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Landau theory provides a group-theoretical method for determining which symmetry changes
can occur in second-order phase transitions in solids. The irreducible representations of the space
group of the higher-symmetry phase must satisfy certain conditions. For transitions to commensu-
rate crystalline structures, the Landau and Lifshitz conditions must be satisfied. For transitions to
incommensurate structures, the Landau and "weak Lifshitz" conditions must be satisfied. The irre-
ducible representations of each of the 230 crystallographic space groups that violate these conditions
are listed.

I andau theory uses group-theoretical methods to
describe second-order phase transitions in crystalline
solids. In this theory, a transition is driven by an or-
der parameter g. The components of g transform like
basis functions of an irreducible representation (IR) of
the space group of the higher-symmetry phase.

Near the transition, the free energy of the crystal is
expanded about g = 0. The space-group symmetry of
the crystal requires that only invariant polynomials in
this expansion can contribute. The invariant terms in
the expansion determine the nature of the phase transi-
tion. If the transition is to be second order, then certain
kinds of terms must not appear in the free-energy expan-
sion. These terms are forced not to appear by symme-
try. These considerations have resulted in two conditions
which must be satisfied if the transition is to be second
order: the Landau and Lifshitz conditions.

The Landau condition states that no third-degree
terms of the form g, gzgk can be allowed to appear in
the free-energy expansion. This condition is satisfied if
the symmetrized triple Kronecker product of the IR does
not contain the identity representation.

The Lifshitz condition states that no terms of the form
rh(BrIs/Bxi, ) can be allowed to appear in the free-energy
expansion. Invariant polynomials in the expansion which
contain terms of this form are called "Lifshitz invariants. "
The Lifshitz condition is satisfied if the antisymmetrized
double Kronecker product of the IR does not contain the
vector representation.

If we consider second-order transitions to incommensu-
rate phases, the Lifshitz condition need not be satisfied.
Instead, the so-called "weak Lifshitz condition, " intro-
duced by Michelson must be satisfied. This condition
states that the number of Lifshitz invariants in the free-
energy expansion must equal the number of degrees of
freedom of the k vector associated with the IR. Bradley
and Cracknell4 classify k vectors as belonging to either
points of symmetry, lines of symmetry, planes of sym-
metry, or general points. Points of symmetry have zero
degrees of freedom; lines of symmetry have one degree
of freedom; planes of symmetry have two degrees of free-
dom; and general points have three degrees of freedom.

Space groups

Hexagonal R
146
148
155
160,161
166,167

Hexagonal P
143-145
147
149,151,153,156,158
150,152,154,157,159
162-165
168—173
174

175,176
177-186
187,188
189,190
191-194

Cubic P
195,198
200

201,205
207
208
212,213
215,218
221,223

222, 224
Cubic F

196
202

203
209
210
216,219
225, 226

227, 228
Cubic I

197,199
204

206
211,214
217
220
229

230

IR's, PIR's

r, Z, F
I+r+ Z F+
I 3, Z1Z1, F1
I 3, Z, F1

I', A, Z, K, M, B
r+r3+ A Z K Ml+ B

r3, A1A1, Z, K1K1,K3K3, M1, B
r,+, A1, Z1, K1, K3, M1+, B
I3I5 A, Z, K, M1, B
I 3I 5 A1 A1, Z1 Z1, K1K1, R3K3,

K5K5, M1, B1B1
r3 r5 A1 Z 1 K1 K3K5 M1, B1+ + +
r5 A1 Z1 Kl K3 Ml
r5, A1, Z1Z1, K1, K3, K5, M1, B1B1
r5, A1A1, Z1, K1K1,K5 K5, M1, B1B1
I'5, A1, Z1, K1, K5, M1, B1

