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ABSTRACT

GENERAL RELATIVISTIC MODELS OF ROTATING

ASTRONOMICAL OBJECTS

Ryan Tanner

Department of Physics and Astronomy

Bachelor of Science

The problem of modeling rotating astronomical objects is one central to as-

trophysics. Because most, if not all, astronomical bodies are rotating, an un-

derstanding of this problem has universal application. We will be considering

two rotating astronomical systems. The first system we will consider will be

a rotating galaxy. We will use the van Stockum metric [1] in order to find an

equation for the tangential velocity of a galaxy. There are problems associated

with the van Stockum metric including the occurrence of closed timelike curves

in the presence of matter. These problems prevent the van Stockum metric

from being used to describe a physical system. The second system that we will

consider will be a rotating neutron star, which is the type of star that creates a

pulsar. Following the work of Cook, Shapiro and Teukolsky (CST) [2] we will

discuss the methods used and derive the Green’s function that can be used to

find the coefficients of the metric. We will also derive the source terms using



the Einstein Equations. Then we will consider an extension to the problem

done by CST by relaxing the assumption of circularity. We will create the

corresponding Einstein tensors and other associated tensors.
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Chapter 1

Introduction

A question that has always intrigued astronomers is the origin and nature of the plan-

ets and stars. When Isaac Newton introduced his law of gravitation it became possible

to begin to explain the structure and motion of these massive objects. Newton’s law

of gravity gave insight into the forces involved in holding a massive body together

under the infulence of its own gravitiational field. It was only natural to consider the

problem of how an astronomical body would be affected by its rotation. In fact this

problem was first investigated in a systematic way by Isaac Newton when he consid-

ered how rotation would affect the shape of the earth. In his Principia he considered

the earth to be a homogeneous mass with constant angular momentum. The rotation

would slightly deform an otherwise spherical earth and give it a slight bulge at the

equator. In Newton’s investigation he considered the rotation and the resulting bulge

to be small. While these initial steps were important the greatest advancements in

how to model a rotating astronomical object came in the 1700’s when Alexis-Claude

Clairaut and Colin Maclaurin were able to first model self-gravitating spheroids that

were still roughly spherical, but the breakthrough came in 1740 when Maclaurin pub-

lished his book A Treatise on Fluxions in which he was able to model spheroids that

1



2 Chapter 1 Introduction

were highly oblate. Because of his groundbreaking work these oblate spheroids that

depart radically from spherical form were named the Maclaurin Spheroids.

While the work of Maclaurin and Clairaut was important for laying the ground-

work of how we consider self-gravitating rotating fluids, our modern understanding

and formulation of the problem comes from the work of Leonhard Euler, the Marquis

Pierre-Simon de Laplace and Adrien-Marie Legendre. In 1755 Euler was able to give

the conditions of hydrostatic equilibrium which describe the balancing of forces inside

and at the surface of a static fluid. Later, from their investigations of the work done

by Maclaurin and Clairaut, Laplace developed his equation for finding potentials and

Legendre introduced his series of polynomials. Their work was followed by the work

of Siméon-Denis Poisson who developed his equation to describe the potential of a

body with a given distribution.

The work of these pioneers became the standard for considering how to describe

a self-gravitating fluid which is the basic model for galaxies, stars and planets. For

our purposes, we are interested in how these ideas apply to galaxies and stars, but

we will be considering general relativistic models of stars and galaxies. Essentially we

are investigating the general relativistic analogue of astrophysical models that have

already been worked out in Newtonian Physics. In the case of modeling a galaxy our

motivation is to see if the general relativistic model can reproduce the results of the

Newtonian model and also see if it coincides more closely to observation. In the case

of modeling stars we will consider the special case of neutron stars and first consider

the Newtonian case for rapidly rotating neutron stars and then consider the general

relativistic case.
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With the introduction of general relativity in 1915 a natural avenue of investigation

was to consider spherical fluids much like those investigated by Newton, Maclaurin,

Laplace and all the others who contributed to the work. When Karl Schwarzschild

found the first exact solution to the Einstein field equations in 1915, he did so by

assuming spherical symmetry. While his solution was a convenient approximation

for most astronomical calculations, the basic assumptions made by Schwarzschild

prevented it from truly representing astronomical systems. While most astronomical

bodies are roughly spherical, thus satisfying Schwarzschild’s assumption of symmetry,

all known astronomical bodies are rotating, which Schwarzschild’s solution did not

account for. So while his solution can be used as a good general approximation to

solving problems in general relativity, it does not account for all or even a majority

of possible physical configurations.

In the following years an effort was made to find other exact solutions to the

Einstein field equations. One of these was a solution by Willem van Stockum with

“dust” as the matter source. In 1937 van Stockum presented his exact solution to

the Einstein field equations at the annual meeting of the Edinburgh Mathematical

Society. His solution included the assumptions of axisymmetry, rotation and a cylin-

drical spacetime. The reason why his solution is referred to as a “dust” is because

van Stockum also assumed that the matter in the spacetime acted as a pressureless

fluid, which in general relativity is often called dust. This was the first time that a

solution had been found that accounted for the rotation of the matter. But along

with the introduction of his exact solution, van Stockum also introduced the pos-

sibility of closed timelike curves. This presented a problem because closed timelike

curves provide for the violation of causality. Thus, this van Stockum solution may be

a convenient exact solution to the Einstein field equations, but there is some question
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as to its usefulness in representing physical systems.

In 1963, Roy Kerr introduced the Kerr solution which assumed axisymmetry and

stationarity. The Kerr solution, unlike the van Stockum solution, was asymptotically

flat, which allowed for the modeling of physical systems. Because the universe is dy-

namic we are interested in applying these solutions to dynamic systems and figuring

out how a curved spacetime would affect motion. In the following years a number

of methods were developed to solve the equations of motion of rotating astronom-

ical objects using the Einstein field equations. Some methods included expressing

the equations of motion as differential equations while others employed methods of

integration, such as Green’s function techniques, to express the equations of mo-

tion. Either way, the goal was to find equilibrium configurations which could then

be evolved through time using numerical techniques. Through these means a wider

range of physical systems could be investigated. Certain assumptions and simplifica-

tions could be relaxed, such as allowing for differentially rotating matter as opposed

to rigidly rotating matter. With modern computational techniques and the collective

research and experience of years of investigation we may see new ways of solving these

problems that allow us to see general relativistic effects never seen before. The doors

may be opened to modeling more realistic systems that may account for and explain

the wonders and diversity that we observe in the universe.

In this investigation we will consider a few types of axially symmetric solutions

to the Einstein Equations, along with some applications. In Chapter 2 we will use

the van Stockum solution to find a method for modeling a rotating galaxy, and then

consider the implications and problems with using this particular solution to the field

equations. In Chapters 3, 4 and 5 we will deal with methods of modeling a rotating
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neutron star. In Chapter 3 we will first consider the corresponding classical case and

methods employed to solve the problem. The same problem will then be considered in

Chapter 4 using general relativity with an intent to find similar effects to those found

in the classical case. In Chapter 5 of this work we will relax some of our constraints

on how the matter inside the star can move and allow for effects such as convection

inside the star, while including electromagnetic effects, to find a solution to the field

equations that can be used to find equilibrium configurations of a neutron star.
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Chapter 2

Rotating Galaxies

2.1 Method and Motivation

One of the puzzles of modern astrophysics is resolving the discrepancy between the

observed motion of galaxies and theoretical predictions of their motion. In the 1930’s

the astronomer Fritz Zwicky attempted to model the motion of a galaxy cluster using

Newtonian mechanics. When he compared his calculations to astronomical observa-

tion of the Coma cluster of galaxies he found that his prediction was off by factor

of 500 [7]. At that time he postulated that there was additional matter distributed

throughout the cluster inbetween the individual galaxies. The ability to confirm this

prediction through observing the rotation of an individual galaxy did not exist be-

cause of technological limitations.

It was not until the 1970’s that Ostriker, Peebles and Yahil noted a discrepancy

between the computed mass of galaxies using an assumed mass-to-light ratio and

the calculated mass based on the observed motions of galaxies [8]. In some cases

they found a difference of a factor of 10 or more. About the same time astronomers

7



8 Chapter 2 Rotating Galaxies

developed equipment sensitive enough to measure the rotation of individual galax-

ies. Rubin, Ford and Thonnard were able to make these measurements with enough

precision to determine the tangential velocity of the galaxy at different radii [9]. A

plot of the tangential velocity with respect to the radius is called a rotation curve

for the galaxy (see for example Fig. 2.1). In a subsequent paper Rubin et.al. [10]

presented additional evidence and showed that their work supported the claims made

by Ostriker et.al. These observations showed that most stars in the galaxy moved

with fairly uniform velocity regardless of how far they were from the galactic axis

of rotation. This observation and the failure of classical models to explain it came

to be known as the problem of flat rotation curves (see Fig. 2.1). This discrepancy

between Newtonian theory and observation lead to the idea of dark matter. In order

to bring astronomical data into agreement with their calculations, astronomers pos-

tulated that there is a large halo of dark matter surrounding the galaxies that does

not interact with normal matter through electromagnetic radiation yet interacts with

visible matter through gravity. This condition that exotic dark matter interacts with

visible matter only through gravity prevents us from observing it through a telescope,

and therefore presents a problem in determining what it is. Current observations [12]

of the mass of dark matter put it at more than five times the mass of the visible

matter in the galaxy.

Historically, the motion of individual galaxies has been modeled using only New-

tonian gravity. We will explore a method of modeling a rotating galaxy in general

relativity. This is done with the intent of finding the tangential velocity of a galaxy

at any given radius. The purpose of this chapter is to investigate a method that can

produce galactic rotation curves, especially the flat rotation curves observed in many

galaxies. It was suggested by Cooperstock [13] that the flat rotation curves could be
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Figure 2.1 This illustrates the tangential velocity of matter in a galaxy. The
solid line shows the actual velocities and the dotted line gives the Newtonian
prediction without exotic dark matter.

produced without having to introduce a halo of dark matter as a correction to the

theoretical prediction.

One of the two main reasons why Newtonian gravity has been used instead of gen-

eral relativity is because comparable problems are linear when done using Newtonian

mechanics. It should be noted that modeling the dynamical gravitational problem in

Newtonian mechanics is non-linear, but the calculation of the gravitational potential

can be treated as a linear problem. Kent [14] took advantage of this linearity to

construct a model of a galaxy with three discrete components, consisting of a galactic

bulge, the galactic disk and a spherical halo of dark matter. Van Albada, Bahcall,

Begeman and Sancisi [15] used a similar approach but only considered a galactic

bulge, or sphere, with an exponentially decreasing disk of matter. These approaches

were both conceptually and mathematically easier than using general relativity, which



10 Chapter 2 Rotating Galaxies

does not allow for linear superposition of gravitational potentials.

