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A control algorithm based on the filtered-x LMS algorithm is developed that has the property of 
being able to control the energy in the acoustic field. The algorithm is useful for providing greater 
global control of the field than is obtained by controlling the pressure. This is due to the fact that the 
energy-based approach effectively overcomes the observability problems that often limit the 
performance possible when controlling the pressure field. The control approach is developed for the 
cases of a predominantly standing wave field, and a predominantly propagating wave field. The 
approach is applicable for both broadband and narrow-band excitations. A simple example 
demonstrating the increased performance possible with the energy-based control approach is 
presented for the case of single frequency excitation. 

PACS numbers: 43.40.Vn 

INTRODUCTION 

A number of different techniques and control algorithms 
have received considerable attention recently for active con- 
trol of sound and vibration fields. With regards to the active 
control of sound fields, there have been significant gains 
made in a theoretical understanding of the mechanisms of 
active control, and the interaction between the primary exci- 

1,2 tation sources and the secondary control sources. 
Along with the theoretical developments, there has also 

been significant progress made in implementing practical ac- 
tive control systems. A number of different control algo- 
rithms have been developed for active control. However, the 
active control systems reported in the literature have relied 
most prominently on the filtered-x algorithm 3'4 or the recur- 
sive least-mean-squares algorithm. 5 These algorithms have 
the property of being relatively simple to implement, as well 
as being rather robust. 

Another issue related to active control that has received 

considerable attention recently is that of the optimal location 
for the sensors and actuators used. The importance of this 
issue can be seen intuitively by considering a standing wave 
field. If the sensor or actuator is placed at a node of the 
standing wave, there will be an observability or controllabil- 
ity problem, respectively. However, it should be noted that 
the optimal location for the sensors and actuators is a func- 
tion of the desired control objective. Thus a related question 
that deserves critical attention is exactly what the desired 
control objective is and what the appropriate performance 
function is to achieve that objective. 

The effect of choosing a different performance function 
has been investigated by Curtis et al. 6 In their work, they 
considered the difference between minimizing the total 
power output of the primary and secondary sources, which 
represents a "global" performance function, and maximizing 
the power absorption of each secondary source, which rep- 
resents a "local" performance function. This comparison 
represents a difficulty often encountered in practice, in that 
one often wishes to control a global variable, such as the 

a)Current address: Ford Electronics, 19540 Allen Road, Melvindale, MI 
48122. 

total acoustic potential energy in an enclosure or the total 
power output of a source array, while only having local in- 
formation available, such as discrete pressure measurements. 
Thus an important question is often whether a suitable local 
performance function can be found that at least approximates 
the global control of the field that is desired. 

In applications of active control to acoustic fields, the 
measurement that is typically most readily available is pres- 
sure. However, for most applications, the control objective 
that is desired is often related to the energy in the field, rather 
than the pressure associated with the field. Several examples 
include the control of the sound field in a duct, where one 

typically wishes to minimize the acoustic intensity that 
propagates past the secondary control source, and the control 
of the sound field in an enclosure, where one often wishes to 

minimize the global potential energy in the enclosure. In 
both of these applications, the approach that has usually been 
taken is to measure the acoustic pressure at a discrete number 
of locations and to minimize the sum of the squared pres- 
sures. The reasoning for this approach is that the intensity 
that propagates in a duct is proportional to the squared pres- 
sure and the potential energy in an enclosure is found as the 
spatial integral of the squared pressure. However, it has been 
found that one must be careful in using this approach in 
practice. In the case of sound propagation in a duct, there are 
evanescent higher-order modes that can degrade the control 
of the acoustic intensity that is obtained if the error sensor is 
positioned too close to the secondary control source. 7 Also, 
standing waves that may result from a reflective termination 
in the duct can easily distort the equivalence of squared pres- 
sure and acoustic intensity. In the case of enclosed sound 
fields, modal coupling exists, such that minimizing the 
squared pressure may result in "control spillover," whereby 
controlling the pressure at the discrete error sensors results in 
energy being coupled into other modes, resulting in a global 
potential energy that may actually increase in some cases. 
These difficulties result from the fact that the effect of using 
a number of discrete error sensors is to produce an observ- 
ability problem, in that the sensors can only sense a subset of 
the modes contributing to the acoustic field. 