I, Z, M
r 2 1 3, I'4, Z, M1+, M2+, M3+, M4+

r+r3+, r+ z M
r3, I"5, Z1, M1, M4, M5
r3 I5 Z] M2 M3 M5
r3, r5, Z, , M1 M4, M5
I'3, I'4, Z, M1, M3, M5

r3 r5, Z 1, Z4, M1, M3+ +

r, z, x
r2+r3+ r4+, Z, X+, X2+, X3+, X+

r', , I"5, Z1, X1,X4, X5
I 3, r5, Z1, X2, X3, X5
r3 r4 Z, X] X3 X5

I 3 r5 Z1, Z4 X] X3+ +

I", Z, N
r+r+, r+, z, N+, N+

I3 I4 Z, N1, N4
r3, I'4, Z, N

r3, r5, Z1, Z4, N2+ +

TABLE I. IR's and PIR's which violate the Landau condition. The
trivial case of the identity IR's (r1, I 1 ) has been omitted from the
table. All of the identity IR's violate the Landau condition.
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TABLE II. IR's and PIR's which violate the weak Lifshitz condition.

Space groups IR's, PIR's Space groups IR's, PIR's

Monoclinic P
4, 11
7,13
14

Monoclinic A
9,15

Orthorhombic
17,26
18,55,59
19
27,49
28
29
30
31,53
32,50
33
34,48
51
52
54
56
57
58
60
61
62

Orthorhombic
20,36,63
37,40,66
39,67
41,68
64

Ort horhombic
24
45,72
46
73
74

Orthorhombic
43,70

Tetragonal P
75
76,78
77
81,83
84
85
86
89,93
90,94
91,95
92,96
100
101
102
103,124
104
105
106
112
113,127,129
114
116
11?
118
125
126
128
130
131
132
133
134
135
136
137
138

Tetragonal I
79
80

C, D, E, Z, G
A, B, D, E, U, V
A, B, C, Z, U, V, G

A, M, U

Z, T, U, R, A, B, P, E, W
X, Y, T, U, C, D, P, E, G, H, L, N
X, Y, Z, R, A, B, C, D, G, H, L, N, W
Z, T, U, R, A, B, P, E
X, S, U, R, D, P, Q, G
X, Z, S, T, U, R, A, B, D, P, Q, E, G, W
Y, Z, S, T, U, R, A, B,C, P, Q, H
X, Z, S, T, A, B, D, P, Q, E, G, W
X, Y, S, T, U, R, C, D, P, E, G, H
X, Y, Z, S, U, R, A, B, C, D, P, E, G, H, W
X, Y, Z, S, T, U, A, B,C, D, G, H
X, S, U, R, D, P, Q, G, L
X, Y, Z, S, U, R, A, B, C, D, Q, E, G, H, N
X, Z, S, T, U, R, A, B, D, P, Q, E, G, I
X, Y, Z, T, U, A, B, C, D, P, E, G, H, L, N
Y, Z, S, T, U, R, A, B,C, P, Q, E, H, N, W
X, Y, Z, A, B, C, D, P, E, G, H, L, N
X, Y, Z, T, U, R, A, B, C, D, P, Q, E, G, H, L, W
X, Y, Z, S, T, U, A, B, C, D, P, Q, E, G, H, L, N, W
X, Y, Z, S, R, A, B, C, D, Q, G, H, L, N, W

C
Z, R, T, A, B, Q
Z, T, A, B
R, S, D
Z, R, S, T, A, B, D
Z, S, T, A, B, D, QI
S, R, Q, D, W
R, Q, W
S, R, T, Q, P, D, W
T, P, W