The main reason why Newtonian mechanics was used in modeling galaxies was

due to the weak gravitational field. In the weak gravitational limit general relativity

should reduce to Newtonian gravity. Because of the low average density of a galaxy

the correction due to general relativity was assumed to be so small as to be unde-

tectable when compared with the Newtonian result. Even by assuming the existence

of supermassive black holes at the galactic center to increase the average density of

the galaxy, the resulting gravitational field was assumed to be too weak to see any

significant departure from Newtonian predictions. Even with these considerations we

may assume that the correction may be small but we will not know how it affects the

overall system until we actually calculate it. It is for these reasons that we should not

make any a priori assumptions as to the extent of the correction supplied by general

relativity. Cooperstock has argued [13] that the correction arises from the inherent

non-linear nature of general relativity. Thus we will consider the method proposed by

Cooperstock and assess its validity and ability to reproduce the flat rotation curves

of galaxies.

2.2 Derivation of the Cylindrical Metric

In this section we will show the derivation of the van Stockum metric [1]. The van

Stockum metric is characterized by being stationary and also axisymmetric with cylin-

drical symmetry.

If we consider a privileged observer O whose worldline forms a timelike geodesic

g then there exists a 3-space S consisting of all spacelike geodesics orthogonal to g.
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Figure 2.2 An observer O on S whose worldline forms a timelike geodesic g.
The 3-space S is everywhere orthogonal to g. Time is measured the observer
by moving along g.

The observer O defines his position on g by a parameter t. The universe is considered

stationary if, as the observer O moves along g, he can detect no change in the geom-

etry of S. Thus it follows that the coefficients of the metric must be independent of

t. This is equivalent to defining a timelike Killing vector. The universe is said to be

axially symmetric if there exists a single privileged geodesic a such that in all direc-

tions in S normal to a space is indistinguishable (i.e. there is no preferred direction).

Of necessity this geodesic a must pass through every point of g and be orthogonal

to it. These assumptions are equivalent to the existence of a second Killing vector,

which is spacelike. Both Killing vectors are assumed to be hypersurface orthogonal

with closed orbits. When we say that the Killing vectors are hypersurface orthogonal

we mean that the Killing vectors define hypersurfaces to which they are orthogonal.

To define a coordinate system for the spacetime we choose the unit vector a, and

two unit vectors in Σ to form an orthogonal triad (see Fig. 2.3). This triad can be



12 Chapter 2 Rotating Galaxies

Figure 2.3 The observer O in S, observes a privileged spacelike geodesic
a such that space in all directions orthogonal to a, forming a surface Σ, is
indistinguishable. A coordinate system is set up in the space such that z is
a measure along and parallel to a, and r and φ lie in Σ with r as a measure
of the length from a and φ being an azimuthal coordinate.

used to set up a system of geodesic cylindrical co-ordinates with r being the length of

a geodesic connecting any arbitrary point to O. We can define z as the measurement

of length along and “parallel” to a, and φ can be defined as the azimuthal angle. By

propagating the orthogonal triad parallelly along g we can define a co-ordinate system

in every S with r, z, φ and t being the co-ordinates. From our assumption of axial

symmetry by defining a spacelike Killing vector, we know that the coefficients of the

metric must be independent of the azimuthal angle φ. Furthermore because of our

choice of co-ordinates and how they are defined it can be seen that the t-lines must

be normal to the r-lines. This can be shown by holding r, z, φ constant and observing

the line defined by t through a point. This line is described by propagating the radial

vector from g which by definition is normal to g. The curve described by propagating

the t-line is everywhere orthogonal to the radial vector. Similarly from the definition

of axisymmetry we can show that the t-lines are orthogonal to the z-lines. Consider
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a surface Σ in S formed by all points geodesically normal from a. As Σ is propagated

in either t or z if there is any discernable difference in the intrinsic geometry of Σ

then this would violate the basic assumption on a, that it is a privileged geodesic

such that in all directions in S normal to a space is indistinguishable.

Thus from these assumptions we find that the off diagonal coefficients of the metric

gtr = 0 and gtz = 0, and the metric takes on the general form:

ds2 = H(dr2 + dz2) + Ldφ2 + 2Mdφdt− Fdt2 (2.1)

Where H,L,M and F can be functions of r and z based only on the assumptions

about the spacetime. Additionally, the coefficients are determined by assumptions

about the presence of matter in the system and differential equations resulting from

the Einstein equations.

2.3 Solutions to the Einstein Equations

Similar to the method used by Cooperstock and Tieu [13], we will be using the axially

symmetric van Stockum [1] metric. This metric describes the shape of spacetime and

defines a cylindrical coordinate system in t, r, z and φ for all calculations. Cooperstock

takes the form of the metric to be:

ds2 = −eν−w(udz2 + dr2)− r2e−wdφ2 + ew(cdt−Ndφ)2 (2.2)

Here it should be noted that we do not set c to 1. Using this metric we can solve the

Einstein equations to find the gravitational field of a cylindrical distribution of matter.

To define the stress-engery tensor we will assume that the galaxy is a pressureless fluid,

or dust. By assuming a pressureless fluid the stress-energy tensor becomes:

T ab = ρuaub (2.3)
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ua represents the four velocity, where ρ is the density of the fluid. It is advantageous to

work in a frame that is rotating with the matter so in this case we set ua = δa
t . Using

Maple and doing some simplifications by hand, we find that the Einstein equations

can be simplified down to:

8πc2ρ = −N
2
r +N2

z

r2eν
(2.4)

0 = Nrr +Nzz −
Nr

r
(2.5)

0 = N2
r +N2

z + 2r2(νrr + νzz) (2.6)

0 = 2rνr +N2
r −N2

z (2.7)

0 = rνz +NrNz (2.8)

Subscripts denote differentiation with respect to the subscripted variable.

2.3.1 Solutions to the Rotation Curves

We would like to find an analytical solution to the rotation curves of a galaxy using

the solutions to the Einstein Equations. To do this we now must find an expression for

the angular velocity, and we do this by first introducing two Killing vectors, Xa = δa
φ

and T a = δa
t . The angular velocity can now be expressed as:

ω =
φ̇

ṫ
=
uφ

ut

=
uaXa

ucTc

=
gabu

aXb

gcducT d

=
gaφu

a

gctuc
=
gtφ

gtt

=
−Newc

ewc2

ω = −N
c

(2.9)

We see from (2.9) that the angular velocity of a galaxy is dependant on the metric

coefficeint N . Equation (2.5) can be solved analytically to get a solution for N which
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we can use to find the angular velocity of the galaxy. Using separation of variables

(2.5) becomes:

0 =
R′′

R
+
Z ′′

Z
− 1

r

R′

R
(2.10)

where we have assumed N = R(r)Z(z). We define R(r) = rψ, and note that ψ is a

function of r only and Z is a function of z only. Primes denote differentiation with

respect to those variables. This equation can be separated out into:

ψ′′

ψ
+

1

r

ψ′

ψ
− 1

r2
= −k2 (2.11)

Z ′′

Z
= k2 (2.12)

where k2 is a real separation constant. These equations yield the solutions:

ψ(r) = AJ1(kr) +BY1(kr) Z(z) = C1e
kz + C2e

−kz (2.13)

We can simplify this problem by applying boundary conditions that constrain the

solution on the axis and also keep the solution finite in the z direction. We do this by

considering a cylinder with radius a and height h. We start by requiring ψ(r) to be

finite on the axis. Because the Bessel function of the second kind (or the Neumann

function), denoted by Y1 blows up at r = 0 when we apply the boundary condition we

set B = 0 leaving us with the Bessel function J1. We further require that ψ(a) = 0.

By making this assumption we are assuming that the galaxy has a finite radius and

that there is no rotation at the edge of the galaxy. To satisfy this boundary condition

we require km = αm

a
where αm is the mth zero of the J1 function.

At this point we have our choice of boundary conditions for the z direction of the

galaxy. Based on our choice of boundary conditions we will find different solutions

for Z(z). Cooperstock [13] chose to model the galaxy as an infinite cylinder in the

z direction. This assumption gave him a solution involving a decaying exponetial
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in z direction. Even though this assumption may make the solution appear simpler

it creates problems as will be discussed in section 2.4. Below is the equation for

tangential velocity as given by Cooperstock.

V = −c
∞∑

m=1

kmBmJ1(kmr)e
−km|z| (2.14)

An alternate way of finding a solution would be to assume a finite height, h, to the

cylinder. If we assume that Z(±h) = 0 then we find that C1 = C2 = 0 causing N = 0

and thus removing the rotation from the system. If we assume that Z(±h) 6= 0 then

the problem does not reduce to the trivial solution. By setting Z(±h) equal to some

constant, f , we find:

C1 = C2 =
f

2 cosh(kh)

This gives the solution for Z(z) as:

Z(z) =
f

2 cosh(kh)
(2 cosh(kz)) (2.15)

Combining this with our solution for ψ(r) we can write the solution for N .

N(r, z) =
f

2 cosh(kh)

∞∑
m=1

AmJ1(kmr) (2 cosh(kz)) (2.16)

Using the orthogonality of J1 we can find Am to be:

Am =
1

2 cosh(kh)aJ2(kma)2

∫ a

0

rJ1(kmr)dr (2.17)

Using (2.9) and the solution for N (2.16) we can find exact solutions for the

tangential velocity using V = ωr. This gives us the following as the solution for

tangential velocity:

V = − f

2 cosh(kh)

∞∑
m=1

Am
r

c
J1(kmr) (2 cosh(kz)) (2.18)

Equation (2.18) will allow us to find the tangential velocity of a galaxy at any given

radius which then can be fitted to astronomical data. This hopefully would repro-

duce the flat rotation curved discussed in section 2.1, but there are some problems
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with this method that make the results non-physical as will be discussed in section 2.4.

2.4 Objections

There have been objections raised by some physicists [16–19] to Cooperstock’s model.

According to Vogt [19] and Korzynski [18] Cooperstock’s model fails because accord-

ing to his calculations, in the plane of the galaxy there exists a disk of infinite density.

This disk results from the absolute value that appears in the exponential in equation

(2.14). This, they argue, constitutes the dark matter that Cooperstock did not add

into his calculations. Cooperstock argued that this was just a mathematical artifact

and that had no physical interpretation. He countered that away from the galactic

axis his model could accurately reproduce the rotation curves [20].