In an attempt to overcome some of the difficulties of 
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trying to achieve global control by controlling only local 
pressure measurements, a control approach has been devel- 
oped that allows one to monitor and control the energy in the 
field, rather than a single acoustic parameter such as pres- 
sure. The control approach has the distinct advantage that it 
generally gives a better approximation to the desired global 
control, since it is inherently associated with the control of 
energy, rather than a single scalar acoustic parameter. While 
the method will be outlined here for acoustic fields, it is also 

directly applicable to controlling structural vibration fields, 
and has been so used in other applications. s 

I. DEVELOPMENT OF ENERGY-BASED CONTROL 

The method of energy-based control utilizes the concept 
of controlling a local variable in an attempt to achieve global 
control, but the local variable chosen is an energy-based 
quantity. In general, there are two cases of interest. In the 
first case, the acoustic field to be controlled is predominantly 
composed of energy in the form of standing waves, such as 
the sound field in enclosures. For this case, the energy-based 
quantity chosen consists of the sum of the potential and ki- 
netic energy densities at discrete locations. The reason for 
this choice is related to the concept that a standing wave field 
can be described in terms of modes, which are typically 
coupled for acoustic fields. By controlling the total energy 
density, the observability problem that leads to performance 
degradation when using discrete pressure measurements is 
overcome. This is due to the fact that if the magnitude of the 
potential energy density associated with a particular mode 
goes to zero at an error sensor location, the kinetic energy 
density will approach a maximum. Thus all modes of the 
enclosure are observable by controlling the energy density, 
since the method is sensitive to both the pressure and veloc- 
ity associated with the mode. 

For the second case, the acoustic field to be controlled 
consists of propagating energy, such as the sound field in a 
duct or free-field propagation. For this case, the energy-based 
quantity to control is the acoustic intensity. The acoustic in- 
tensity has the advantage of being sensitive to the propagat- 
ing energy without being sensitive to the nonpropagating en- 
ergy associated with the evanescent modes of the duct or the 
near field of a source. 

A. Development of the control law 

The control law for controlling the energy density in an 
acoustic standing wave field will be fully developed in this 
section, from which it is straightforward to modify the re- 
suits for the case of controlling acoustic intensity. In addi- 
tion, the algorithm will be developed here for a single control 
source and a single error sensor, for simplicity. The method 
can be readily extended to multiple sources and error sensors 
using the method outlined by Elliott et al. 4 

The acoustic energy density at an arbitrary location in 
the field is given by 

w=p2/2pc2 + 21-pv2 , (1) 

where p is the ambient fluid density, c is the acoustic phase 
speed, p is the acoustic pressure, and v is the acoustic par- 
ticle velocity. The acoustic pressure and velocity are both 
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FIG. 1. Block diagram representation of a filtered-x control implementation 
for controlling acoustic energy density. 

composed of two components: the pressure or velocity due to 
the primary excitation source(s), and the pressure or velocity 
due to the secondary control source(s). 

A filtered-x control implementation for this case can be 
represented in block diagram form as shown in Fig. 1. In this 
figure, pp(n) and dp(n) represent the pressure and particle 
velocity at the error sensor location in the absence of any 
control, while pc(n) and dc(n) are the pressure and particle 
velocity at the error sensor due to control. It should be noted 
that n represents a discrete-time index. Here, W(z) represents 
the transfer function of the adaptive control filter, while 
Hv•(Z ), Hv2(Z ), Hv3(Z ), and Hp(z) represent the transfer func- 
tions relating the control output u(n) to the velocity compo- 
nents and pressure at the error sensor that result from the 
control source. Finally, •{p,t7} represents any processing of 
the pressure and velocity signals that occurs to obtain the 
"effective" error signal. In a standard filtered-x implementa- 
tion, this operator would simply be equal to unity. 

To proceed with the derivation of the energy-based al- 
gorithm, the pressure and velocity components at the error 
sensor can be represented as 

J-1 

vl(n)=Vlp(n) + • hvlj(n)u(n-j), 
j=0 

(2a) 

J-1 

o2(n)=O2p(n) + • hv2j(n)u(n-j), 
j=0 

(2b) 

J-1 

v3(n)=V3p(n) + • hv3j(n)u(n-j), 
j=0 

(2c) 

