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The National Transportation Noise Map predicts time-averaged road traffic noise across the continental 
United States (CONUS) based on average annual daily traffic counts. However, traffic counts may vary 
significantly with time. Since traffic noise is correlated with traffic counts, a more detailed temporal rep-
resentation of traffic noise requires knowledge of the time-varying traffic counts. Each year, the Federal 
Highway Administration tabulates the hourly traffic counts recorded at more than 5000 traffic monitoring 
sites across CONUS. Each site records up to 8760 traffic counts corresponding to each hour of the year. The 
hourly traffic counts can be treated as time-dependent signals upon which signal processing techniques can 
be applied. First, Fourier analysis is used to find the daily, weekly, and yearly temporal cycles present at 
each traffic monitoring site. Next, principal component analysis is applied to the peaks in the Fourier 
spectra. A reduced-order model using only nine principal components represents much of the temporal vari-
ability in traffic counts while requiring only 0.1% as many values as the original hourly traffic counts. This 
reduced-order model can be used in conjunction with sound mapping tools to predict traffic noise on hourly, 
rather than time-averaged, timescales. [Work supported by U.S. Army SBIR.]
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1. INTRODUCTION
Road noise can be a significant component of total anthropogenic noise in many developed areas and can

have a large impact on diverse acoustic environments. Not only humans are adversely affected by loud road 

noise,1 but also other species.2,3 Road noise cannot be effectively measured along every roadside, so accurate 

modeling of road noise is necessary for improving road noise characterization. 

Because overall traffic noise is correlated with traffic volume rates, traffic noise characterization can depend 

heavily on characterization of traffic volume, along with other parameters such as vehicle speed, pavement type, 

road inclination, and land cover4,5. The National Transportation Noise Map published by the Bureau of 

Transportation Statistics uses annual average daily traffic (AADT) counts to predict an annually and daily 

averaged sound level near major roads across the continental United States (CONUS)6. While this map is useful 

for determining average sound levels, it lacks temporal variability, and so may not reflect the actual sound level 

for a particular time of the day or night.  

Traffic volume can show large variation, not only diurnally but also from weekday to weekend and from 

summer to winter. A dynamically varying representation of traffic noise would be useful for determining hourly 

sound levels across CONUS. Characterizing the dynamic nature of traffic volume is not only useful for 

determining the changes in sound levels at locations where traffic counts are known but can also lead to a model 

for predicting variable traffic volume at other locations, and therefore predicting sound levels across CONUS 

for particular time periods.  

Modeling traffic volume can be done in various ways, though a simple model can be made using vehicle 

counts at various locations7,8. Each year, the Federal Highway Administration tabulates hourly traffic counts 

recorded at thousands of traffic monitoring sites across the United States. Each site can record up to 8760 traffic 

counts corresponding to each hour of the year (or 8784 for leap years). While this gives a detailed representation 

of hourly traffic volume for individual sites, this representation requires thousands of individual hourly counts 

for each location, and using vehicle counts to predict counts at other times or at other locations is not 

straightforward. Methods such as wavelet decomposition9 can be used to include temporal variability. In this 

paper, another possible method that can be used to predict hourly vehicle counts, hereafter used synonymously 

with traffic volume, at other locations is considered.  

Treating the vehicle volume as a time-dependent signal enables signal processing techniques to be applied. 

The approach explained in this paper uses Fourier analysis and principal component analysis to give a reduced-

order model to represent and predict vehicle counts10. This representation requires a total of only nine variables 

at a site to determine hourly traffic counts for any day of any year, a total of 0.1% as many variables as the hourly 

counts for a single year.  

The approach for this paper uses hourly-resolution vehicle counts, and does not consider shorter-term traffic 

volume behavior, though it may be possible to adapt this approach for shorter timescales.11-13 This approach also 

creates a method to predict hourly vehicle counts at other locations using geospatial or location-specific features. 

This reduced-order model can be used in conjunction with sound mapping tools to predict traffic noise across 

the continent on hourly, rather than time-averaged, timescales.14  

2. DATA USED FOR ANALYSES
The Federal Highway Administration obtains hourly traffic counts from thousands of traffic monitoring sites

across the United States. Data reported between 1 January 2015 and 31 December 2018 are used in this paper. 

However, not all stations report counts for each hour during this time period. Additionally, some of the data 

reported contain erroneous counts. Initial automatic checks found probable errors in data reported at several 

sites, which were entirely removed from the dataset. The remaining data come from 5695 sites across CONUS 

and are further analyzed for useability.  