Other objections to the method proposed by Cooperstock include the claims made

by Bratek et al. [21] that the van Stockum class of metrics requires that all solutions

that are asymptotically flat be massless. This can be seen by returning to the general

form of the metric (2.1). According to the derivation given by van Stockum [1] if we

suppose M to be a function of r only, the coefficients of the metric become:

H = e−a2r2

(2.19)

L = r2(1− a2r2) (2.20)

M = a3cr4 (2.21)

F = c2(1 + a2r2 + a4r4) (2.22)

In these equations a is a constant of integration and c is the speed of light. From

(2.20) we see that it is necessary for ar < 1 or else the coefficient on dφ2 will be
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negative inside the cylinder. If the coefficient on dφ2 were negative then that would

make the angular coordinate a timelike coordinate. So in order to prevent having two

timelike coordinates we assume that the cylinder must have a maximum radius. We

denote the maximum radius of the cylinder by R, where R is the value of r on the

boundary of the cylinder. The equation for the density, which is dependant on M ,

can be written as:

κµ = 4a2e−a2r2

(2.23)

Where κ = 8πG
c4

and G is Newton’s gravitational constant. Resulting from the deriva-

tion of the coefficients of the metric we find the angular velocity ω of the cylinder to

be:

ω = ac (2.24)

If we define the density at the axis to be µ0 then the density equation (2.23) becomes:

8πG

c4
µ0 = 4a2 (2.25)

Solving this equation for a and substituting into (2.24) we get an equation for ω that

is dependent on the density on the axis µ0.

ω =
√

2πGµ0 (2.26)

Using (2.24) and the previously mentioned constraint (ar < 1) for the maximum

radius R we can find a relation for the maximum radius of a spacetime of a given

density subject to (2.26).

ωR < c (2.27)

It should be noted that R is not an invariant length, but the invariant length repre-

senting the radius can be found with the equation:

R′ =

∫ R

0

e−
1
2
a2r2

dr (2.28)
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where R′ denotes the invariant radius of the spacetime. It is important to point out

here that this relation defines a maximum radius for the spacetime if there is any

matter present. In other words if there is any matter present (i.e. µ0 6= 0) in the

spacetime then the exterior solution does not go to an asymptotically flat solution at

infinity. If there is no matter present (i.e. µ0 = 0) then the case is trivial and the

metric reduces down to Minkowski space in cylindrical coordinates. But if matter is

present then the relationship (2.27) holds and determines a maximum radius R. As

a note, the upper limit of R is the same for a rotating cylinder in the special theory

of relativity. To understand the problems of a spacetime that is not asymptotically

flat it is useful to consider the motion of a particle, traveling either with the rotation

of the spacetime or contrary to the rotation of the spacetime. The motion of this

particle lies along a φ-line where with a certain angular velocity this φ-line describes

a geodesic in the spacetime. We start out by writing the Lagrangian as:

d

ds

∂T

∂x′i
− ∂T

∂xi
= 0

where

T = H(r′2 + z′2) + Lφ′2 + 2Mφ′t′ − Ft′2

and i = 1, 2, 3, 4 and primes denote differentiation with respect to some arc s. If we

assume r = constant and z = constant the Lagrangian reduces to

d

ds

∂T

∂r′
− ∂T

∂r
= 0

This produces a quadratic formula for dφ/dt which is the definition of angular velocity

ω.

L,rdφ
2 + 2M,rdφdt− F,rdt

2 = 0 (2.29)

where subscripts indicate differentiation. Using solutions for L, M and F ((2.20),

(2.21) and (2.22) respectively) we can solve the quadratic and we get two roots,
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namely:

ω1 = ac (2.30)

ω2 = −1 + 2a2r2

1− 2a2r2
ac (2.31)

The first root produces the angular velocity of the rotating cylinder. In other words,

a particle following a geodesic traveling with the rotation of the spacetime will travel

with the same angular velocity of the spacetime. The second root describes the mo-

tion or angular velocity of a particle that is traveling contrary to the rotation of the

spacetime, or the angular velocity that it must have for it to travel contrary to the

rotation and follow a geodesic.

The tangent vectors of the worldlines of these particles must be timelike and in

order to check this we consider surfaces of constant r and z. In other words we are

considering the null directions in φ and t. Accordingly the metric reduces to:

Ldφ2 + 2Mdφdt− Fdt2 = 0 (2.32)

Again we have a quadratic for dφ/dt which we can solve to produce:

Ω1 =
1− a3r2

1− a2r2

ac

ar
(2.33)

Ω2 = −1 + a3r2

1− a2r2

ac

ar
(2.34)

Here we can interpret Ω1 as the angular velocity of a photon along a surface of con-

stant r and z in the direction of the rotation of the spacetime. Likewise Ω2 represents

the angular velocity of a photon traveling contrary to the rotation of the spacetime.

If we take the limit of (2.33) as ar → ∞ we find that it approaches ac from above.

This means that ω1 < Ω1 for all values of r. Because the tangent vector of the particle

in the null direction is always greater than the angular velocity of the spacetime the



2.5 Conclusion 21

worldline of a particle moving with the rotation is always timelike. If we consider the

motion of a particle moving contrary to the rotation of the cylinder as described by

(2.31), with (2.34) we can find that if ar = 1
2

then Ω2 = ω2. This means that as

ar → 1
2

then the velocity of the particle as it moves contrary to the motion of the

cylinder approaches the speed of light. Beyond this value the particle cannot follow

a φ-line in this sense, it will be dragged along with the cylinder.

Again returning to (2.31) we see that as ar → 1√
2

then the angular velocity, ω2,

goes to infinity. The φ-lines represent the circumference of the spacetime at a given

radius. If we calculate the invariant length of a given φ-line using:

l =

∫ 2π

0

r(1− a2r2)
1
2dφ = 2πr(1− a2r2)

1
2 (2.35)

we see from this equation that the length achieves a maximum when ar = 1√
2
. Above

this value the length, meaning the length of the φ-lines, decreases until ar → 1 then

l → 0. In this case if we consider a surface of constant z then all geodesics normal

to the axis will converge again at the boundary. In other words, at the boundary the

geodesics reduce to a line, an antipole to the axis of symmetry. From this we see that

for the van Stockum metric, if there is any matter present in the spacetime then it

cannot be asymptotically flat.

2.5 Conclusion

While this approach offers a different explanation of dark matter it has some diffi-

culties in presenting a physical system. The objections raised must be considered,

especially that if there is any matter present then the spacetime does not admit an

asymptotically flat solution. The idea that general relativity, or even using a proper

configuration of matter, can compensate for at least some of the additional mass
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needed for calculations to agree with observation warrants further investigation. In

1985 van Albada, Bahcall and Begeman [15] offered a possible Newtonian model for

galaxies that did not have to include a halo of dark matter, but this author has not

been able to investigate the validity of this claim. It is for these reasons that addi-

tional investigation of this idea might prove beneficial. It is possible that a correction

to the estimate of how much dark matter there is could be made but it seems unlikely

that a method could be found which does away with dark matter all together.



Chapter 3

A Rotating Star in the Classical

Regime

3.1 Introduction and Background

In 1968 Antony Hewish and Jocelyn Bell Burnell [22] announced their discovery of

astronomical objects that emit pulsed radio signals, which have since been named

pulsars. That same year Thomas Gold proposed that the source of these periodic ra-

dio signals were rotating neutron stars [23] [24]. He came to this conclusion by noting

that the period of the radio signal coincided with the expected period of rotation for

a neutron star. A year later Ostriker and Gunn [25] followed up the research of Gold,

by exploring the implications of his proposal. They found that due to the rotation of

the neutron star with a magnetic field, the star will emit large amounts of magnetic-

dipole radiation and also they assumed through gravitational radiation, which can

accelerate charged particles to relativistic energies. Because of the magnetic-dipole

radiation, the accelerated particles will concentrate into a beam along the axis of the

dipole, and that due to the orientation of the beam relative to the earth, coupled

23
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with the precession of the magnetic axis the radio signal would appear to pulse (see

Fig. 3.1). It was the success of these initial calculations that prompted further inves-

tigation into modeling rotating neutron stars.

In the classical case, rotating stars are generally treated as Maclaurin spheroids.

Maclaurin spheroids are self gravitating fluids described by solving the Navier-Stokes

equations for the case of an incompressible, homogenous and uniformly rotating fluid.

The resulting shapes are aptly called spheroids because while the basic topology may

be spherical, rotation causes the body to deform and become oblate. The ellipticity

of a spheroid is calculated by the following equation:

ε =
Re −Rp

Re

In the above equation Re is the equatorial radius, Rp is the polar radius and ε is the

ellipticity or eccentricity of the spheroid, 0 ≤ ε ≤ 1. For slowly rotating bodies the

oblateness may be small as in the case of the earth, which has an ellipticity of .0033529.

In the case of a rapidly rotating star the rotation may cause severe deformation

of the star. The spin will cause it to bulge out at the equator. This bulging would

correspond to an increased ellipticity. When the ellipticity is large (i.e. close to 1)

we begin to see effects that are of particular interest. It is in the case of a rapidly

rotating star, as reported by Shapiro, Teukolsky and Nakamura [26], that as the

star loses angular momentum J, the star’s angular velocity Ω will actually increase.

Normally, when a rotating body loses angular momentum its angular velocity will

decrease and as the star loses energy, the star will begin to spin down. But in the

case of large ellipticity the exact opposite can occur. This is due to fact that the

moment of inertia I of the star depends indirectly on its rotation. A highly oblate
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Figure 3.1 For astronomical objects, the axis of rotation and the magnetic
axis do not align. In the case of a strongly magnetized neutron star a beam
of radiation is created along the magnetic axis. Due to the rotation of the
star this beam will sweep out an arc in space. For an observer on the Earth
the signal would appear to pulse on and off as the rotation brings it both
into and out of alignment with the Earth.
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star will have a different moment of inertia than a more spherical star of the same

mass. As a rotating star loses energy, and therefore angular momentum, its ellipticity

will decrease. This redistribution of matter will change the moment of inertia of the

star. For a slowly rotating star a decrease in the angular momentum will not signifi-

cantly change the shape and moment of inertia of the star. But for a rapidly rotating

star, due to its high oblateness, a decrease in J can significantly decrease I. In this

case Ω may increase, meaning that as the star loses angular momentum it will spin-up.