K-1 

P(n)=pp(n) + • hpk(n)u(n-k), 
k=0 

(3) 

where hvlj, hv2j, hv3j, and hpk represent the coefficients of 
H,•l(Z ), H,•2(z), H,•3(z), and Hp(z), and a finite impulse re- 
sponse (FIR) structure has been assumed for the transfer 
functions. One could also use an infinite impulse response 
(IIR) implementation for these transfer functions if desired. 
In addition, for the velocity components, the subscript 1 re- 
fers to the x direction, the subscript 2 to the y direction, and 
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the subscript 3 to the z direction. For a filtered-x implemen- 
tation, the control output u(n) is given by 

I-1 

u(n)= • wi(n)x(n-i), (4) 
i=0 

where x(n) is a reference input signal, chosen to be corre- 
lated with the signal to be controlled. Substituting this ex- 
pression into Eqs. (2) and (3) yields 

I-1 J-1 

vl(n)=Vlp(n)+• wi(n)• hvlj(n)x(n-j-i), 
i=0 /=0 

I-1 J-1 

v2(n)=V2p(n)+Z wi(n)Z hv2j(n)x(n-j-i), 
i=0 /=0 

I-1 J-1 

o3(n)--O3p(n)+• wi(n)• h•3j(n)x(n-j-i), 
i=0 /=0 

(5a) 

(5b) 

(5c) 
I-1 K-1 

p(n)=pp(n)+ • wi(n ) Z hpk(n)x(n-k-i). (6) 
i=0 k=0 

In Eqs. (5) and (6), the order of the summations has been 
interchanged, which is permissible if one assumes the coef- 
ficients w i(n) to be time-invariant. Physically, this assump- 
tion corresponds to the assumption that the filtered-x coeffi- 
cients vary slowly, relative to the time scale of the response 
of the system to be controlled. From Eqs. (5) and (6), it is 
possible to define 

J-1 

r•(n-i)= • h•j(n)x(n-j-i), (7a) 
j=0 

J-1 

r•2(n- i) = • hv2j(n)x(n- j- i), (7b) 
/=0 

J-1 

r•3(n- i)- • h•3j(n)x(n-j-i), (7c) 
/=0 

K-1 

rp(n- i)= • hpt•(n)x(n- k- i), (8) 
k=0 

which can be referred to as "filtered-x" signals. It is also 
useful to define the following vector quantities: 

WT(n)=[wo(n)wl(n)" 'Wi-l(n)], (9) 

RvTl(n)=[rvl(n)rvl(n--1)'"rvl(n--I+l)], (10a) 

I•2(n)=[rv2(n)rv2(n-1)"'rv2(n-I+ 1)], (lOb) 

I•3(n)=[rv3(n)rv3(n- 1)"'rv3(n-I+ 1)], (10c) 

l•(n)=[rp(n)rp(n- 1 )'" rp(n-I+ 1)]. (11) 
Using vector notation allows Eqs. (5) and (6) to be expressed 
as 
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FIG. 2. Performance function error surface for two control filter coefficients. 

The optimum filter coefficients in this example are (Wo,W•)= (1.2,- 2.3) 
and the minimum mean-square-error is given by 0.05. 

ol(n)=Olp(n)+ WT(n)Rvl(n), 

02(n)--O2p(n)+ WT(n)Rv2(n), 

o3(n)--O3p(n)+ WT(n)Rv3(n), 

p(n)-pp(n)+ WT(n)Rp(n). 

(12a) 

(12b) 

(2c) 

To proceed, it is useful to consider the standard devel- 
opment of the filtered-x algorithm. The filtered-x algorithm is 
based on a least-mean-squares (LMS) approach, such that the 
performance function to be minimized is chosen to be a posi- 
tive definite quadratic function of the filter coefficients. Since 
the performance function is quadratic with respect to the fil- 
ter coefficients, this function can be represented as a hyper- 
parabolic surface in an (I+ 1)-dimensional space, where I 
represents the number of filter coefficients used. An example 
of this function for two filter coefficients can be seen in Fig. 
2. One major advantage of an LMS approach is that one is 
guaranteed to have a unique global minimum for the perfor- 
mance function that is being minimized. For an acoustic 
field, the pressure at some location in the field is a linear 
function of the control filter coefficients, as can be seen from 
Eq. (13). Thus a typical filtered-x implementation uses the 
squared pressure at one or more discrete locations as the 
performance function that is to be minimized. As such, the 
pressure at the sensor location is referred to as the "error" 
signal, the squared pressure is used for the performance func- 
tion, and the filter coefficients are updated in real-time ac- 
cording to the negative gradient of the performance function, 
which leads to the standard result, 3 

W(n + 1)= W(n)- txe(n)Rp(n). (14) 
Here,/x is a convergence parameter chosen to maintain sta- 
bility, e(n) is the measured pressure at the sensor location, 
and Rp(n) is as defined in Eqs. (8) and (11). 

