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Continuous solid-solid phase transitions driven by an eight-component order parameter are in-

vestigated. We list the active eight-dimensional physically irreducible representations we find

among the 230 crystallographic space groups and the matrix images onto which they map the

symmetry operations. We obtain the Landau potential (to fourth degree) as well as the Landau-
Ginzburg-Wilson Hamiltonian for each case. We obtain the recursion relations in re-

normalization-group (RG) theory, and calculate the fixed points. We find that none of the fixed

points are stable. Thus for transitions driven by an eight-component order parameter, none can be
continuous according to RG theory.

Theoretical descriptions of continuous (second-order)
transitions between two solid phases have been of consider-
able interest for many years. The Landau theory' is a
mean-field approach which imposes group-theoretical re-
strictions on the transition. When critical fluctuations are
taken into account, the renormalization-group (RG)
theory imposes additional conditions. In both theories,
the transition is driven by an n-component order parame-
ter. Cases for n «6 have previously been considered.
In this paper, we consider the case n =8. We restrict our
attention to commensurate phases with symmetry among
the 230 crystallographic space groups. We find that none
of the possible transitions driven by an eight-component
order parameter are allowed to be continuous in RG
theory.

Consider a possible transition from a phase of space-
group symmetry Go to a phase of space-group symmetry
G. Landau theory requires that G be a subgroup of Go and
that the transition be driven by an order parameter p,
which is an n-component vector in the carrier space of an
active physically irreducible representation (irrep) of Go.
The irrep consists of a mapping of space-group elements
onto a set of n-dimensional orthogonal matrices called the
&mage of the irrep. The irrep is "active" if these matrices
satisfy both the Landau and Lifshitz conditions (a re-
quirement of Landau theory, if the transition is to be
continuous).

The Landau potential is obtained by constructing invari-
ant polynomials in the components of p. To fourth degree,
the potential can be written

n

H = g (Vy, )'+ —y y+P4(y) .
i 1

(3)

The coupling coefficients u„ in P4 form a p-dimensional
vector u in "coupling-coefficient space, " and the polyno-
mial P4(u) is now considered to be a function of position
in that space. As the critical point is approached, u
"flows" towards a stable fixed point u*. The flow of u is

sure dependence of the potential. Within Landau theory,
allowed continuous transitions to lower-symmetry phases
G are found by minimizing V for all possible ranges of
values of the coefficients u „.

We find that there are only nine active eight-
dimensional irreps (n =8) among all the irreps of the 230
space groups. These map space-group elements onto only
four distinct images (see Table I). The labeling of irreps
in Table I follows the convention of Miller and Love. The
fourth-degree invariants listed in Table I are given expli-
citly in Table II. (Toledano and Toledano reported five
eight-dimensional active images. We believe their fifth
image M5 is in error. We do not find any irrep of P63p1c
to be eight dimensional. Also, they only give five invariant
polynomials for M3 and six for M4, in disagreement with
our results. ) Minimization of V for these cases would

yield continuous phase transitions allowed by Landau
theory.

In RG theory, the Landau-Ginzburg-Wilson (LGW)
Hamiltonian H is constructed by adding isotropic gradient
terms to the Landau potential:

where TABLE I. The images of the eight-dimensional active irreps
and their fourth-degree invariant polynomials.

P
P4= g u„I„(y) .

The functions I~,I2, . . . , IP are linearly independent
fourth-degree polynomials which are each invariant under
every matrix operation in the image. The coefficients r
and u „are arbitrary and carry the temperature and pres-

Image

Mi
M2
M3
M4

Active irreps

L3+,L3 of Op

L3 of Tj and L3+,L3 of Os
L2+SL3 L2 SL3 of TI

In variants

I&,I2,I3,I4,Is
I&,I2,I3,I4,Is,I6
II,I2,I3 I4 I5 I7 I8
Ii,I2,I3,I4,I5,I6,I7,IS
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TABLE II. The invariant fourth-degree polynomials of the components of the order parameter tg (r/1, «l, r/2, «2, r/3 «3 r/4 «4).