3.2 Spin-Up of a Rapidly Rotating Neutron Star

Ostriker and Gunn [25] proved that for a uniformly rotating star that slowly loses

energy the energy loss E is related to the loss of angular momentum in the following

way:

dJ

dt
=

1

Ω

dE

dt
(3.1)

This is based on the assumption that the neutron star is rotating almost rigidly, or

that the physical configuration of the star changes very little in the period of one

rotation. The actual mechanism of energy loss could be through electromagnetic

or gravitational radiation. Shapiro, Teukolsky and Nakamura [26] used the above

relation to show the spin-up of neutron stars with a specific adiabatic index. To show

this, it is advantageous to rewrite (3.1) in a form that can indicate whether the spin

of the star is increasing or decreasing independent of the actual mechanism of energy

loss. Considering J to be a function of Ω, using the chain rule we can rewrite (3.1)

as:

dE

dt
= Ω

dJ

dΩ

dΩ

dt
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If we assume conservation of baryon mass M and entropy S, we can use the following

relationship to rewrite the above equation.

dΩ =

(
∂Ω

∂J

)
M,S

dJ

The subscripted M and S denote holding the mass and entropy constant. Using this

we can rewrite (3.1) in the following form:

dE

dt
=

1

(∂Ω/∂J)M,S

Ω
dΩ

dt
(3.2)

Where it is evident that the sign of dΩ/dt depends on the sign of (∂Ω/∂J)M,S. dE/dt

is negative because we are considering energy loss. Writing (3.1) in this form is also

useful in that the derivative in the denominator does not depend on the actual mech-

anism of energy loss but only on an equilibrium sequence of evolution.

Finn and Shapiro [27] were able to show that for polytropic stars with indices

approaching n = 3 (that is, an adiabatic index of 4/3 where the index γ = 1 + 1/n)

the derivative, (∂Ω/∂J)M,S, became negative, where the negative sign corresponds to

the spin-up of neutron stars as they lose energy.

In [26] the authors mention that it is convenient to convert the equations of hydro-

static equilibrium in a dimensionless form in order to solve them numerically. They

cite James [28] where he defines the dimensionless quantities:

v =
Ω2

2πGρc

M̃(v) =
M

4πα3ρc

(3.3)

Ĩ(v) =
I

α5ρc

where G is Newton’s gravitational constant, ρc is the density at the center of the
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spheroid and α is a unit of length defined as:

α =

[
(n+ 1)K

4πG
ρ−1+1/n

c

]1/2

(3.4)

and

K =
P

ρ1+1/n
(3.5)

where K is the polytropic constant and P is the pressure.

The equations (3.3) can be rewritten in an alternative set of dimensionless pa-

rameters in order to study the evolutionary sequences of neutron stars along curves

of constant mass and entropy. Following [26] we introduce the parameters:

Ω∗ =
Ω

[2πGρc(0)]1/2
=

[
M̃(0)

M̃(v)

]n/(3−n)

v1/2 (3.6)

J∗ =
J

Mα2(0)[2πGρc(0)]1/2
=
Ĩ(v)v1/2

4πM̃(v)

[
M̃(0)

M̃(v)

](2−n)/(3−n)

(3.7)

Where the (0) denotes the spherical, nonrotating body on the sequence with equiv-

alent values of M, K and n. With this notation the evolution of the stars can be

plotted in the Ω∗−J∗ plane as they slowly lose J. In this plane the stars will follow a

unique equilibrium curve parameterized by v and the dimensionless quantities (3.6)

(3.7). Returning to (3.2) we can find the sign on the differential (∂Ω/∂J)M,S from

(3.6) (3.7) in the following way:

J

Ω

(
∂Ω

∂J

)
M,S

=
d ln Ω∗

d ln J∗

=

(
− n

3− n

d ln M̃

dv
+

1

2v

)/(
d ln Ĩ

dv
+

2n− 5

3− n

d ln M̃

dv
+

1

2v

)
(3.8)

If we take the limit as n→ 3 we get:

lim
n→3

d ln Ω∗

d ln J∗
= − n

2n− 5
= −3 (3.9)
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Thus for values of n approaching 3, corresponding to an adiabatic index of near

4/3, the sign of the differential becomes negative making the change in the angular

velocity positive with a negative change in the energy or angular momentum. But

this relationship only holds for values of n sufficiently close to 3, otherwise the star

will become unstable before the sign of the differential changes.

3.3 Conclusions

An important aspect of this analysis is to understand the mechanism that might lead

to a rapidly rotating pulsar. Because of the method used we demand that the star in

question be homogeneous, incompressible and uniformly rotating. A good candidate

to satisfy all three of these conditions is a neutron star, thus we can assume that a

the most likely candidate for a pulsar is a neutron star. Once we find a relationship

between angular momentum and energy (3.1), it is advantageous to rewrite it in a

manner (3.2) that determines whether or not the star will spin up or spin down inde-

pendent of the mechanism of energy loss. We can now introduce several dimensionless

quantities which can make computation easier and more intuitive. These quantities

will depend on the polytropic index n which determines the adiabatic constant γ.

Thus for a constant mass and a constant entropy we can find the change in the spin

of the star for a specific value of n.

We see from (3.9) that if the polytropic index is sufficiently close to 3 and for a

rapidly rotating system, the star can spin up while losing energy. For smaller values

of n the star will become unstable through excessive rotation, before it reaches the

point where it can spin up while losing energy.
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Chapter 4

A Rotating Star in General

Relativity

4.1 Introduction and Background

About the same time that astrophysicists were considering rotating neutron stars in

the classical regime they also began to consider them in general relativity. Because

mechanics is more complex in general relativity than in Newtonian physics it took

a few more years to build a foundation from which to work. In their paper pub-

lished in 1971 Bardeen and Wagoner [29] considered methods for modeling rotating

astronomical objects in general relativity. Their analysis assumed a rapidly rotat-

ing, pressureless fluid that had been flattened out into a disk. Later Wilson [30]

introduced numerical methods for solving the Einstein equations with the inclusion

of pressure, but his methods were criticized [31] because in order to make his system

asymptotically flat he had to make some Newtonian approximations. Later Bonazzola

and Schneider [32] developed numerical techniques that allowed analysis of rapidly

rotating bodies but were able to do it with a nonzero pressure and not necessarily

31
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confined to the flattened disks that were studied by Bardeen and Wagoner. An im-

portant result of the work of Bonazzola and Schneider was that they introduced a

method of solving the equations of motion by placing them in integral form. This

will prove to be an especially important result for our consideration because it allows

the equations to be solved using Green’s functions.

In 1975 Butterworth and Ipser [31] and then in 1976 Butterworth [33] published

papers explaining numerical methods of modeling rapidly rotating stars treated as

fluids. They expressed the equations of motion in differential form as opposed to

the integral form of Bonazzola and Schneider, and they were also successful in defin-

ing proper boundary conditions, which had been problematic for Wilson. Butter-

worth and Ipser used methods developed for classical mechanics by Stoeckly [34] and

James [28]. Later in 1986 Friedman, Ipser and Parker [35] were able to construct

models of rapidly rotating neutron stars which were based on equations of state. Ko-

matsu, Eriguchi and Hachisu [36] revisited the method of Bonazzola and Schneider

using a similar integral notation for their equations of motion to obtain polytropic

models of rapidly, uniformly rotating neutron stars. Three years later Cook, Shapiro

and Teukolsky (CST) [2] published their work on differentially rotating neutron stars

that extended the work done by Komatsu et al., and which correlated to the work

done by Shapiro, Teukolsky and Nakamura (STN) [26], which was explained in chap-

ter 3. In this chapter we will consider the method developed by CST in modeling a

differentially rotating neutron star. Essentially we are considering the general rela-

tivistic analog to the work of STN.
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4.2 General Relativistic Hydrodynamics

For the following consideration we assume stationarity and axisymmetry. We achieve

stationarity by defining a timelike Killing vector field. We likewise get axisymmetry

by defining a spacelike Killing vector field that vanishes on the axis of rotation, and

has closed orbits. We also assume that the Killing vectors are hypersurface orthogo-

nal. Additionally we make the assumption of circularity, which restricts the motion

of the fluid to latitudinal motion (i.e. no meridional motion).

Simply put, circularity means that the matter in the star travels parallel to the

equator in a circle. This means that there is no motion in the radial or azimuthal

directions (i.e. the r and θ directions). A representation of the flow of matter with

the assumption of circularity is shown in figure 4.1. By assuming circularity we can

simplify the equations so that they become relatively easier to solve. To see how

this simplifies our equations we note that the assumption of circularity restricts the

motion of matter to the t and φ directions. This is accomplished by the previously

mentioned introduction of two Killing vectors which are hypersurface orthogonal.

Thus the motion of the matter is restricted to the t and φ directions and the compo-

nents of the metric are restricted to the r and θ directions. This orthogonality results

in cancelation of terms that will be noted in the following derivations.

Similar to the form of the metric given by Komatsu et al. [36] we have:

ds2 = −eγ+ρdt2 + e2α(dr2 + r2dθ2) + eγ−ρr2 sin2 θ(dφ− ωdt)2 (4.1)

In the metric ρ, γ, α and ω are functions of r and θ only. We also set G = 1 and

c = 1. We define the stress energy tensor as:

T ab = [ρ0 + ρi + P ]uaub + gabP
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Figure 4.1 The basic assumption of circularity is that the matter inside the
star moves in a circular direction parallel to the equator. There is no motion
in the r and θ directions. The only parameters that determine motion are t
and φ.
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In the stress energy tensor ρ0 is the rest energy density, ρi is the internal energy

density, P is the fluid pressure and ua is the matter four velocity. We can define

the proper velocity of the matter with respect to a zero angular momentum observer

(cf. [37]) by:

v = (Ω− ω)r sin θe−ρ (4.2)

Here we define Ω as the angular velocity as measured from infinity. That is Ω =

dφ/dt = (dφ/dτ)/(dt/dτ) = uφ/ut. From this we can find the fluid four velocity

which is:

ua =
e−(ρ+γ)/2

(1− v2)1/2
[1, 0, 0,Ω] (4.3)

4.3 The Equation of Hydrostatic Equilibrium

In this section we will give the derivation of the equation of hydrostatic equilibrium.