B. Energy density control update 

To develop the control law for controlling the acoustic 
energy density, one might consider using the squared energy 
density as the performance function to minimize, analogous 
to using the squared pressure for a typical implementation. 
However, from Eq. (1) it can be seen that the squared energy 
density is fourth-order in the acoustic pressure and velocity. 
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Since the pressure and velocity are both linear functions of 
the filter coefficients, this choice of performance function 
does not lead to a single, unique, global minimum. Thus, for 
controlling the acoustic energy density, the appropriate per- 
formance function to minimize to obtain a filtered-x imple- 
mentation is the energy density itself. As can be seen from 
Eqs. (1), (12), and (13), the energy density is a positive defi- 
nite quadratic function of the filter coefficients, thus yielding 
a single, unique, global minimum when the function is mini- 
mized. It can also be noted that by choosing the acoustic 
energy density as the performance function, one can think of 
the square root of the energy density as being the "effective 
error" signal. While this may not have much physical mean- 
ing, this effective error signal is analogous to the pressure 
error signal in typical implementations. 

Choosing the acoustic energy density as the performance 
function allows the performance function to be expressed as 

3 
1 

Jed-- E • P[Omp(tl)+wT(tl)Rvm(tl)] 2 
m=l 

1 

+ 2pc2 [pp(n)+ WT(n)Rp(n)] 2, (15) 
where use has been made of Eqs. (12) and (13). To update 
the control filter coefficients, the gradient of the performance 
function is needed. This can be obtained as 

3 

VJed = • P[Ump(tl)q-WT(n)Rvm(n)]Rvm(n) 
m=l 

1 

+p• [pp(n)+ WT(n)Rv(n)]Rv(n) 
3 1 

= • pvm(n)Rvln(n)+•-•P(n)Rv(n). m--1 

(16) 

Thus the implementation of the control law can be expressed 
as 

3 W(n+l)=W(n)-/z • pOm(n)Rvln(n) 
m=l 

I ) +p•-• p(n)Rp(n) . (17) 

To implement the control law in this form requires measure- 
ments of the acoustic pressure and velocity at the error sen- 
sor location, as well as a measure of the transfer functions 

designated as Itvl•(Z ) and I-Iv(z ) in Fig. 1, which are required 
to determine Rvl•(n ) and Rv(n ). These transfer functions can 
be estimated either a priori or in real time using one of 
several available adaptive methods. 9-11 The acoustic velocity 
could be obtained using a particle velocity sensor, such as a 
laser vibrometer or velocity microphone, or using a two- 
microphone technique, such as is typically used to measure 
acoustic intensity. In general, three orthogonal velocity mea- 
surements will be required to estimate the velocity vector. If 
the two sensor approach is used, Eq. (17) can be written in a 

slightly different form. For this case, the pressure and veloc- 
ity (x component) are expressed as 

p•(n)+p2(n) 
p(n)• 2 ' (18) 

v•(n)• [p2(n)-p•(n)]dn, (19) 

where p 1 (n) and p 2(n) are the pressure measurements from 
the two closely spaced microphones, and Ax is the spacing 
between them. Similar expressions exist for the y and z com- 
ponents of the velocity. These expressions can be simplified 
somewhat by defining 

pl(n)+p2(n) 
Pavg(n)-- 2 ' (20) 

?'l(n) =• [p2(n)-pl(n)]dn. (21) 
Using these expressions in Eq. (17) allows the update equa- 
tion for the two-microphone method to be expressed as 

n) Rv(n ) W(n + 1 )= W(n)- 1• PC 2 

3 -- • Tm(/'/) Rum(n) . (22) 
m=l AXm 

The previous update expressions [Eqs. (17) and (22)] are 
exact, but require the knowledge of all the transfer functions, 
Itvm(Z) and I-Iv(z), which relate the control filter output u(n) 
to the velocity and pressure at the error sensor location. Un- 
der certain conditions, it is possible to simplify the update 
equation so that knowledge of only I-Iv(z ) is required. This 
simplifies the implementation of the algorithm, but in general 
will not be exact, as one assumption is introduced. 