Within the remaining data set, some sites can still contain possible erroneous counts, and site-reported data 

are not equally reliable. For sites that report data consistently, reported values are more reliable, while sites that 

only report counts intermittently can contain dubious values. This can be seen in the data counts shown in Figure 
1. The data pictured in Figure 1(a) contain values for every hour of the 4-year period and reported counts show

high consistency. For the data pictured in Figure 1(b), however, shows several gaps where days, weeks, or even

months of hourly counts were not reported; additionally, the reported counts for some months seem to be shifted
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by up to a few hours. To mitigate doubts in data fidelity, and therefore in results, a further data validation step is 

necessary. A site data confidence weighting is therefore used.  

Generally, weights can be assigned based on the percentage of data present for each site. Sites with half as 

many reported hourly counts could be given half the weight as sites where all four years of hourly counts were 

reported. However, for processing purposes explained further on, cyclically missing data, or data missing 

between times with reported data, can have a negative impact on analysis. Therefore, an adjusted weighting is 

made based not on the total number of hourly counts reported, but by the maximum number of consecutive 

hourly counts reported for each site. By weighting data in this manner, each site is given a relative weighting 

between zero and one.  

Figure 1. Reported hourly traffic counts for two locations (top). The horizontal axis shows the day of the year, 

while the vertical axis shows the hours of each day, with the traffic count represented by the color.  The normalized 

Fourier transform of the vehicle counts for both locations, explained in Section 3, is also shown (bottom). 

Amplitudes for integer multiples of daily cycles are marked in red, and amplitudes for integer multiples of weekly 

cycles are marked in black. 

3. FOURIER ANALYSIS OF TRAFFIC VOLUME
While visual patterns are seen when viewing traffic volume in Figure 1(a-b) (such as the diurnal or day/night

patterns), in order to make use of this information—such as to predict traffic volume at other locations, or to 

predict missing vehicle counts like the gaps seen in Figure 1(b)—it is necessary to characterize these traffic 

volume patterns. By treating hourly traffic counts as time-dependent signals, Fourier analysis is used to identify 

the temporal cycles present at each individual site15. However, because a fast or discrete Fourier transform 
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generally requires equally spaced and non-missing data, and because several sites contain some missing vehicle 

counts, a non-uniform Fourier transform must be used.  

A. NON-UNIFORM FOURIER TRANSFORM 

Fourier transforms usually require equally spaced temporal data, with the sampling frequency determining 

the maximum number of cycles that can be found for a time period. Most discrete Fourier transform algorithms 

are ill-equipped to handle missing data, and so instead the non-uniform discrete fast Fourier transform is used to 

analyze the traffic counts at each site16. This yields a two-sided, complex-valued Fourier spectrum. The 

magnitude of the single-sided spectrum for two sites is shown in Figure 1(c-d).  

Clear peaks in the Fourier spectra appear at several relevant frequencies. One important peak is that seen at 

0 cycles per day, which represents the average number of measured vehicles per hour (the AADT divided by 

24), the value of which has been used to normalize the plotted spectra. Other strong peaks are seen at integer 

multiples of 1 cycle per day (marked in red), which together represent the daily-repeating traffic volume pattern. 

More peaks are seen at integer multiples of 1/7 cycle per day (marked in black), and together represent the 

weekly-repeating traffic volume pattern. Though not visible on this scale, there are also peaks at integer multiples 

of one cycle per year.  

B. DENOISING FOURIER SPECTRA 

Peaks in the Fourier spectra on integer multiples of daily, weekly, and yearly time periods are often quite 

pronounced, but the spectra can also contain non-zero amplitudes at other time period cycles. This is because 

the traffic pattern does not repeat exactly every day, week, or year. Because the present research is concerned 

with average hourly behaviors, rather than a precise representation of the traffic counts, the small but non-zero 

amplitudes are treated as noise in the Fourier spectra, and so are removed or zeroed out.  

A representation of the average traffic volume pattern for a site is obtained using the Fourier amplitudes at 

frequencies that are integer multiples of weekly and yearly cycles (daily cycle frequencies are captured using 

integer multiples of weekly cycles). Due to missing data or machine precision errors, peaks in the Fourier spectra 

can sometimes be found at frequencies that are adjacent to multiples of weekly and yearly cycles; when this is 

the case, the peak amplitude at that frequency is used instead of the Fourier amplitude at the integer-multiple 

frequency. This representation serves to decompose hourly traffic counts into a combination of sinusoidal traffic 

patterns that repeat on weekly and yearly cycles. This representation has the benefit of removing noise in traffic 

counts and requires a few hundred values instead of thousands of individual hourly vehicle counts.   