Z, T, Y, A, B, H

r3r4 Z, A, M3M4, A3A4, Z3Z4, Y, S, T, UB, C, F
I 3r4 Z, 6, M3 M4, A, R, Z, Y, S, T, U, B, C,E, F
r3 r4 Z, 6, M3 M4, A) A2, Z) Zg, Y, S, T, U, B, C, F
Z, A, Y, S, T, U, B, C, F
Z, A, Ai, Zi, Y, S, T, U, B,C, F
Z, A, My, X, Ay, R, Y'W, S, T, U, B,C, F
Z, A, My, X, R, Zy, Y, W, S, T, U, B,C, F
IS, MS, AS, Z5
IS, X, R, Z5, Y'W, T, F
I'S, MS, A, R, Z, S, T, U, E
r5, X, A, Z, Y, W'S, U, E, F
MyM3, MgM4, X) AyA3, A2A4, R, Y; W, T
AZA3) A2A4, R) ZZZ3, Z2Z4, T, U
M] M3) M2M4) X) R) ZyZ3) ZQZ4) Y, W) U
A, R, Z, S, T, U
My M3 ) MPM4 ) X) Ay A2 ) A3 A4, R, Z, Y) W) S,U
A&A2) A3A4) Z&Z2) Z3Z4) S
M)M3, M2M4) X, A) R) Z)Z2) Z3Z4) Y, W, S)T
A5, Z5, S
X, R, Y, W, T, F
X, A5A5, R, Z5, Y, W, S, T, F
A5, R, Z5, T, U
M5, X, A5, R, Y, W, T
M5, X, R, Z5, Y, W' U
M3 ) M4) X) A3 ) A4 ) R) Y) W) T
M3 M4) X, A3, A4 ) R, Z, Y, W) S, U
X, A3A4, Z, Y, W, S, T, U, F
X, A, R, Z, Y, W, S, T, U, F

Ay, A2, R, Z], Z2, T, U
M] ) M2) X) A R) Zy ) Z2) Y) W) S T
My, M2, X, R, Zy, Zz, Y, W, U
X, A, R) Zy, Z2, Y, W) S, T, F
X, Z), Z2, Y, WT, U, F
X, A3A4, R, Zg, Z2, Y, W, S) T) F
X) R) Z] ) Z2) Y) W') T) U) F

I 3I 4 Z, A, M3 M4, P2 P2, Q, Y, A, B
?3r4 Z, D, M)M2, P, Q, Y, A, B

82
87
88
97
98
107
108,120,140
109
110
121
122
139
141
142

Hexagonal R
146
148
155
160
161
166
167

Hexagonal P
143,145
144
147
149,151,153
150,152,154
156
157
158
159
162
163
164
165
168,171
169,170,173
172
174
175
176
177,180,181
178, 179,182
183
184
185
186
188
189
190
191
192
193
194

Cubic P
195
198
200
201
205
207,208
212,213
215
218
221
222
223
224

Cubic F
196
202
203
209
210
216
219
225
226
227
228

Z, D, Q, Y, A, B
Z, 6, P3 P4, Q, Y, A, B
Z, A, X, My)P, Q, W, Y, A, B
I 5, M5, P3P4
I 5, M5, P
P3 P4
N, P, Q
X, My M2, M3M4, P, W, Y
X, MyM2, M3M4, N)P, Q, W, Y
P5 P5
X, Mg, P, W'Y
P5
X, M], M2, P, W, Y
X, M), M2, N, P, Q, W, Y

