emergent. Analyzing how ordered the flock is after consensus and frustration are 

performed is done with order parameters and knowing how ordered the flock is compared to the 

ordering of sub-groups within the flock helps us determine emergence. 

2.6 Order Parameters 

 Order parameters describe how ordered a system is and can tell us how emergent a 

system is when properly applied. A value close to zero usually indicates a disordered system, and 

values close to one or minus one indicate a highly ordered system. In  

Table 1, the first column indicates the linear order parameter for the whole flock over an interval 

of eight steps, and the next two columns indicate it for two random sub-groups within the flock. 
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Note how even though the flock is somewhat disordered, the order parameter is near zero, until 

the end of the data, group 1 retains order in this slice of the data. Group 2 is disordered until the 

last couple points. When the flock is disordered and the small groups are ordered, we can 

conclude that the flock is most likely exhibiting emergence. When the flock and the groups are 

both highly ordered the flock is likely in a dynamic phase. 

 

Table 1 A sample of sequential alignment order parameter data. The groups are small subsets of 

the flock. The significant figures are determined by how much Python stores in doing the 

calculations. 

Flock Group 1 Group 2 

0.064268352 0.269784 0.096788 

0.087652665 0.219704 0.058267 

0.114945515 0.406996 0.049333 

0.153834359 0.271618 0.075667 

0.227779384 0.354989 0.06029 

0.300221863 0.316706 0.162881 

0.353839776 0.429595 0.280895 

0.429918444 0.507824 0.393018 

 

 We use two order parameters, one for alignment and one for rotation. The alignment 

order parameter tells us how aligned the velocities of a group of boids are. The rotational order 

parameter tells us how tight the rotations of group of boids are. For more information on these 

order parameters and how they are calculated, see Garett Brown’s Honors Thesis.3  

 To summarize this chapter, our model consists of two items, consensus and frustration. 

Consensus determines how the flock interacts, and frustration tries to disrupt consensus from 

ordering the boids too much. Graph theory is used to determine if and how the flock splits, and 

order parameters help us determine if the flock is emergent or not.  
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Chapter 3 Results and Conclusion 

Understanding emergent behavior is difficult, but with the analysis techniques we have 

developed we can improve our understanding of emergence. First is a discussion of our results. 

Then we discuss our models of consensus and frustration. Following that is our conclusions, and 

then suggestions for future work. 

3.1 Results 

Figure 8 is a series of screenshots of an animation. The different colors represent different 

strongly connected components. Included with this thesis are actual animations. For Figure 8, l = 

15, m = 6, and f = 3. There are 500 boids. α turns are used, and α = 0.7. Note how the flock varies 

in the number of strongly connected components over time, including some trivial strongly 

connected components. What the colors are, or which strongly connected component they are 

assigned to, do not matter. The splitting is due to the nearest neighbor recalculations.  

By changing the flockmates of the boids we change the underlying graph. The graph for 

topological neighbors does not change at all. For nearest neighbors the graph is rebuilt every 

time the neighbors are recalculated but is static between recalculations. Both neighbor selection 

methods assume static edge weights. When the edges are dynamic the weights change, and with 

the convention that zero weight edges are considered to not exist, this can cause the structure of 
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the graph to change when a weight becomes zero. Weights going to zero change how frequently 

the flock will split. 

Calculating the strongly connected components tell us when the flock has meaningful 

splits. A number of splits equal to n/(m+1), rounded down, are possible, where n is the number of 

boids in the flock and m is the number of flockmates a boid has. Typically, we do not see more 

than two or three splits, and the most frequent number of splits is one, with two strongly 

connected components.  

By inspecting animations for different α values, we find that alpha turns allow for 

emergent behavior within a specific range of parameters. The parameter α can take many shapes. 

Initially we used a uniform distribution between zero and one. By further experimentation with 

uniform, Gaussian, and triangular distributions we discovered that only the mean value of α 

changed the behavior of the flock, as long as the maximum value was equal to or less than one 

and the minimum value was equal to or greater than minus one. Following this discovery, we 

replaced the distribution with a fixed value, and found that the flock behaved the exact same 

way. We believe the reason for this is that the frustration is triggered so often that the law of 

large numbers applies, and the α turns effectively use the mean value regardless of the 

distribution used. This effect allowed us to fix α to a desired value. The range of values, and their 

bearing on the flock’s behavior, is discussed in section 3.2.2. 
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Figure 8 Snapshots of an animation. Each boid is represented by a dot. The different colors indicate 

different strongly connected components. Boids with their own color are in trivial strongly connected 

components. Text at the bottom of the snapshots details the parameters used as well as the frustration 

method. The corresponding parameters are: there are 500 boids, each had six flockmates chosen from 15 

of their nearest neighbors. α turns are used with a frustration power of f = 3, with α = 0.7. The 

recalculation interval is 15 steps. 
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 Using both the linear and rotational order parameters, we can determine if a flock of 

boids is exhibiting emergent behavior. The clearest example of emergence is when the flock 

appears disordered, with order parameters at or near zero, but sub-flocks appear ordered, with 

order parameters at or near one in the linear and plus or minus one in the rotational case. This 

lets us define emergence in terms of the order parameters. If the global order parameters show 

disorder; the parameter is near zero, but the local show order. he parameter is near plus or minus 

one, then we have emergence. This arises because of the interactions of consensus and 

frustration. Frustration breaks consensus; it stops global consensus from working, but if we see 

consensus surviving on local levels, then we know there is emergence.  