C. PEAK VALUES REPRESENTATION 

A smoothed, average hourly traffic volume pattern for each site is obtained by using an inverse Fourier 

transform on the denoised Fourier spectrum peak values. For the reported traffic counts shown in Figure 2(a), 

this approach yields a reasonable approximation as shown in Figure 2(c). However, for the reported counts 

shown in Figure 2(b), the representation shown in Figure 2(d) is not especially accurate. Some of the main 

reasons for the errors in the representation are considered below.  

One reason for inaccuracy in the representation is caused by missing hourly counts at individual sites. That 

is why Figure 2(d) is not an accurate representation of the data in Figure 2(b). Missing data causes noise in the 

Fourier spectrum, which can alter the amplitude of the Fourier peaks which typically occur on integer multiples 

of weekly and yearly time cycles. The site weighting discussed previously, while not altering the behavior at an 

individual location, is important when looking at trends across sites, and will be discussed further on.  

Another reason for inaccuracy is because, while traffic patterns contain both weekly and yearly repeating 

patterns, the days of the week do not match the day of the year, e. g., the first day of 2015 was a Thursday while 

the first day of 2017 was a Sunday. For generality, and to allow for traffic volume prediction for any day of the 

week of any year, the weekly traffic pattern is separated from the yearly traffic pattern. This is done by separating 

each Fourier spectrum into two separate data sets, one containing peaks on integer multiples of one cycle per 

year (up to 12 cycles per year, as after this the peaks are effectively in the noise floor), and the other containing 

peaks on integer multiples of 1/7 cycle per day (including the peak at 0 cycles per day so the average vehicle 

count is not removed). This ensures that the former will result in a yearly-repeating traffic pattern, and the latter 

in a weekly-repeating traffic pattern. These two patterns can then be combined to represent the traffic volume 

for any specific day of the week and day of the year.  

A third reason for inaccuracy is that peak amplitudes in the Fourier spectrum are not independent of one 

another, and so noise in the Fourier spectrum that affects a single peak value, even by a small amount, can 
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fundamentally change the overall temporal pattern found after performing an inverse Fourier transform. To state 

this in another way, a weekly-repeating traffic pattern is not determined solely by a single Fourier peak 

amplitude, and any irregularities in the data can cause changes in a single Fourier peak amplitude. For this reason, 

representing traffic volume solely as the sum of independent sinusoidal patterns is not the best representation. A 

better and more concise way to represent traffic volume is by using principal component coefficients of cyclic 

traffic patterns.  

Figure 2. A comparison of the reported traffic volume for two sites (top) with the traffic volume calculated using 

the Fourier peak values representation (bottom).  

4. PRINCIPAL COMPONENT ALANYSIS OF FOURIER SPECTRA
Principal component analysis (PCA) is used to find a lower-dimensional basis which can represent the

majority of multi-dimensional data points of a set. For the current research, each dimension of a data point 

consists of the Fourier amplitude at a particular frequency. By splitting the Fourier peaks into separate weekly 

and yearly cycles, we create two separate data sets, each containing a point in a high-dimensional space for each 

traffic measurement site. Because the Fourier peak amplitudes are interdependent, principal component analysis 
is used to find a simpler basis to represent the most common combinations of cyclic traffic patterns found across 

sites. This serves to reduce irregularities in the traffic pattern at a particular site by using the common traffic 

patterns seen across multiple sites. What this means is that by using this approach, the weekly or yearly traffic 
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pattern at any particular site can be represented as a combination of the most common cyclic weekly or yearly 

traffic patterns found across all sites.  

As mentioned in Section 2, the hourly counts from all sites are not equally reliable, and therefore the Fourier 

peak amplitudes at one site are not as accurate as they are for another site. To avoid propagating these errors, a 

weighted PCA is used to improve the accuracy of results, where the weighting used is described in Section 2. 

The analysis is performed separately for the weekly and yearly cycles. The analysis returns principal 

components, which each represents a linear combination of Fourier amplitudes or, by using an inverse Fourier 

transform, a specific traffic volume pattern. The principal component coefficients, which are simply numeric 

values, give the linear combination of these traffic volume patterns.  