r, r3 z T2T3 Y, C
A2A3, Z, Y, C
1 3, T3
A3 A3
A3A3, L, T, Y
A3
A3, L, T, Y

r2r3) A) Z) A2A3) H) K) Q) R) U) B) C) D) E
r2r3, A, Z, A A3, H, K, Q, R, U, B,C, D, E
A2A3) A) Z) H) K) P2P3) Q) R) U) B) C) D) E
13, A, A3, H, K, Q, U, B,D, E
r3, Z, A3 H3H3 K3K3 R, U, B, C, E
A3A3, Z, R, U, B,C, E
6363)A) H) K) P3P3) Q, U, B) D, E
A3A3) Z) A) H) L) Q) R) U) B) C) E
6363) A) A) H) K) L) P3P3) Q) R) U) B) D) E
63) A) H) K)P3) Q) U) B) D) E
L 43 A A) H) K L) P3) Q) R) U) B) D) E
63 ) Z) H3 ) K3 ) P2 P3 ) R) U) B) C) E
L k3) Z) A) H) K3 ) L) P2 P3 ) Q) R) U) 8) C) E
I 3r5 I 4I 6, A, Z, A3A5, A4A6, H2H3, K2K3,Q, R, C, D
r3? 5 r4r6, A, z, A, H, K2K3, L, Q, R, C, D,E
I 3I"5, I'4r6, A, Z, A] A5, A2A6, Hy H3, K2K3,Q, R, C, D
A, Z, Q, R, C, D
A Z H3H5, H4H6, K3K5, K4K6, P2P3, Q, R C, D
A, Z, A, H)H2, K3K5, K4K6, L, P2P3, Q, R,C, D, E
I'5, I'6, A5, A6, H3, K3
I'5, I 6, A, H, K3, L, Q, R, E
H3 K3 P3 P3
A) H) K3) L) P3P3) Q) R
A, H, K3, L, P3 P3, Q, R, E
A, Hy H2, K3, L) P3 P3, Q, R, E
A, H, L, Q, R
H5 H5, H6 H6, K5 K5, K6 K6, P3 P3
A, H3H3, K5 K5, KGK6, L, P3 P3, Q, R
Hs, H6, K5, K6, P3
A, H, Kg, KG, L, P3, Q, R
A, H, K5, K6, L, P3, Q, R, E
A, H3, K5, K6, L, P3, Q, R, E

I'4, Z, R4, S, C
r4, z, R, x, s, z, c, B
A2A3, Z, S, C
A2A3, Z, X, M, S, Z, C
A2A3 Z, X, M, S, T, Z, C, B
r4, r5, R4, R5, X5, M5
14, I'5, R, X, S, Z, B
A3 A3
A3 A3 R4 R5, X5, S
A3
A3) R4) X) M3) M4) S) Z
A3 R4, Xy, X2, S
A3, XQ) XP) M&) Mg) Z

I4, Z, L2L3, W, Q, C
A2A3, Z, W, Q, C
A2A3, Z, X, W, Q, V, C
r4, r5 L3 X5 W3 W4
r4, r, , L, X5, W
A3 A3
A3A3, L, W' Q
A3, W5
A3, L, W, Q
A3, Xy, X2, W, V
A3, L) Xy, X2, W, Q, V
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TABLE II. ( Conti~~«).

Space groups IR's, PIR's Space groups IR's, PIR's

Cubic I
197
199
204
206
211

I 4, Z, H4, P4 P4, G, C
r4, Z, H4, P, G, C
AgA3, E, P4, G, C
A2A3, Z, N, P, D, G)C
I'4, I'5, H4, H5, P4

214
217
220
229
230

r4, r5, H4, H5, p
A3 A3 P4 P4, P5 P5
A3A3 H4H5 N P3P3 D, G
A3, P4, P5
A3, H4, N, P, D, G

Second-order transitions to commensurate phases must
be driven by an order parameter belonging to an IR as-
sociated with a k point of symmetry. Hence we have
the Lifshitz condition as a special case of the weak Lif-
shitz condition: The number of Lifshitz invariants must
be zero.

The Landau and weak Lifshitz conditions are entirely
determined by the IR. Among the 230 crystallographic
space groups, there are 10285 IR's which need to be con-
sidered. These IR's include all those associated with each
k point of symmetry and also those associated with an ar-
bitrary k vector on each inequivalent k line of symmetry
and on each inequivalent k plane of symmetry, and those
associated with an arbitrary general k vector. We list in
Table I the IR's which violate the Landau condition and
in Table II the IR's which violate the weak Lifshitz con-
dition. In Table I we omit the trivial case of the identity
IR's which always violate the Landau condition. Note
the surprising result that none of the IR's (except the
identity IR s) of the space groups in the triclinic, mon-
oclinic, orthorhombic, or tetragonal systems violate the
Landau condition. The IR's in Table II which are asso-
ciated with k points of symmetry are also those which
violate the Lifshitz condition. The data in both of these
tables were generated by computer calculations using the
database from Ref. 5. The mathematical equations used
in these calculations are given in Ref. 6.