The alignment order parameter tells us how much a group of boids is going in the same 

direction. Figure 9 shows the alignment order parameter for three recalculation intervals. In the 

first interval, with the orange and blue lines, we see that the second strongly connected 

component is not ordered, but the first is. In the other two intervals we see that the strongly 

connected components are becoming more ordered. 
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Figure 9 Alignment order parameter plot. Three sequential nearest neighbor selections shown. For each 

separation, caused by nearest neighbor recalculations, there are two strongly connected components 

(SCC), shown as different colors. The separating lines are inserted to clarify that the strongly connected 

components are not necessarily the same from one nearest neighbor recalculation to the next.  

 

 

 The rotational order parameter tells us how sharply a group of boids turns, and in what 

direction. Clockwise is positive one, counterclockwise is negative one, and not rotating at a 

specific rate. The rotational order parameter is tuned to a specific turning rate, one rotation in the 

length of the interval used, based on how many steps are used in calculating it.3 Figure 10 shows 

the rotational order parameter for two recalculation intervals, taking in 20 steps. When 

calculating this order parameter for strongly connected components I did it for the whole 

recalculation interval to capture the length of the life of the strongly connected component. In 

general, the rotation order parameter can be between one and minus one. The turns in this flock 

are so gradual that the rotational order parameter is always small. Therefore, according to the 

rotational order parameter, the boids in these strongly connected components are not rotating in 

the same direction and very sharply.  
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Figure 10 Rotational order parameter plot. Two sequential nearest neighbor selections shown. The 

separation is made to remind the reader that the strongly connected components are not the same after a 

nearest neighbor recalculation. 

 

There are a few parameters in our model, but not all of them have a strong bearing on the 

presence of emergent behavior. By systematically varying parameters and analyzing the 

accompanying animation and data we have determined which parameters have a meaningful 

impact on the emergence of the model. Our parameters are as follows but were only tested with 

nearest neighbors. 

The number of boids in the flock does not impact emergence if there are enough for a 

flock, on the order of hundreds of boids. The lowest number tested was 300 boids. An upper 

limit of ~2000 boids is a good rule of thumb for a couple reasons. One is the speed of the 

simulation decreases due to how the nearest neighbor calculations work. We calculate the 

distance between every boid, so doubling the number of boids quadruples the number of nearest 

neighbor calculations necessary. Another reason to limit the number of boids is due to how large 

the graph gets. The way I implemented strongly connected component algorithm does not allow 
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for excessively large and connected graphs due to limitations in the Python programming 

language. 

The number of flockmates did influence whether the flock exhibited emergent behavior. 

The number of flockmates did not have much of an impact if it was significantly below 10% of 

the flock’s size. If the number of flockmates approached 10% there were marginal effects on the 

flock’s behavior, but not enough to prevent emergent behavior. When the number of flockmates 

reached 11-12% of the flock size there were clear and significant changes to the flock’s overall 

behavior. It would clump up and get locked in a dynamic phase. 

Another parameter I examined was the recalculation interval, l, for finding the nearest 

neighbors. This was done by determining the incidence of splitting, the percentage of times the 

flock splits given the chance to do so. The flock has a chance to split when the flockmates are 

recalculated. If l was short, less than five, there were fewer incidences of splitting. This also 

increased the time it took for the simulation to run. The incidence of splitting, as seen in Figure 

11, peaks about l = 5. If l is beyond 5, then the incidence of splitting decreases, roughly by 9%, or 

0.09 in Figure 11. for each increase in l by 10. The vertical axis in Figure 11 is the ratio of how 

many times the flock split over the times the flock did split.  
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Figure 11 Incidence of splitting versus the recalculation interval. An incidence of one would 

indicate the flock split every chance it could, and zero would mean it never split. 

 

For each value of l in Figure 11 the incidence of splitting varies by 15-20%. I usually had l 

at 10 or 15, as that gave a good balance between speed and incidence of splitting. 

 

3.2 Discussion 

3.2.1 Consensus 

The topological neighbors model represents a more realistic model for consensus. Our 

model of topological neighbors is physical.1Error! Bookmark not defined. However, it is not enough for 

emergence, as topological neighbors tend towards a dynamic phase, although there may be brief 

times when they appear emergent.3 Our results make sense when you consider our consensus 

algorithm. If all that occurs is an averaging of directions, the flock eventually ends up going in 
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the same direction. The nearest neighbors model is not as physical. Thus, pure consensus 

simulations were not done with nearest neighbors.  