(q)+ «f+ q&+ «$+ qj+ «&+ v)+ Q) 2

I2-(ni'+ «f)'+(nk+6)'+(~3+ 6)'+ (~7+6)'

13- [(1/j —«j)+(1/3 —«$)][(1/$ —«))+(1/$ —«j)]+4[(qf —«f)(l/j —«j)+(1/$ —«$)(r/$ «$)—]

—2J3(r/1«1 —r/2«2) [(7/$ —«)) —(1/f —«$)] —2v 3(1/3«3 7/4«4) [( /1f «f) (7/$ «f)]+12(1//«/+ r/2«2)(7/3«3+ 1/4«4)

I4 - [(7/f' —«f) + (7/j —«$) ] [(q$ —«)) + (7/$ —«$)1+ —", (q/ «1 1/2«2+ r/3«31/4«4)

+ 7 (7/1 «1+ 1/2«2) ('93«3+ r/4«4 + 1/1«1 1/2«2 1f «~ n~ 0 ] + 13«3 1/4«4) [('93 «f ) (1/7
3 3

I5 (1/1 «1+ 1/2«2) [( /f+ 6)+ (r/7+ «7) ] + (1/3«3+ 1/4«4) [(7//+ 6)+ (1//+ «3)]

—2[1/1«1 (ld+ «$) + 7/2«2(l/ j+«f) ] —2[1/3«3(l//I+ «$) + 1/4«4(r/f + «$) ] +4& [(1/ f —7/j) (7/f —7/$) —(«j —«$) («j —«$)]

I6 3 ~91929394+Cl 020344~ + 91920344+ 91029304+014243 l4+ 01 120304+ 01 120394+ 01029394

I,- [(qj —6)+ (qJ —6)][(qj —6)+ (q$ —«$)] — [(q) —6) —(q$ —6)](q2«2 /4«4)
2

(1/7 «$)](7/1«l 1/3«3) + (1/l«1+7/3«3)('92«2+1/4«4)+ (1/1«ll/3«3+ 1/2«21/4«4)
3

Is -(qj —7//) [(1/j+ 6) —(1/j+ «$)]+ (1/$ —1/$)(«j —«$) —3(«f —6) («j —0) + [plq3 1/1«3+ 1/3«1)+ r/27/4(r/2«4+ 1/4«2)]
8

4
[ /1 /2(7/1«2+ 1/2«1) + 13 l4( /3«4+ 7/4«3) + 1/1 r/4(l/1«4+ 1/4«1) + 1/27/3(1/2«3+ /3«2)] +4(l/1«l 1/3«3)( /2«2 14«4)

3

TABLE III. The recursion relations for the image M4.

du 1/d lnk gu1 ( 3fu+ 3 u lu2+ 3 u)+ 27 u$+ 4 u(+ l~ u$ + 3 u3u7+ 27 u4u7+ 27 u) 3 u3us+~9u4us+ 2 ~T3usus+ 9 u$)

du2/dink gu2 —(2ulu2+ —,u$ ——,u$ ——,uj+ —'u$ —
—, ug ——,u3u7 —

27 u4u7 ——u$+ ,' u3us —
—9 u4ug+ 4 j, usus+ —,',—u$)

du3/d ln2, gu3 (2ulu3+ 3 u2u3 4 u$+ 3 u3u4+ 1'4 u$ —
14 u$+ 44 uf+ 4 u3u7+ 4 u4u7

du4/dink gu4 (2 uf+2ulu4+ 3 u2u4+u3u4 lg u$+ 14 u$+ 14 u$+ 4 u3u7+ lg u4u7

Tusu7+Tu) —
4 u2us Tu3us ~ u4us 7 Tutus lg u7us 12 uf )

] ] 1 4 I 1 l ]] I

dus/dink gus —(2ulus+u2u3 —u3us+u4u3 —
3 usu7 —4j—,

' u3us+ 3 J+3u4us+T)u$us+ 3 J) f)u

dug/d ink, 4ug —(2u lug+ 3 u3us+ 9 u4ug+ 9 ugu7)

du7/dink gu7 (2ulu7+ , u2u7 ——, u3—u7—9 u4u7 —JTusu7 —
4 u$ ——,u2ug —

3 u3ug+ 9 u4ug+2 J, u sus 9 u—7ug+ —,u$)

dug/d ink gus —( Yusu7+2u lug+ u2ug+3u3ug —
3 u4ug+ T~u gus+ u7ug ——,u$)

l
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TABLE IV. Fixed points u* =(ut, u2, u3, u4, us, u6, u7, us) and eigenvalues of the matrix (|IP„/I)u )
evaluated at the fixed points.