Euler's equation can be used to relate Rum(n) to Rv(n) as 

=-- •7 Rv(n)dn , (23) 

where '•r m indicates the component of the gradient in the 
direction indicated by rn. Using Eq. (23) in Eq. (16) allows 
the gradient of the performance function to be expressed as 

3 

•TJed = • --Ore(n) • •7mRv(n)dn +p(n) Rv(n) rn=l pC2 ' 
(24) 

Several possibilities exist for dealing with the gradient and 
integral operators in Eq. (24). The approach used here as- 
sumes that the space-time dependence of the wave field is 
such that the effect of the integral and gradient operators is 
such as to yield a factor of 1/c. This assumption neglects a 
possible phase shift, and as such may not be valid in some 
cases. Using this assumption allows Eq. (24) to be expressed 
as 

( 3 VJed•Rp(n) p(n) • pUg(n) . (25) 
pC C m=l 
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Using Eq. (25) allows the control update equation to be ex- 
pressed as 

W(n + 1) =W(n)-/x ( 3 ) p(n) • pVrn(n) 
C rn=l 

R(n), 

(26) 

where R(n) =Rp(n)/pc. If a two-microphone method is 
implemented, Eq. (26) can be expressed as 

Control Error 
•ry Speaker Sensor 

Signal 
Generator 

DSP96002 • 

W(n + 1) =W(n)-/x ( 3 ) Pavg (n) + • Trn(n) 
½ rn = 1 AXrn 

R(n). 

(27) 

C. Acoustic intensity control update 

To implement energy-based control for acoustic inten- 
sity, the instantaneous acoustic intensity in a chosen direction 
is selected as the performance function, since it is quadratic 
in the control filter coefficients. Thus the "effective error" 

signal is the square root of the instantaneous acoustic inten- 
sity. It should be noted, however, that this choice of perfor- 
mance function can lead to potential difficulties, since the 
acoustic intensity is not a positive definite function in gen- 
eral. As a result, using the negative gradient of the quadratic 
performance function can yield an unstable solution if one is 
not careful. As an example, consider the case in which the 
acoustic intensity in minimized at a location lying between 
the primary source and the control source. If the intensity 
component to be minimized is along the line between the 
sources, the intensity will be positive from one of the 
sources, and will be negative from the other source. As a 
result, the solution that minimizes the acoustic intensity for 
this case will be for the control source to have either zero 

source strength or maximum source strength, depending on 
whether the acoustic sensor is located in the positive or nega- 
tive direction from the control source. Therefore, the appro- 
priateness of implementing this approach is restricted to 
cases where the geometry is such that the intensity compo- 
nent to be minimized will have the same sign for both 
sources. If this assumption holds, the performance function 
will be positive definite, and a unique minimum will exist. 

A second option for controlling acoustic intensity would 
be to minimize the square of the intensity. This approach 
guarantees that the performance function will be positive 
definite, as desired, but introduces the problem of having a 
nonquadratic function. The result is that multiple minima 
may occur, and one must be able to determine whether the 
minimum that the algorithm converges to is a local or global 
minimum. In this paper, it is assumed that the geometry of 
the control problem can be arranged so that the acoustic in- 
tensity is positive definite and serves as a suitable perfor- 
mance function. 

Using Eqs. (12) and (13) allows the intensity perfor- 
mance function to be expressed as 

Jint=p(n)v(n)=[pp(n)+ WT(n)Rp(n)] 

X[Vp(n)+ WT(n)Rt,(n) ], (28) 

FIG. 3. Schematic of the experimental configuration. 

where the subscripts have been dropped from the velocity 
terms, since only a single component is being considered. 
Taking the gradient of the performance function yields 

VJint=p(n)Rt,(n) + v(n)Rp(n), (29) 
and the control update equation can be expressed as 

W(n+ 1)=W(n)-/x[p(n)Rt,(n)+v(n)Rp(n)]. (30) 
As for the case of controlling energy density, this expression 
can be modified to account for using a two-microphone 
method or to express Ro(n ) in terms of Rp(n). 