3.2.2 Frustration 

Frustration is necessary for emergence. With nearest neighbors, depending on the 

frustration method, we can see emergence. Alpha turns, with the proper parameter value, did 

exhibit emergence. More about the alpha parameter is discussed next. 

Comparing α turns and U-turns cause a boid to turn tells us that a more realistic turning 

model also allows for emergent behavior. A sharp turn occurs in one step. A smooth turn, in 

contrast, occurs over multiple steps. Determining the smoothness of a frustration method is 

mostly visual. U-turns are inherently sharp and are not very physical in birds. Other groupings of 

animals, like fish or insects, may exhibit this behavior however. α turns tend to be smoother, 

leading to a more physical looking animation. 

The alpha parameter allows for emergence when it is in a specific range of values: α = 

0.35-0.75. This range was determined empirically by varying alpha and observing how that 

affected the emergent behavior of the boids. Alpha determines the strength of the turn. For 

convenience, Equation (6) is replicated below with θ being the velocity direction and 𝜙 being the 

polar angle of the boid’s position. 

𝜃𝑛𝑒𝑤 = 𝜙 − 𝜋 + 𝛼 ∗ 𝜃𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

 The general behavior is to take the radial direction of the boid, subtract π, and add the current 

direction of the velocity multiplied by some scalar for the new velocity direction. The larger α is, 

the more the boid tends toward its current direction of motion. If α is between 0.35 and 0.75, it 

pulls the boid toward the center. If it is too low then the boids do not exhibit any emergent 

behavior. If it is too high, then the boids end up going in roughly the same direction and slowly 
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spiral out of the basin. This happens because the frustration is not strong enough to pull the boids 

back in. The boids then keep on a course that slowly spirals out. 

3.3 Conclusion 

Looking at the alpha turn frustration method and its parameter range, we can derive 

general rules for a frustration method to follow. It should vary with some sort of parameter: for 

our model that parameter is C from Equation (5), and it also needs to vary based on some 

parameter of the object you are modelling: in our case it is ri, the boid’s radial distance from the 

origin. C is a random number from a uniform distribution from zero to one. Our parameter ri 

varies between zero and the basin size, typically six, but the basin size is fairly arbitrary. 

A boid must be able to reverse its direction within a short number of iterations. Without 

this feature, a boid tends toward a dynamic phase, and is not be able to break out of that phase. A 

boid getting trapped in a dynamic phase is due to the averaging effects of consensus in our 

model. More generally, if an object, like a boid, cannot deviate from its current trajectory 

sufficiently, it is unable to avoid a dynamic phase.  

The frustration method must not be too strong, but it must have a meaningful impact on a 

boid’s motion. In Equation (5), the exponent f determines how strong the frustration is. A large 

value for f means it is very strong, a small value means it is weak. Because C varies randomly, 

the point at which the frustration calculations are used varies with each check. The range we use 

for C is fine, but you could scale it or the basin size and achieve the same effect. 

Graphs give us another way to analyze and manipulate flocks of boids. Strongly connected 

components tell us if and how the flock is split up. Knowing that allows us to better gauge if the 

model is physical or not, since real flocks of birds split.  
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Dynamic edges do not perform well. At best they almost approximate the nearest neighbor 

method. Whether the dynamic edges were functions of time, functions of space, or were simply 

turned on or off, they consistently performed worse than the static edges. It may be possible to 

contrive a set of dynamic edges that allow for emergence. However, it is not the most physical 

way to model bird interactions. 

3.4 Suggestions for future work 

Other models of consensus and frustration should be developed. Alternatives to or other 

interpretations of the rules found in Attanasi et al.1 could be created. Other, more physical 

frustration methods could also be explored as in this other senior thesis.3  

While I only used strongly connected components to analyze the flock, there are many 

other algorithms in graph theory.10 For example, finding the longest, or shortest, path between 

any two boids could provide information about how long, or how quickly, it takes a change to 

propagate through the graph at any step in the simulation.  

This is a field where machine learning could prove a useful tool. Machine learning could 

be used to identify emergent models. This could be done with supervised learning. Training 

could be done on various aspects of the data and analytics generated by our models. 12-14 

Machine learning could also be used to generate novel models. This could be done with 

unsupervised learning or by determining rules with which an emergent model must obey and 

training a machine learning model to generate emergent models. Markov chains could be a 

component of the underlying network.12-14 There are many avenues to explore with emergence 

and machine learning, especially with models that lend themselves to easy numerical analysis.  
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Appendix 

Code 

 Here is the link to the GitHub repository where this code is stored: 

https://github.com/Sotaur/Boids. The whole code is also included in the zip file that this thesis 

can be found in.  

https://github.com/Sotaur/Boids
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