Fixed points

e(0,0,0,0,0,0,0,0)
6 (~8,0,0 0 0 0.0)
e(0,—', ,0,0,0,0,0,0)
e( ~g 8,0 0,0 0,0 0)

e (—,,
——„,—,—,0, ——.,0,0)3 3 3 9 3

3 3 3 9 6

3 3 3 9 6

Eigenvalues

1 1 1 I 1 1 1e(i 40 4s 4~ 49 40 4W 4

1 3 3 2 1 3 2 xe(I Ss Ss Ss 5& o 5& 5

g 1 & 3 3 I 5 3 1&(—18»8)8&4&8&8&4
1 1 5 3 3 1 3 1e(Ils8& 8o 8~ 8s 4t 8& 4

1 5 3 3 1 3 1 ie(I ~8& 8~ 8~ 8~ 4~ 8~ 4

I 3 3 2 3 2 ie(I 59 1 59 5& 57 59 5

1 c 3 3 2 3 2e(I So ~s S~ 5& Ss 5& 5

determined by p recursion relations which take the form,

=P(u) .
d ink

(4)

Critical properties are obtained from stable fixed points as
A fixed point u satisfies the p nonlinear equa-

tions

where the symmetric product u Au is given by

r)'P4(u)
P4(uAu) = —„',g (7)

The polynomial resulting from the summation can be

P„(u*)=0,
and will be stable if in addition all of the eigenvalues of the
matrix (r)P„/t)u„) are positive at the fixed point. To one-
loop order, we can write'

P=eu ——', UAu

decomposed into a linear combination of the invariants I„
the coefficients of which form the vector uhu in the
coupling-coefficient space.

The eight recursion relations which arise for image M4
are given in Table III. The recursion relations which arise
for the other images can easily be obtained by simply set-
ting some of the coefficients u, to zero. For example, the
five recursion relations for image M~ are obtained from
Table III by setting u6 =u7 u8 0.

Fixed points are found by setting the right-hand side of
each recursion relation equal to zero, and solving the re-
sulting p nonlinear equations. We have searched by com-
puter for solutions of these equations and found eight fixed
points (Table IV). From the eigenvalues in Table IV, we
see that none of these fixed points are stable for any of the
images under consideration. Of course, we cannot
guarantee that we have found all of the fixed points.
However, our search was thorough, so we are fairly confi-
dent that we have found all of the fixed points and that no
stable fixed point exists for these images.

Present address: 206-49 Synchrotron Lab. , California Institute
of Technology, Pasadena, CA 91125.

tL. D. Landau, Zh. Eksp. Teor. Fiz. 7, 19 (1937);7, 627 (1937);
L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd ed.
(Pergamon, New York, 1980).

zG. Ya. Lyubarskii, The Application of Group Theory in Phys
ics (Pergamon, New York, 1960), Chap. VII.

3K. G. Wilson, Phys. Rev. B 4, 3184 (1981); K. G. Wilson and
J. Kogut, Phys. Rep. 12, 75 (1974); in Phase Transitions and
Critical Phenomena, edited by C. Domb and M. S. Green
(Academic, New York, 1974), Vol. 6; P. Pfeuty and G. Tou-
louse, Introduction to the Renorrnalization Group and to

Critical Phenomena (Wiley, New York, 1975).
4E. Brezin, J. C. Le Guillou, and J. Zinn Justin, Phys. Rev. B 10,

892 (1974).
5J.-C. Toledano, L. Michel, P. Toledano, and E. Brezin, Phys.

Rev. B 31, 7171 (1985).
D. M. Hatch, J. S. Kim, H. T. Stokes, and J. W. Felix, Phys.

Rev. B 33, 6196 (1986).
7L. D. Landau, Z. Phys. 11, 546 (1937).
sE. M. Lifshitz, J. Phys. USSSR 6, 61 (1942).
93.-C. Toledano and P. Toledano, Phys. Rev. B 21, 1139 (1980).
toL. Michel, Phys. Rev. B 29, 2777 (1984).