It is of interest to note that if only plane waves exist, 
then v(n)=p(n)/pc and Rt,(n)=Rp(n)/pc. For this case, 
Eq. (30) reduces to 

W(n + 1)= W(n)-/zp(n)R(n), (31) 

where R(n)=2Rp(n)/pc. Equation (31) represents the 
filtered-x control law that has been found to work very well 
in controlling acoustic propagation in ducts when the error 
sensor is located a sufficient distance away from the sources 
so that evanescent wave effects are negligible. Implementing 
the more general expression in Eq. (30) is more involved, but 
offers the capability of accounting for near-field effects if 
evanescent waves are present. 

II. EXAMPLE 

This section presents an example of energy-based con- 
trol to provide some indication of the performance that can 
be expected. The example chosen corresponds to controlling 
the acoustic energy density in an enclosure. For simplicity, a 
one-dimensional sound field is considered, which is obtained 
by using a closed circular duct of length 5.6 m and diameter 
0.116 m as shown in Fig. 3. The uncontrolled acoustic field 
is generated by a loudspeaker positioned at one end of the 
duct, driven at a frequency of 200 Hz. A single loudspeaker 
control source is arbitrarily located at a normalized position 
of 0.34L, where L is the length of the duct, and a single 
error sensor is located at a position of 0.47L. The error 
sensor consists of two calibrated and phase-matched micro- 
phones with a spacing between them of 1.7 cm. It is of note 
that the sensor position is near the center of the duct, where 
half of the modes for the enclosure have a pressure mini- 
mum. Thus one would expect this to be a poor location, in 
general, for trying to control the sound field by minimizing 
the pressure at the error sensor. 
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FIG. 4. Predicted sound-pressure level along the duct for an excitation fre- 
quency of 200 Hz and different control implementations. 

FIG. 5. Measured sound-pressure level along the duct for an excitation 
frequency of 200 Hz and different control implementations. 

Controlling the acoustic field was investigated both nu- 
merically and experimentally. The numerical results were de- 
termined using a modal description of the field, in which the 
lowest 50 modes were considered. It was verified that 50 

modes were adequate to describe the field in the frequency 
range of interest. For a given source/sensor configuration, the 
optimal control source strength was calculated to minimize 
the chosen performance function. The pressure throughout 
the enclosure was then calculated, both with and without 
control. 

As a means of comparison, both control of the acoustic 
pressure at the error sensor and control of the acoustic energy 
density at the error sensor are considered. The control equa- 
tion used for controlling the energy density is given in Eq. 
(27). The subtraction and integration required to obtain y(n) 
was accomplished by means of an analog circuit consisting 
of a differential amplifier, integrator, and amplifier. For this 
application, the analog integrator was designed to provide 
accurate integration above approximately 125 Hz. The gain 
of the circuit and the spacing between the two microphones 
were measured and used in the control software, along with a 
nominal value for c of 343 m/s, to maintain the same relative 
gain on each of the terms in Eq. (27). 

Figure 4 shows the predicted numerical results, while 
Fig. 5 shows the corresponding measured experimental re- 
sults for the cases of no control, controlling the pressure, and 
controlling the energy density. For these results, there is a 
single-frequency excitation at 200 Hz, which corresponds to 
an off-resonance frequency that lies approximately halfway 
between the sixth and seventh modes of the enclosure. As 

can be seen, there is good agreement between the numerical 
and experimental results. Both methods indicate very sub- 
stantial attenuation in the vicinity of the error sensor (x 
= 0.47L). It should be noted that for these results, the pres- 
sure was measured at 21 uniformly spaced locations along 
the enclosure. The error sensor location was not at one of 

these locations, and so is not included in the results of Fig. 5. 
However, the pressure was reduced the greatest at the error 
sensor, and would produce an even sharper notch for the 
squared pressure curve in Fig. 5 if that data point was in- 
cluded. It is apparent from Fig. 5 that throughout most of the 

enclosure, controlling the energy density gives considerably 
improved attenuation over controlling the acoustic pressure. 
For the region between the primary source and the control 
source, neither method attenuates the acoustic field signifi- 
cantly, although the method of controlling energy density 
tends to give slightly improved results in this region. This 
result is a function of the source configuration, and could be 
improved by optimizing the control source location. Further 
results and considerably more discussion of controlling the 
acoustic energy density in this enclosure can be found in 
Refs. 12 and 13. 