The equation of hydrostatic equilibrium is important because it describes the equi-

librium configurations of the matter, based on the density, rotation and pressure of

the fluid. The equations for the rotation and density will be found using the Einstein

equations which we can then use with the equation of hydrostatic equilibrium to find

the pressure. For our present case we will assume for the system the condition of cir-

cularity. Thus we will need to find a differential equation that involves the density ρ0,

the internal energy ρi, the pressure P , the four velocity uµ and the angular velocity

Ω as all of these either are part of or are related to the equation of state. Using the

vanishing of the divergence of the stress-energy tensor, the derivation of the equation

of hydrostatic equilibrium is as follows:

0 = ∇aT
ab

0 = ∇a

[
[ρ0 + ρi + P ]uaub + gabP

]
(4.4)
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In equation (4.4) above, the covariant derivative can be brought through the density,

internal energy and pressure terms because of our assumption of circularity and the

introduction of a spacelike and a timelike Killing vectors. Circularity makes the four

velocity (4.3) have components only in the t and φ directions and the introduction of

Killing vectors makes ρ0, ρi and P to be functions of r and θ only. Thus ua∇a[ρ0 +

ρi +P ] = 0, thereby eliminating one term resulting from the product rule. This gives

us:

0 = [ρ0 + ρi + P ]
[
∇au

a · ub + ua∇aub

]
+∇bP (4.5)

A careful examination of equations (4.4) and (4.5) will reveal that the index on the

last term in (4.5) is lowered while the corresponding term in (4.4) is raised. This

is because the pressure, P , is a scalar and is invariant under transformations. If we

consider the first term in (4.5), it gives us:

∇au
a · ub =

1√
−g

· ∂a(
√
−gua) · ub = 0

As mentioned previously this depends on our assumption of circularity which involves

the introduction of the two Killing vectors. The metric coefficients are functions of

r and θ only and those are the only derivatives that survive, but when contracted

with the four velocity it is identically zero. We will simplify the second term in (4.5)

below.

ua∇aub = ua∂bub − uaΓc
abuc

= −uauc ·
1

2
gcd[∂agbd + ∂bgad − ∂dgab]

= −uaud 1

2
[∂bgad] (4.6)

We have again used circularity and the Killing vectors to cancel out the first and last

terms in the above equation. Note that the minus sign in (4.6) will not be carried
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through after (4.6), but it is reintroduced in (4.9). This is simply a convenience for

deriving the equation. We use the inverse product rule to expand the result into:

uaud 1

2
[∂bgad] = −1

2
∂b

(
gadu

aud
)

+
1

2
∂bu

a · gadu
d +

1

2
∂bu

d · gadu
a

=
1

2

(
∂bu

a · ua + ∂bu
a · ua

)
= ua∂bu

a

Here we separate the above result into the t and φ components and use the fact that

uφ = Ωut to rewrite the result.

ua∂bu
a = ut∂bu

t + uφ∂bu
φ

= ut∂bu
t + uφ∂b(Ωu

t)

= ut∂bu
t + uφ · ∂bΩ · ut + uφ · Ω∂bu

t

= (ut + uφΩ)∂bu
t + utuφ · ∂bΩ (4.7)

We need to now consider the coefficient, (ut + uφΩ), on the first term in order to

simplify (4.7). Recalling the definition of Ω = uφ

ut

= (ut + uφΩ)

= (ut + uφ
uφ

ut
)

=
1

ut
(utut + uφu

φ)

= − 1

ut
(4.8)

The simplification to the last line above is done because uau
a ≡ −1 and uau

a =

utu
t + uru

r + uθu
θ + uφu

φ. But uru
r = uθu

θ = 0 and thus, uau
a = utu

t + uφu
φ.

Putting the result (4.8) back into (4.7) we can continue with the derivation for the
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equation of hydrostatic equilibrium.

ua∂bu
a = − 1

ut
∂bu

t + utuφ · ∂bΩ

= −∂b(lnu
t) + utuφ · ∂bΩ

= −
(
− ∂b(lnu

t) + utuφ · ∂bΩ
)

(4.9)

ua∇aub = ua∂bu
a = ∂b(lnu

t)− utuφ · ∂bΩ (4.10)

The last line is the result of simplifying the second term in (4.5). All together the

derivation and the result becomes:

0 = ∇aT
ab

0 = [ρ0 + ρi + P ]
[
ua∇aub

]
+∇bP

0 = −[ρ0 + ρi + P ]
(
∂b(lnu

t)− utuφ · ∂bΩ
)

+∇bP

In the last line the ∇bP can be written as ∂bP because P is a scalar. To get this into

the form given in CST we note that it can be rewritten in the following form.

∂bP = [ρ0 + ρi + P ]
(
∂b(lnu

t)− utuφ · ∂bΩ
)

From this we write two separate equations replacing the index b with r and θ repec-

tively.

∂rP = [ρ0 + ρi + P ]
(
∂r(lnu

t)− utuφ · ∂rΩ
)

∂θP = [ρ0 + ρi + P ]
(
∂θ(lnu

t)− utuφ · ∂θΩ
)

We can insert these into the definition of the absolute derivative of P to get:

dP = ∂rPdr + ∂θPdθ

dP = [ρ0 + ρi + P ]
[(
∂r(lnu

t)− utuφ · ∂rΩ
)
dr +

(
∂θ(lnu

t)− utuφ · ∂θΩ
)
dθ

]
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This last form of the equation can then be rewritten in the following form again using

the definition of the absolute derivative and bringing dP back to the right hand side.

0 = dP − (ρ0 + ρi + P )[d lnut − utuφdΩ] (4.11)

This corresponds to equation (12) in [2] with the exception of a minus sign on the

last term. In the final form of the equation it can be integrated to find the pressure

of the fluid based on the rotation of the the fluid.

4.4 Green’s Functions

As mentioned in the introduction to this chapter, an important result of the method

established by Bonazzola and Schneider [32] is putting the Einstein equations into

integral form, allowing them to be solved using Green’s function technique.1 The

Green’s function technique can be used in solving cartain boundary value problems.

In our case we are considering a two dimensional Green’s function problem. We will

be seeking a solution to the differential equation given below, which involves the

general form of the differential operator that appears in all our elliptic equations.

[
∇2 +

n

r
∂r −

nµ

r2
∂µ

]
ξ = S(r, µ) (4.12)

In the above equation S(r, µ) represents the source terms. The actual source terms

are not important for this discussion but will be discussed in section 4.5. We are also

using the transformation µ = cos θ as used in CST. Here ∇2 is the flat space Lapacian

in spherical coordinates. When we apply the trasformation µ = cos θ the Lapacian is

written as:

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1− µ2

r2

∂2

∂µ2
− 2µ

r

∂

∂µ

1This section was originally worked out by my colleague Steve Taylor who explained it to me.
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For simplicity we will use L to signify the differential operator we are using in our

problem. It is convenient to use the Green’s function technique because the Green’s

function only depends on the differential opperator used and the boundary conditions.

The Green’s function is independent of the source terms. A Green’s function is defined

as the function such that when the operator L is applied to it, it results in delta

function source terms.

LG(x, x′) = δ(x− x′)

We want to find a general solution for ξ. To do this we start with the divergence

theorem from which we can derive Green’s identity.∫
V

∇ · ~AdV =

∮
S

~A · n̂da

We will define ~A ≡ (p · u∇v− p · v∇u) where u, v and p are arbitrary funtions which

will be defined later. Putting this value in for ~A we have:∫
V

∇ · (p · u∇v − p · v∇u)dV =

∮
S

(p · u∇v − p · v∇u) · n̂da

This form of Stokes’ theorem is Green’s second identity. From this form we expand

the left hand side and simplify to write the above equation in the form:∫
V

[
u∇ · (p∇v)− v∇ · (p∇u)

]
dV =

∮
S

(p · u∇v − p · v∇u) · n̂da

We will make the assumption that our differential operator L is of the form L =

∇ · (p∇).With this assumption the above equation can be written as follows.∫
V

[uLv − vLu]dV =

∮
S

(p · u∇v − p · v∇u) · n̂da

Because we have not yet defined u and v we can set v = ξ and u = G. Using the fact

that Lξ = S and LG = δ(x− x′) we rewrite the equation as:∫
V

[
GS − ξδ(x− x′)

]
dV =

∮
S

(p ·G∇ξ − p · ξ∇G) · n̂da
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We can rearrange this into a convenient form to get:

ξ(x′) =

∫
V

GSdV −
∮

S

(p ·G∇ξ − p · ξ∇G) · n̂da

In this form we see we have a solution for ξ based on the Green’s function, the

source term and boundary conditions. We will assume Dirichlet boundary conditions

where ξ is a known function at the boundary. Because we want our soution to be

asymptotically flat we set ξ = 0 and G = 0 on the boundary. This reduces our soution

for ξ down to:

ξ(r′, µ′) =

∫
G(r, r′, µ, µ′)S(r, µ)drdµ

In this general form of the solution we have inserted the variables r and µ which we

are using for our current problem.

If we are to solve for a function, ξ, using the Green’s function technique then ξ

must satisfy certain boundary conditions which we describe below. It should be noted

that −1 ≤ µ ≤ 1, and a subscript denotes a derivative with respect to that variable.

The first two boundary conditions, given below, indicate that the function and its

first derivative in µ should be equivalent at µ = 1 and µ = −1. This means that there

can be no discontinuities in the function or in the first derivative on the boundaries

for which the Green’s function will be used.

ξ(r, 1) = ξ(r,−1) ξµ(r, 1) = ξµ(r,−1)

The next two boundary conditions respectively constrain the function with respect

to r at infinity and on the axis. That is, this prevents the function from blowing up

at infinity and on the axis when the operator is applied to it.

|ξ(0, µ)| <∞ lim
r→∞

ξ(r, µ) = 0
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Earlier we made the claim that our operator is of the form L = ∇·(p∇). As expressed

in (4.12) the operator is not of this form. But it can be put in to this form if we

multiply it by the arbitrary function p. That is, if we define the operator as L̃ = pL,

where L̃ is the operator that will be used in the Green’s function technique and L

is the operator as it appears in (4.12). This places a constraint on p which we must

now solve for. We do this by having the operators act on an arbitrary function f and

set them equal to each other.

L̃f = pLf (4.13)

In the above equation we insert L̃ = ∇ · (p∇) and L =
[
∇2 + n

r
∂r − nµ

r2 ∂µ

]
and now

we can solve for p.

∇ · (p∇)f = p
[
∇2 +

n

r
∂r −

nµ

r2
∂µ

]
f

p · ∇2f +∇p · ∇f = p∇2f + p
n

r
∂rf − p

nµ

r2
∂µf

∇p · ∇f = p
n

r
∂rf − p

nµ

r2
∂µf

(∂rp)(∂rf) +
1− µ2

r2
(∂µp)(∂µf) = p

n

r
∂rf − p

nµ

r2
∂µf

In the last line we simply expanded the lefthand side taking in mind the transforma-

tion µ = cos θ. We can equate the coefficient terms in front of the ∂rf and the ∂µf ,

and equate them in the following way.

∂rp = p
n

r
(4.14)

1− µ2

r2
∂µp = −pnµ

r2
(4.15)

The first equation, (4.14) can easily be solved to get p = c(µ)rn, where c(µ) is an

unknown function of µ. We put this solution into the second equation, (4.15), and

solve to get the constraint on p.

p = (1− µ2)n/2rn (4.16)
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Using this result we can write the operator L̃ which we can use to solve the Green’s

function problem. Thus the full operator becomes:

L̃ = (1− µ2)n/2rn
[
∇2 +

n

r
∂r −

nµ

r2
∂µ

]
(4.17)

Returning to the definition of a Green’s funtion LG(x, x′) = δ(x−x′) and using (4.17)

we can write the Green’s function problem as:

(1− µ2)n/2rn
[
∇2 +

n

r
∂r −

nµ

r2
∂µ

]
G(n)(r, µ) =

1

r2
δ(r − r′)δ(µ− µ′) (4.18)

Because the Green’s function is dependent on the value of n found in the operator

we will denote this dependence with a superscript (n) on all associated functions.