We use the IR labeling from Miller and Love. 7 s (Note
that Ref. 5 is an updated version of Ref. 7 and con-
tains some additional k vectors. Reference 8 contains
a useful table giving the corresponding labeling of IR's
by Kovalev, Bradley and Cracknell, and Zak10 for k
points of symmetry. Also, a forthcoming English edi-
tion of Kovalev gives the mapping of all k vectors from
Miller and Love to Kovalev. ) The IR symbols in Tables I
and II are represented by a letter (Z, A, A, B, . . .), which
denotes the k vector, and a subscript number, which de-

Lattice

Orthorhombic C
Orthorhombic I
Orthorhombic F

Tetragonal I
Hexagonal R
Hexagonal P
Cubic P
Cubic F
Cubic I

k values

A, F; Z, C; A, E;
A, U; A, G; Z, F;
A, R; A, Q; Z, U;

Z, F; J, K; M,
E, F; A, V; YU;
A, P; E, Q; Y, B;
A, T; Q, S; C, F
C, J
ES;C J;AB
A, F; C, J, B

BG;KL;MN
A, K; B, L; C, M
AC; BD; HG;

N
A, K; C, D
C, D, R

TABLE III. Equivalent k values in the Miller and Love labeling of
IR's. Groups of symbols separated by semicolons are labels for equiv-
alent k values.

notes the IR associated with that k vector. If the sub-
script is absent, then all of the IR's associated with that
k vector are implied. For example, we see in Table I that
all of the Z IR's of space group 146 violate the Landau
condition, whereas only the one IR Eq of space group 166
violates the Landau condition.

In Landau theory, only physically irreducible represen-
tations (PIR's) are considered. If an IR is not real, the
PIR is formed from the direct sum of the IR with its
complex conjugate. This is indicated in the tables by
combining two IR symbols to form a single symbol. For
example, in Table I, we see that PIR Z1Z1 of space group
155 violates the Landau condition. This PIR is formed
from the direct sum of the IR E1 with its complex con-
jugate. In Table II, we see that PIR P2P3 of space group
147 violates the weak Lifshitz condition. This PIR is
formed from the direct sum of P2 with its complex conju-
gate. In this case, the complex conjugate of P2 happens
to be equivalent to the IR P3. Hence we use the label
P2P3.

Some of the k vectors listed in Refs. 7 and 5 are equiv-
alent to each other. These are listed in Table III. We do
not list IR's with equivalent k vectors in Tables I and II.
For example, from Table I we see that IR Z1 of space
group 166 violates the Landau condition. In Table III
we find that k vectors Z and Q are equivalent for the
hexagonal R lattice. Therefore, IR Qq of space group
166 also violates the I andau condition, even though it is
not listed in Table I.

In Ref. 8, the Landau and Lifshitz conditions have
been previously determined for all IR's associated with k
points of symmetry. In Ref. 12, the Landau condition for
all real IR's can be easily obtained from the tables of sym-
metrized triple Kronecker products. Other papers
have listed IR's which satisfy the Landau and jor Lifshitz
conditions for various space groups, but these lists con-
tain errors. The tables in Refs. 8 and 5 were typeset by
computer directly from data files and therefore almost
certainly do not contain any errors. Also, Tables I and II
in this Brief Report were composed directly by the com-
puter and therefore also should not contain any errors.

Using our data, we can comment on some assertions
made by Michelson3 regarding the weak Lifshitz con-
dition. First of all, he asserts that all IR's associated
with general k points satisfy the weak Lifshitz condition.
There are no general k points listed in Table II, in agree-
ment with his assertion.

Second, he asserts that IR's associated with k planes
and k lines of symmetry satisfy the weak Lifshitz condi-
tion if the small representation is one dimensional. We
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have found two ways in which this rule can be violated.
If the IR is not real, the PIR may not satisfy the weak
Lifshitz condition. For example, the PIR AqA2 of space
group 17 is associated with a k line of symmetry. The
small representations Ai and Aq are both one dimen-
sional. However, there are three Lifshitz invariants in
the free-energy expansion for the PIR AiA2. Since the k
vector has only one degree of freedom, this PIR violates
the weak Lifshitz condition.