The first principal component vectors, one for the weekly data and another for the yearly data, are shown in 

temporal space in Figure 3, and give the weighted average traffic volume pattern seen across sites. The yearly 

pattern shows little variation across the course of a year. The weekly pattern shows the average hourly traffic 

pattern found across CONUS, namely one where weekends show a smooth hourly variation during daytime 

hours, while the weekdays show an increase in morning and evening hours higher than that during the middle of 

the day, with less traffic activity during the nighttime hours. This type of traffic pattern is common for several 

urban locations, and in particular shows high similarity to data shown in Fu et al. (2017).17 

To represent different traffic patterns seen at other sites, especially rural locations, a few more principal 

components. By using an elbow analysis on the eigenvalue of the principal components, it was determined that 

six principal components should be used to represent the weekly traffic pattern, and four principal components 

to represent the yearly traffic pattern. In this manner, 73% of the weekly data is represented, and 83% of the 

yearly data. The unique traffic pattern at a site can then be represented using just 10 principal component 

coefficients (PCCs).  

The first weekly and yearly principal components, as mentioned before, give the weighted average traffic 

pattern seen across sites, and are shown in Figure 3. The coefficients for the first principal component, both 

weekly and yearly, show high linear correlation with the AADT. This leads to a normalization approach based 

on the first PCC. What this means is that rather than needing 10 PCCs to represent traffic volume at a site, five 

normalized weekly PCCs and three normalized yearly PCCs, along with the AADT, can represent the total 

vehicle counts for a site. This normalized approach is more useful, as representing traffic volume for any hour 

of the week at a site, relative to its normal average number of vehicles, requires only five values, and only three 

for any day of a year, and predictions can be made that match the overall AADT of a site when it is known. The 

final reduced-order model therefore requires just nine total coefficients to represent hourly traffic counts for any 

site, 0.1% as many variables as the total number of hourly counts for a single year.  

Figure 3. Normalized principal components that represent the most common normalized traffic patterns found 

across CONUS.  

By using just these nine coefficients for a site, modeled traffic volumes are obtained, examples of which are 

shown in Figure 4(c-d) alongside the reported traffic counts in Figure 4(a-b). A comparison between the reported 

and modeled traffic counts shows that the PCA representation effectively smooths out inconsistencies in the raw 

data, while maintaining overall temporal trends. Additionally, because of the data weighting, missing data do 

not adversely affect the modeled traffic counts. By requiring only nine coefficients, the PCA representation 

allows for a simple way to both represent traffic volume data, which can not only be used to estimate traffic 
volume at sites when numbers are not reported, but also—by way of predicting PCCs—to predict traffic volume 

at other locations.  
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Figure 4. A comparison of the reported traffic volume for two sites (top) with the traffic volume calculated using 

the PCA representation (bottom). 

5. CONCLUSION
The number of vehicles on a road can change drastically from one time period to another. While knowing

the average number of vehicles is necessary to predict average noise levels caused by road traffic, a temporally 

varying model of road traffic is more beneficial as it can be used to predict not just a general average number of 

vehicles, but average numbers of vehicles for any time period of interest, whether that be an average Tuesday 

evening in springtime or the noise level for a particular hour, day of the week, and date.  

By using traffic counts reported at thousands of locations across CONUS, a simple model is created to 

represent and predict traffic volume. This uses Fourier analysis to find temporal patterns in traffic counts at each 

site individually, and the principal component analysis to find the most common combinations of temporal 

patterns across sites. The model requires only nine coefficients to represent the hourly-dynamic nature of traffic 

volume for most locations. 

This simplified model not only creates a concise way to represent traffic volume patterns, but also enables 

simple prediction of traffic volume when counts are unknown. Because only nine coefficients are needed, further 

methods can be created to predict these coefficients for locations where traffic counts are unknown. This remains 

a topic of interest and will be explored further. 

 By better representing and predicting traffic volume, further improvements in the prediction of road traffic 

sound levels can be made. While annual average expected traffic noise levels are important, increasing the 
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temporal variability to enable hourly-expected noise levels, without drastically increasing complexity, can 

greatly increase accuracy and reliability in predicting sound levels caused by road traffic.  

Future research will include not just temporal variability of traffic volume as a whole, but also the temporal 

variability of different traffic class types, such as large trucks, which have different expected spectral 

characteristics and sound levels than do smaller vehicles. This increased traffic variability model can then be 

used to predict sound levels and spectral characteristics of traffic noise across the continent on hourly, instead 

of average, time scales.   
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