Now that we have the form of the operator, the next step is to solve for the Green’s

function G(n) which will be used to find the functions from which we can solve for

the coefficients of the metric. This topic will be covered in Section 4.5. We can solve

the above equation using separation of variables, but to make the problem simpler

we will rewrite the equation in the following form:

∂

∂r

(
rn+2∂G

(n)

∂r

)
+

rn

(1− µ2)n/2

∂

∂µ

[
(1−µ2)1+n/2∂G

(n)

∂µ

]
=

1

(1− µ2)n/2
δ(r−r′)δ(µ−µ′)

(4.19)

We let G(n) = R(n)(r)P (n)(µ) and we can separate (4.19) in the following way.

R(n)′′ +
n+ 2

r
R(n)′ − λ2

r2
R(n) = 0 (4.20)

(1− µ2)P (n)′′ − 2µ(1 + n/2)P (n)′ + λ2P (n) = 0 (4.21)

Here we introduce λ2 as the separation constant. The first equation has solutions of

the form:

R(n)(r) = r

(
−n−1±

√
(n+1)2+4λ2

)
/2 (4.22)

We see that (4.21) is a Legendre type equation and can be solved using the Frobenius

method. This method entails assuming a solution of the form:

P (n)(µ) =
∞∑
l=0

alµ
l (4.23)
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Putting this into (4.21) we get:

0 =
∞∑

l=−2

(l + 2)(l + 1)al+2µ
l +

∞∑
l=0

[λ2 − l(l − 1)− l(n+ 2)]alµ
l

From this we can find the recursion relation:

al+2 =
λ2 − l(l + n+ 1)

(l + 2)(l + 1)
al (4.24)

This relation is subject to the following limitation in order for it to converge.

lim
l→∞

∣∣∣∣al+2µ
l+2

alµl

∣∣∣∣ < 1

If we put in the recursion relation in (4.24) this will reduce to:

lim
n→∞

∣∣∣∣λ2 − l(l + n+ 1)

(l + 2)(l + 1)
µ2

∣∣∣∣ < 1 (4.25)

This relation can be satified if |µ| < 1 but previously we mentioned that |µ| ≤ 1 that

is µ must include 1 as a possible value. Thus we conclude that this series cannot

be infinite and must be finite. In order to limit the series we see that if we set

λ2 = l(l + n + 1) that at this value for λ2 the recursive coefficeints become zero

and thus setting a maximum limit for the series. This means that for the system to

converge there must be a maximum l given by the condition:

λ2 = l(l + n+ 1)

The maximum value for λ2 will be given by l and the solution will be expressed as

P
(n)
l . The full solution for P

(n)
l will become:

P
(n)
l (µ) =

l∑
k=0

l(l + n+ 1)
[
1−

(
kn+ (k! + 1)

)]k

(2k)!
µl (4.26)

The normalization for P
(n)
l we will express as N

(n)
l and is given below.

N
(n)
l =

∫ 1

−1

∣∣∣P (n)
l (µ)

∣∣∣2 dµ (4.27)
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With the relation for λ2 we can return to equation (4.22) and put in the condition

for λ and simplify the result to find:

R(n)(r) = r

(
−n−1±(2l+n+1)

)
/2

The ± in the exponetial give us two possible solutions, namely:

R(n)(r) =

 rl

r−(l+n+1)

We want the solution for the radial part, R(n)(r) of the Green’s function, G(n)(r, µ),

to be bounded at 0 and at ∞. We acomplish this by using the nature of the Green’s

function where we divide the range of the radial part into two parts using the param-

eter a, one from 0 ≤ r < a and the other from a < r ≤ ∞. We will then solve the

homogeneous equation in both parts and then match them at a. The general solution

for the radial part is given below.

R(n)(r) =

 c1r
l + c2r

−(l+n+1) 0 ≤ r < a

c3r
l + c4r

−(l+n+1) a < r ≤ ∞

In the equation above c1, c2, c3 and c4 are constants. To constrain the solution when

r = 0 we set c2 = 0 and to constrain the solution when r = ∞ we set c3 = 0. This

leaves us with the following as the solution to the radial part.

R(n)(r) =

 c1r
l 0 ≤ r < a

c4r
−(l+n+1) a < r ≤ ∞

(4.28)

From this we can find c1 and c4 by using the fact that the Green’s function must be

continuous at r = a and the first derivative must be discontinuous at r = a. In this

case the discontinuity in the first derivative is equal to 1
p(a)

. We solve for c1 and c4

and find:

c1 = −a
−(l+n+1)

A
c4 = −a

l

A
(4.29)
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In the above equations A is the Wronskian of a−(l+n+1) and al multiplied by p(a). A

is given below.

A =
(1− µ2)n/2(2l + n+ 1)

a2

Putting this in to (4.29) c1 and c4 become:

c1 = − a2

(1− µ2)n/2(2l + n+ 1)
a−(l+n+1) c4 = − a2

(1− µ2)n/2(2l + n+ 1)
al (4.30)

Putting (4.30) back into (4.28) we find:

R(n)(r) =

 − a2

(1−µ2)n/2(2l+n+1)
a−(l+n+1)rl 0 ≤ r < a

− a2

(1−µ2)n/2(2l+n+1)
alr−(l+n+1) a < r ≤ ∞

(4.31)

With this we have the general solution for the Green’s function subject to the solu-

tion for R(n)(r) given in (4.31) and the solution for P
(n)
l (µ) given in (4.26) and the

normalization, N
(n)
l of P

(n)
l (µ) given in (4.27).

G(n)(r, µ) =
∞∑
l=0

1

N
(n)
l

P
(n)
l (µ)R(n)(r) (4.32)

This will be the function that we will integrate to solve for the unknown variables in

the metric, as will be explained in the next section.

4.5 Solutions

Using the general form of the differential operator given in section 4.4 we can set

up field equations which can be used to solve for ρ, γ and ω which are functions of

the metric (4.1). We build the differential operators out of the Einstein equations

by combining different components. The remaining terms not used in the differential

operator will constitute the source terms. All non-zero components on left hand side

of the Einstein equations are given in Appendix A. Using the general differential

operator (4.12), we set n = 0, 1, 2 to get three differential operators which will be
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used to solve for ρ, γ and ω respectively. Thus the field equations for ρ, γ and ω

become:

∇2[ρeγ/2] = Sρ(r, µ) (4.33)(
∇2 +

1

r
∂r −

µ

r2
∂µ

)
[γeγ/2] = Sγ(r, µ) (4.34)(

∇2 +
2

r
∂r −

2µ

r2
∂µ

)
[ωe(γ−2ρ)/2] = Sω(r, µ) (4.35)

where Sρ, Sγ and Sω are defined as follows:

Sρ(r, µ) = eγ/2

{
8πe2α(ρ0 + ρi + P )

1 + v2

1− v2
+

1

r
γ,r −

µ

r2
γ,µ

+
ρ

2

[
16πe2αP − γ,r

(
1

2
γ,r +

1

r

)
− 1

r2
γ,µ

(
1− µ2

2
γ,µ − µ

)]
+r2(1− µ2)e−2ρ

(
ω2

,r +
1− µ2

r2
ω2

,µ

)}
(4.36)

Sγ(r, µ) = eγ/2

[
16πe2αP +

γ

2

(
16πe2αP − 1

2
γ2

,r −
1− µ2

2r2
γ2

,µ

)]
(4.37)

Sω(r, µ) = e(γ−2ρ)/2

{
ω

[
µ

r2

(
2ρ,µ +

1

2
γ,µ

)
+

1

4
(4ρ2

,r − γ2
,r) +

1− µ2

4r2
(4ρ2

,µ − γ2
,µ)

−r2(1− µ2)e−2ρ

(
ω2

,r +
1− µ2

r2
ω2

,µ

)
− 1

r

(
2ρ,r +

1

2
γ,r

)
−8πe2α 1

1− v2

(
(1 + v2)(ρ0 + ρi) + 2v2P

)]
−16πe2α Ω− ω

1− v2
(ρ0 + ρi + P )

}
(4.38)

The subscripts with a comma denote differentiation with respect to that variable. We

build the differential operators by combining terms in the Einstein equations in the

following manner. The equation for ρ (eqn. (4.33)) is made by combining terms in

the following way:

Gφ
φ −Gt

t − 2ωGt
φ +

1

2
ρ(Gµ

µ +Gr
r) = 8π

(
T φ

φ − T t
t − 2ωT t

φ +
1

2
ρ(T µ

µ + T r
r )

)
(4.39)

The equation for γ (eqn. (4.34)) is made by combining:

Gr
r +Gµ

µ = 8π(T r
r + T µ

µ ) (4.40)
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The equation for ω (eqn. (4.35)) is made by combining:

Gφ
t −

r2

4
(1− µ2)ω

[
Gr

r +Gµ
µ + 2(Gφ

φ −Gt
t + 2ωGt

φ)
]

= 8π

[
T φ

t −
r2

4
(1− µ2)ω

[
T r

r + T µ
µ + 2(T φ

φ − T t
t + 2ωT t

φ)
]]

(4.41)

Using the components of the Einstein tensor as given in Appendix A, the above equa-

tions will reduce down (with a little rearranging) to the desired differential equations

and source terms so that we can solve for the variables, ρ, γ and ω, of the metric using

the Green’s function technique discussed in section 4.4 above. We can find solutions

of the differential equations (4.33)–(4.35) using the general solution of the Green’s

function (4.32). This produces:

ρeγ/2 =

∫
G0(r, r′, µ, µ′)S(r, µ)drdµ (4.42)

γeγ/2 =

∫
G1(r, r′, µ, µ′)S(r, µ)drdµ (4.43)

ωe(γ−2ρ)/2 =

∫
G2(r, r′, µ, µ′)S(r, µ)drdµ (4.44)

The superscripts on G denote the value of n used in the general form of the oper-

ator (4.12). These can be integrated to solve for the different variables ρ, γ and ω

respectively.



Chapter 5

A Rotating Star Without

Assuming Circularity

5.1 Introduction

In Chapter 4 we made certain assumptions about the spacetime which simplified the

problem but also restricted the possible motion of matter in the star, and thus could

not represent a complete picture of the physical system. The three assumptions made

in previous general relativistic considerations of rotating bodies have been station-

arity, axisymmetry and circularity. A stationary spacetime is defined by a timelike

Killing vector. An axisymmetric spacetime is defined by a compact spacelike Killing

vector field. The circularity condition constrains the motion of the matter to circular

or latitudinal motion parallel to the equatorial plane. In this chapter we will still as-

sume the existence of two Killing vectors but we will relax the circularity assumption

to allow that the fluid velocity not be restricted to latitudinal motion. This will allow

for motion such as convection and motion towards and away from the equator along

with poloidal motion (that is, motion from pole to pole). A representation of this is

49
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given in figure 5.1. This type of motion is closer to the actual motion of matter that

we would expect to find in a star. Thus by relaxing the circularity condition we will

be able to create a more realistic model of a neutron star.