The other way in which Michelson's rule can be vio-
lated is illustrated by the following example. The IR Aq
of space group 75 is associated with a k line of symmetry
(one degree of freedom). The small representation Aq is
one dimensional. However, there are two Lifshitz invari-
ants in the free-energy expansion, and the weak Lifshitz
condition is violated. There is a special circumstance
here that allows Michelson's rule to be violated. If we
consider the full symmetry of the tetragonal P lattice,

the point group of every k vector on 4 is mm2. If we
consider only the symmetry of the space group, then the
point group of k vectors on L is 1, the same as the point
group of a general k point. One might argue that k
vectors on that line do not really belong to a k line of
symmetry in space group 75, but are actually general k
points and have three degrees of freedom. However, by
mathematicaL definition, the k vectors that lie on A have
only one degree of freedom, and therefore, if there is more
than one Lifshitz invariant in the free energy, the weak
Lifshitz condition is violated. The minimum of the free
energy cannot fall on that line. In general, Michelson's
rule may be violated in cases where k vectors on a k line
or plane of symmetry do not have more symmetry than
surrounding k vectors.

We gratefully thank B. L. Davies for providing us a
computer tape containing the data from Ref. 5.

L. D. Landau and E. M. Lifshitz, Statistical Physics, 3rd
ed. (Pergamon, Oxford, 1980), Pt. 1, Chap. XIV.
J.-C. Toledano and P. Toledano, The Landau Theory of
Phase Transitions (World Scientific, Singapore, 1987).
A. Michelson, Phys. Rev. B 18, 459 (1978).
C. J. Bradley and A. P. Cracknell, The Mathematica/ The-
ory of Symmetry in Sotids (Clarendon, Oxford, 1972).
A. P. Cracknell et aL, Generat Introduction and TabLes of Ir
reducibie Representations of Space Groups, Kronecker Prod
uct Tabtes, Vol. 1 (IFI/Plenum, New York, 1979).
G. Ya. Lybarskii, Appiications of Group Theory in Physics
(Pergamon, New York, 1963).
S. C. Miller and W. F. Love, Tabies of IrreducibLe Repre
sentations of Space Groups and Co Representatio-ns of Mag
netic Space Groups (Pruett, Boulder, 1967).
H. T. Stokes and D. M. Hatch, Isotropy Subgroups of the 290
CrystaLLographi c Space Groups (World Scientific, Singapore,
1988).

O. V. Kovalev, IrreducibLe Representations of the Space
Groups (Gordon and Breach, New York, 1965); Irreducibie
and Induced Representations and Corepresentations of the

Fedorov Groups (Nauka, Moskow, 1986), in Russian.
The Irreducibte Representations of the Space Groups, edited
by J. Zak (Benjamin, New York, 1969).
O. V. Kovalev, Irreducible and Induced Representations and
Corepresentations of the CrystaLlographic Space Groups,
edited by H. T. Stokes and D. M. Hatch (Gordon and
Breach, London, in press).
B.L. Davies and A. P. Cracknell, Symmetrized Poioers of Ir
reducibte Representations of Space Groups, Kronecker Prod
uct TabLes, Vol. 4 (IFI/Plenum, New York, 1980).
P. Toledano and J.-C. Toledano, Phys. Rev. B 14, 3097
(1976).
P. Toledano and J.-C. Toledano, Phys. Rev. B 16, 386
(1977).
P. Toledano and G. Pascoli, Ferroelectrics 25, 427 (1980).
H. W. Kunert, in Group Theoretical Methods in Physics,
edited by M. Serdaroglu and E. Inonu, Lecture Notes in
Physics Vol. 180 (Springer, Berlin, 1983), p. 329.
H. T. Stokes and D. M. Hatch, Phys. Rev. B 30, 4962
(1984). Also see erratum in ibid. 31, 4700 (1985).