III. ISSUES ASSOCIATED WITH ENERGY-BASED 
CONTROL 

There are several advantages and disadvantages associ- 
ated with energy-based control that should be addressed. It is 
apparent that more signal processing is required to imple- 
ment energy-based control than acoustic-pressure based con- 
trol, since a direct measurement from the error sensor is not 
sufficient for updating the control filter coefficients. [Com- 
pare Eqs. (14) and (17), for example.] However, with the 
current digital signal processing hardware available, the dif- 
ference in signal processing required is often a fairly insig- 
nificant issue, unless a large number of control filters is en- 
visioned. For example, if the simplified algorithm of Eq. (27) 
can be used, only two additional multiplications (using the 
inverse of division) and one addition is required for each 
control filter used. If the control law in Eq. (17) is imple- 
mented, the additional computations for each control filter is 
given by N q- 2 multiplications and 1 addition, where N is the 
number of coefficients in each control filter. 

Another issue associated with energy-based control is 
that typically two highly phase-matched microphones are re- 
quired to obtain energy quantities if a two-microphone 
method is used, which can imply a relatively high cost for 
the sensors. However, several manufacturers offer low cost 
microphones that are sufficiently stable so that one can find 
two reasonably well phased-matched microphones without 
too much difficulty. In addition, since one is interested in 
controlling the energy, rather than in mapping the field, one 
can tolerate some error in the energy estimate. This can be 
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seen by considering the energy density expression in Eq. (1). 
If one considers a pure standing wave field, the kinetic en- 
ergy density will be equal to the potential energy density in 
magnitude. Thus a perfect sensor would weight the two 
terms equally. The effect of errors in the pressure and veloc- 
ity estimates is to weight one of the energy density terms 
more than the other. However, the control system will still be 
sensitive to all modes associated with the field since both 

kinetic and potential energy densities are being monitored. In 
fact, one of the major advantages of energy-based control is 
that it minimizes observability problems associated with the 
modes of the field, and this advantage is not negated by 
small measurement errors that slightly affect the weighting 
of the terms. 

Another issue of interest is that a pressure-based error 
signal only requires a single sensor for each error signal, 
while an energy-based error signal requires multiple sensors 
for an acoustic field. Thus the question might be asked if 
controlling energy density with a single "energy density sen- 
sor" (two microphones, for example) performs any better 
than simply controlling the pressure at two discrete error 
sensor locations. Controlling the pressure at several locations 
still makes it possible to have control spillover problems, as 
all modes that have a small pressure amplitude at the sensor 
locations can be excited to high amplitudes without being 
sensed by the control system. However, this cannot occur 
when controlling the energy density, since the high velocity 
amplitude at the pressure minima would be detected by the 
"energy density sensor" as part of the kinetic energy density 
term, and hence would be controlled. In fact, there is some 
indication that using energy-density control may actually re- 
duce the total number of transducers required to achieve glo- 
bal control of an acoustic field. TM 

One final issue to address with energy-based control is 
that of the optimal error sensor location. The performance 
obtained when controlling acoustic pressure is generally a 
strong function of the error sensor location. For example, if 
the sensor is placed near a pressure node, poor performance 
can be expected. However, the energy density in a standing 
wave field or the acoustic intensity associated with a propa- 
gating wave does not demonstrate any such dependence on 
sensor location. Thus another significant advantage of 
energy-based control is that the control method is relatively 
insensitive to the error sensor location. (The same is not true 
for the control source location.) As a result, placement of the 
error sensors is not a critical issue when using energy-based 
control, which can be very advantageous in applications 
where practical considerations limit the possible locations for 
the sensors. 

IV. SUMMARY 

An energy-based active control scheme has been devel- 
oped that can be implemented to control acoustic or struc- 

tural fields. Since the control approach is based on the con- 
cept of monitoring and controlling energy quantities, it is 
generally capable of achieving greater global control of the 
acoustic field, since it is sensitive to the energy in the field, 
rather than the pressure at a point. Methods have been pre- 
sented that are appropriate for controlling either standing 
wave or propagating wave fields. 

By sensing the energy in the field, the method has the 
advantage of overcoming the observability problem that of- 
ten leads to localized zones of silence when controlling the 
measured pressure in a field. In addition, the energy quanti- 
ties that are monitored do not have the strong spatial depen- 
dence that the pressure field typically has, so that the prob- 
lem of optimizing the error sensor location(s) is minimized. 
The convergence properties associated with this control 
scheme are similar to those associated with a standard 

filtered-x implementation, and only a modest increase in sig- 
nal processing is required to implement the energy-based 
control scheme. 
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