Using the two Killing vectors we will perform a double Kaluza-Klein decomposi-

tion on the spacetime. In considering the two Killing vectors on our spacetime we

will not assume hypersurface orthogonality. Thus when we apply one of the Killing

vectors onto an arbitrary metric the result will be a congruence of curves defined by

the Killing vector and a three dimensional projection operator that can also function

as a three dimensional metric. The application of the second Killing vector will leave

us with a two dimensional metric.

From the resulting metric we will be able to solve the Einstein equations and find

the equations of motion similar to what was done in Chapter 4. By relaxing the

circularity assumption and also by including electromagnetic effects our equations

will be more complicated but we will still be able to put them into a form so that the

equations can be solved using the Green’s function technique.

5.2 The Metric and Relevant Tensors

We start by defining two Killing vectors, a timelike Killing vector defined as Xµ =

(1, 0, 0, 0) and a spacelike Killing vector defined as Nµ = (0, 0, 0, 1). The normaliza-

tion of the vectors we will define as follows:

XµXµ = s2 NµNµ = −q2
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Figure 5.1 If we do not assume circularity then matter is free to move
towards and away from the poles and is not constrained to move parallel
to the equitorial plane. The matter still moves axisymmetrically, but now
matter can also move in the θ and r directions. This allows for convenction
and poloidal motion (motion from pole to pole).
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For convenience we will rescale the timelike Killing vector in the following way:

Y µ =
Xµ

s2

We will now apply the Killing vector Xµ to the 4-metric and perform the timelike

decomposition of the 4-metric γµν . When we do this we can define a projection

operator gµν which also serves as a 3-metric.

gµν = γµν − s2YµYν (5.1)

Using (5.1) as a projection operator we can define a three dimensional projection of

the spacelike Killing vector, Nα, as follows:

3Nµ = gα
µNα = γα

µNα − s2Y αYµNα = Nµ −NφYµ =
(
1, 0, 0,−Nφ

s2

)
As a comment on notation, to indicate a three dimensional object we will use a pre-

superscript of 3, and to indicate a two dimensional object we will use a presuperscript

of 2. We can now find the normalization of 3Nµ, which we will define as −Q2.

3Nµ3Nµ = −
[
q2 +

(
Nφ

s2

)2]
= −Q2

Just as we did for the timelike Killing vector we will introduce a rescaling of 3Nµ and

define it as:

Mµ =
3Nµ

Q2

We can now perform the second Kaluza-Klein decomposition with σµν representing

the two dimensional projection operator and which will also function as a 2-metric.

The fully decomposed metric becomes:

γµν = 2σµν −Q2MµM ν + s2Y µY ν (5.2)

Using the metric (5.2) we can rewrite all relevant tensors (i.e. the Einstein and

stress-energy tensors and other related tensors) and tensor-like objects (the Christoffel
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symbol) in a two dimensional form with additional pieces resulting from the two

killing vectors Mµ and Y µ. The rewritten tensors and other objects we will refer

to as decomposed tensors or objects, because we are breaking the four dimensional

object down into a projected two dimensional object. The derivations of the tensors

and tensor-like objects necessary for our problem are given in Appendix C. The bulk

of our work for this chapter is represented in the derivations and tensors given in

the appendicies. Some identities and definitions used in the derivations are given in

Appendix B.

5.3 Conclusion

As we mentioned at the begining of this chapter we are considering the same problem

as in Chapter 4 while relaxing some of our assumptions. Thus the purpose of this

work is to find solutions that can be solved using Green’s function technique similar

to the method used in Chapter 4. The next steps for this research are to see if we

can use the same combinations of the Einstein equations to reproduce the differential

operators and corresponding source terms given in Chapter 4. At the time of this

writing this is our current emphasis of investigation.
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Chapter 6

Conclusion

To put this work in perspective we need to consider the history of modeling astro-

nomical objects. Starting with Newton’s theory of gravity it became possible to

mathematically model rotating astronomical objects. The contribution of Maclaurin,

Laplace, Poisson and so many others gave us the fundamental methods of how to

model self-gravitating fluids. With the advent of general relativity a natural avenue

of investigation was to consider how to model systems in general relativity that pre-

viously had been worked out in Newtonian gravity. The simplest cases, such as the

Schwarzschild and Kerr metrics, could be considered as basic models of astronomical

objects. But these simpler models could not explain the full range of phenomena in

the universe. Thus to develop a system that is closer to physical reality we must relax

some of our assumptions and consider a more complex system.

In this particular work we are considering the corresponding general relativistic

models of systems previously developed in Newtonian gravity. In Chapter 2 we were

considering the general relativistic case to see if the results from general relativity

give different results from the Newtonian model. In our investigation of the rotating
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neutron star we were trying to get agreement between the general relativistic model

and the Newtonian model. We did this with the intent to establish a basis from which

we can work and then change some of our assumptions in order to consider different

possible models of rotating astronomical objects. Essentially this work is the next

step in the history of how to model rotating astronomical objects.



Appendix A

Solutions of the Einstein Tensor

We present here solutions to the left hand side of the Einstein equations using the

metric in [2]. These solutions are used in Chapter 4.

Gt
t =

1

2

1

r2e2α

[
r2γ,rr + 2r2α,rr + (1− µ2)γ,µµ − (1− µ2)ρ,µµ − r2ρ,rr +

r2

2
γ2

,r

− r2ρ,rγ,r + 3rγ,r +
1

2
(1− µ2)ρ2

,µ − (1− µ2)γ,µρ,µ + 3µρ,µ +
r2

2
ρ2

,r

− 3rρ,r − 2µα,µ +
1

2
(1− µ2)γ2

,µ − 3µγ,µ + 2(1− µ2)α,µµ + 2rα,r

]
+

1

4

(1− µ2)

e2(α+ρ)

[
(1− µ2)ω2

,µ + r2ω2
,r

]
− ωGt

φ

Gφ
φ =

1

2

1

r2e2α

[
r2γ,rr + 2r2α,rr + (1− µ2)γ,µµ + (1− µ2)ρ,µµ + r2ρ,rr

+
r2

2
γ2

,r + r2ρ,rγ,r + rγ,r +
1

2
(1− µ2)ρ2

,µ + (1− µ2)γ,µρ,µ − µρ,µ +
r2

2
ρ2

,r

+ rρ,r − 2µα,µ +
1

2
(1− µ2)γ2

,µ − µγ,µ + 2(1− µ2)α,µµ + 2rα,r

]
− 3

4

(1− µ2)

e2(α+ρ)

[
(1− µ2)ω2

,µ + r2ω2
,r

]
+ ωGt

φ
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Gr
r =

1

4

1

r2e2α

[
4(1− µ2)γ,µµ + r2γ2

,r + 4r2α,rγ,r + 6rγ,r + (1− µ2)ρ2
,µ

+ 2µρ,µ + r2ρ2
,r + 2rρ,r − 4(1− µ2)γ,µα,µ + 4µα,µ + 3(1− µ2)γ2

,µ

− 10µγ,µ + 4rα,r

]
− 1

4

(1− µ2)

e2(α+ρ)

[
(1− µ2)ω2

,µ − r2ω2
,r

]

Gµ
µ = −1

4

1

r2e2α

[
− 4r2γ,rr − 3r2γ2

,r + 4r2α,rγ,r − 6rγ,r + (1− µ2)ρ2
,µ

+ 2µρ,µ − r2ρ2
,r + 2rρ,r − 4(1− µ2)γ,µα,µ + 4µα,µ − (1− µ2)γ2

,µ

+ 2µγ,µ + 4rα,r

]
+

1

4

(1− µ2)

e2(α+ρ)

[
(1− µ2)ω2

,µ − r2ω2
,r

]

Gr
µ = −1

2

1

e2α

[
− 2α,µγ,r + γ,µγ,r −

µ

1− µ2
γ,r + ρ,µρ,r −

1

r
ρ,µ +

µ

1− µ2
ρ,r −

2

r
α,µ

− 2γ,µα,r −
1

r
γ,µ +

2µ

1− µ2
α,r + γ,rµ

]
+
r2(1− µ2)

2e2(α+ρ)
(ω,rω,µ)

Gt
φ = −1

2

(1− µ2)

e2(α+ρ)

[
r2ω,rγ,r − 2(1− µ2)ω,µρ,µ − 2r2ω,rρ,r + (1− µ2)ω,µγ,µ + 4rω,r

− 4µω,µ + r2ω,rr + (1− µ2)ω,µµ

]
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Identities

These are identities used in the derivations show in Appendix C.

4Xa = (0, 0, 0, 1) 4Na = (1, 0, 0, 0) Y a =
Xa

s2
Ma =

3Na

Q2

XµXµ = s2 4Nµ4Nµ = −q2 Zµν = ∂µYν − ∂νYµ Wµν = ∂µMν − ∂νMµ

3Nµ = Nµ −NφY
µ = (1, 0, 0,−Nφ

s2
) 3Nµ3Nµ = −Q2 = −

[
q2 +

(
Nφ

s2

)2]
3Xµ = 4Xµ +

1

q2
4Nµ · 4Xt Y α · ∂µσνα = 0 3NµY

µ = 0 Y µ∂µ = 0

Xασνα = 0 3Nασνα = 0 3Nασ
να = 0 Xασ

να = 0

Yα∂µσ
βα = 0 Mα∂µσ

βα = 0 σαβ∂µXα = 0 σαβ∂µ
3Nα = 0

3Nα · ∂µσνα = 0 Y µWµν = 0 MµWµν = 0 XµMµ = 0

3Nµ∂µ = 0 Y νZµν = 0 Yφ = 1 Yt =
Nφ

s2

MµN
µ = Mt ∂αY

α = ∂φ
1

s2
∂αM

α = ∂φ

(
− Nφ

Q2s2

)
−3Nα∂µ

(
3Nν

Q2
3Nα

)
= ∂µ(3Nν)

3Nα · s2Yν∂µYα = s2Yν · ∂
(
Nφ

s2

)
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Appendix C

Derivations

C.1 Four Christoffel

Below we show the decomposed four Christoffel. That is, we will break the four

Christoffel down into a two Christoffel and other terms resulting from the double

Kaluza-Klein decomposition. We will insert the decomposed 4-metric 5.2 into the

definition of the Christoffel and expand. As a reminder on notation, a tensor or other

comparable object with indices that has a presuperscript of 2 or 3 indicates that it

is a projected object into the two or three space. A presuperscript of 4 indicates the

full four dimensional object.

4Γλ
µν = 2Γλ

µν +
1

2
σλαΞµνα +

s2

2
Y λΣµν −

Q2

2
MλΩµν

In defining the four Christoffel we introduced the objects Ξµνα,Σµν and Ωµν that we

can use to simplify our calculation of the Ricci tensor. They have no physical meaning,
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but are useful for simplifying subsequent derivations. They are defined below:

Ξµνα =
[
s2(YµZνα + YνZµα)−Q2(MµWνα +MνWµα)

+MµMν∂α(Q2)− YµYν∂α(s2)
]

Σµν =
[
∂µ(s2Yν) + ∂ν(s

2Yµ)
]

Ωµν =

[
∂µMν + ∂νMµ + s2Yν∂µ

(
Nφ

s2

)
+ s2Yµ∂ν

(
Nφ

s2

)]
Here we give the derivation of the four Christoffel used in Chapter 5.

4Γλ
µν =

1

2
γλα(∂µγνα + ∂νγµα − ∂αγµν)

=
1

2
(σλα −Q2MλMα + s2Y λY α)

[
∂µ(σνα −Q2MνMα + s2YνYα)

+∂ν(σµα −Q2MµMα + s2YµYα)− ∂α(σµν −Q2MµMν + s2YµYν)
]

= 2Γλ
µν +

1

2
σλα

[
s2Yν∂Yα −Q2Mν∂µMα −Q2Mµ∂νMα

+s2Yµ∂νYα − ∂α

[
s2YµYν −Q2MµMν

]]
−Q

2

2
Mλ

[
Mα∂µ

[
σνα −Q2MνMα

]
+Mαs2Yν∂µYα

+Mα∂ν

[
σµα −Q2MµMα

]
+Mαs2Yµ∂νYα

]
+
s2

2
Y λ

[
Y α∂µ

[
σνα + s2YνYα

]
− Y αQ2Mν∂µMα

+Y α∂ν

[
σµα + s2YµYα

]
− Y αQ2Mµ∂νMα

]

= 2Γλ
µν +

1

2
σλα

[
s2(YµZνα + YνZµα)−Q2(MµWνα +MνWµα)

+MµMν∂α(Q2)− YµYν∂α(s2)
]

−Q
2

2
Mλ

[
∂µMν + ∂νMµ + s2Yν∂µ

(
Nφ

s2

)
+ s2Yµ∂ν

(
Nφ

s2

)]
+
s2

2
Y λ

[
∂µ(s2Yν) + ∂ν(s

2Yµ)
]

= 2Γλ
µν +

1

2
σλαΞµνα +

s2

2
Y λΣµν −

Q2

2
MλΩµν
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In the last line we introduced the objects Ξµνα,Σµν and Ωµν that we can use to

simplify our calculation of the Ricci tensor. They have no physical meaning, but are

useful for simplifying subsequent derivations. They are defined below.

Ξµνα =
[
s2(YµZνα + YνZµα)−Q2(MµWνα +MνWµα)

+MµMν∂α(Q2)− YµYν∂α(s2)
]

Σµν =
[
∂µ(s2Yν) + ∂ν(s

2Yµ)
]

Ωµν =

[
∂µMν + ∂νMµ + s2Yν∂µ

(
Nφ

s2

)
+ s2Yµ∂ν

(
Nφ

s2

)]
In preparation of decomposing the four Ricci we will show a simplification of a

Christoffel symbol with two identical indicies.

4Γλ
µλ = 2Γλ

µλ +
1

2
σλα

[
s2YµZλα −Q2MµWλα

]
−1

2
Mλ∂µ(Q2Mλ) +

1

2
Y λ∂µ(s2Yλ)

−1

2
Mλ∂µ(Q2Mλ) = −1

2
∂µ(Q2MλMλ) +

1

2
Q2Mλ∂µM

λ

=
Q2

2
Mλ∂µ

(
1

Q2

)
· 3Nλ +

1

Q2
∂µ

(
− Nφ

s2

)
Xλ

= −1

2
Q2

(
− 2

Q3

)
∂µQ

= ∂µ ln (Q)

1

2
Y λ∂µ(s2Yλ) =

1

2s2
∂µs

2

= ∂µ ln (s)

4Γλ
µλ = 2Γλ

µλ + ∂µ ln (Q) + ∂µ ln (s)

= ∂µ ln
√
σ + ∂µ ln (Q) + ∂µ ln (s)

4Γλ
µλ = ∂µ ln (

√
σ · sQ) (C.1)
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C.2 Four Ricci

In this section we give the decomposed four Ricci which is used in Chapter 5. A

useful derivation of the Christoffel symbol with two identical indices is given above.

4Rµν = YµYν

[
− 1

2
24α

24αs2 − 1

2
24α ln (sQ) 24αs2 +

s4

4
2Zαβ

2Zαβ

+
s2

2
24α ln (s2) 24α ln (s2)− 1

2

s4

Q2
24α

(
Nφ

s2

)
24α

(
Nφ

s2

) ]
+MµMν

[
1

2
24α

24αQ2 +
1

2
24α ln (sQ) 24αQ2 +

Q4

4
2Wαβ

2W αβ

−Q
2

2
24α ln (Q2) 24α ln (Q2)− 1

2
s2 24α

(
Nφ

s2

)
24α

(
Nφ

s2

) ]
+(YµMν +MµYν)

[
s2

2
24α ln (sQ) 24α

(
Nφ

s2

)
+

1

2
24α

(
s2 24α

(
Nφ

s2

))
−Q

2s2

4
2Zαβ

2Wαβ − s2

2
24α ln (Q2) 24α

(
Nφ

s2

) ]
+(σγ

µYν + σγ
νYµ)

[
s2

2
24α ln (sQ) 2Zγα +

1

2
24α

(
s2 2Zγα

) ]
+(σγ

µMν + σγ
νMµ)

[
− Q2

2
24α ln (sQ) 2Wγα −

1

2
24α

(
Q2 2Wγα

) ]
+σγ

µσ
κ
ν

[
2Rγκ +

s2

2
2Zγα

2Zα
κ −

Q2

2
2Wγα

2W α
κ

−1

4
24γ ln (s2) 24κ ln (s2)− 1

4
24γ ln (Q2) 24κ ln (Q2)

+
1

2

s2

Q2
24γ

(
Nφ

s2

)
24κ

(
Nφ

s2

)
− 24γ

24κ ln (sQ)

]
Related to the four Ricci is the Ricci scalar, given below.

4R = 2R− 24α

(
1

sQ
24αsQ

)
− 1

sQ
24α

(
24αsQ

)
− s2

4
2Zαβ

2Zαβ +
Q2

4
2Wαβ

2Wαβ

− 1

s2
24αs

24αs− 1

Q2
24αQ

24αQ+
1

2

s2

Q2
24α

(
Nφ

s2

)
24α

(
Nφ

s2

)
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C.3 The Einstein Tensor

Using Rµν − 1
2
γµνR we can write down the Einstein tensor which is used in Chapter

5.

4Gµν = 2Gµν + YµYν

[
s2

Q
2�Q+

3

8
s4 2Zαβ

2Zαβ − 3

4

s4

Q4
24α

(
Nφ

s2

)
24α

(
Nφ

s2

)
−s

2

2
2R− 1

8
s2Q2 2Wαβ

2W αβ

]
+MµMν

[
− Q2

s
2�s+

3

8
Q4 2Wαβ

2Wαβ − 1

4
s2 24α

(
Nφ

s2

)
24α

(
Nφ

s2

)
+
Q2

2
2R− 1

8
s2Q2 2Zαβ

2Zαβ

]
+ (YµMν +MµYν)

[
s2

2
24α ln (sQ) 24α

(
Nφ

s2

)
+

1

2
24α

(
s2 24α

(
Nφ

s2

))
−Q

2s2

4
2Zαβ

2W αβ − s2

2
24α ln (Q2) 24α

(
Nφ

s2

) ]
+(σγ

µYν + σγ
νYµ)

[
s2

2
24α ln (sQ) 2Zγα +

1

2
24α

(
s2 2Zγα

) ]
+(σγ

µMν + σγ
νMµ)

[
Q2

2
24α ln (sQ) 2Wγα −

1

2
24α

(
Q2 2Wγα

) ]
+σγ

µσ
κ
ν

[
s2

2
2Zγα

2Zα
κ −

Q2

2
2Wγα

2Wα
κ −

1

4
24γ ln (s2) 24κ ln (s2)

−1

4
24γ ln (Q2) 24κ ln (Q2) +

1

2

s2

Q2
24γ

(
Nφ

s2

)
24κ

(
Nφ

s2

)
− 24γ

24κ ln (sQ)− 1

2
σγκ

{
− 24α

(
1

sQ
24αsQ

)
− 1

sQ
24α

(
24αsQ

)
−s

2

4
2Zαβ

2Zαβ +
Q2

4
2Wαβ

2W αβ − 1

s2
24αs

24αs

− 1

Q2
24αQ

24αQ+
s2

Q2
24α

(
Nφ

s2

)
24α

(
Nφ

s2

) }]
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C.4 Stress Energy Tensor

Similarly we decompose the stress energy tensor to get:

Tµν = 2Tµν + s2YµYν

[
P +

1

2
bαb

α +
1

s2

(
u2

φ(H + bαb
α)− b2φ

) ]
−Q2MµMν

[
P +

1

2
bαb

α − 1

s2

[(
ut −

Nφ

s2
uφ

)
(H + bαb

α)−
(
bt −

Nφ

s2
bφ

) ]]
+(YµMν − YνMµ)

[(
ut −

Nφ

s2
uφ

)
(H + bαb

α)uφ −
(
bt −

Nφ

s2
bφ

)
bφ

]
−(σγ

µMν + σδ
νMµ)

[
(uγ + uδ)

(
ut −

Nφ

s2
uφ

)
(H + bαb

α)− (bγ + bδ)

(
bt −

Nφ

s2
bφ

) ]
+(σγ

µYν + σδ
νYµ)

[
(uγ + uδ)(H + bαb

α)uφ − (bγ + bδ)bφ

]
The magnetic component, bαb

α, can be decomposed as follows:

bαb
α = γβαb

βbα

= σβαb
βbα − 1

Q2

(
bt −

Nφ

s2
bφ

)2

+
1

s2
(bφ)

2

We have defined the two dimensional stress energy tensor as:

2Tµν = σγ
µσ

δ
ν

[
uγuδ(H + bαb

α)− bγbδ

]
+ σµν

[
P +

1

2
bαb

α

]
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