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A hybrid modal analysis for enclosed sound fields
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A hybrid modal expansion that combines the free field Green’s function and a modal expansion will
be presented in this paper based on a review and an extension of the existing modal analysis theories
for the sound field in enclosures. The enclosed sound field will be separated into the direct field and
reverberant field, which have been treated together in the traditional modal analysis. Studies on a
point source in rectangular enclosures show that the hybrid modal expansion converges notably
faster than the traditional modal expansions, especially in the region near the source, and introduces
much smaller errors with a limited number of modes. The hybrid modal expansion can be easily
applied to complex sound sources if the free field responses of the sources are known. Damped
boundaries are also considered in this paper, and a set of modified modal functions is introduced,
which is shown to be suitable for many damped boundary conditions.
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I. INTRODUCTION

Modal analysis �MA� has been widely used to study the
low frequency response in enclosed sound fields. The funda-
mental idea of modal analysis is to express an acoustic field
quantity as the summation of a complete set of properly
weighted modal functions. The weighting factors are often
called the modal amplitudes. The summation usually has an
infinite number of terms; therefore MA is generally not a
closed form solution. However, given that this infinite series
converges, one can in practice truncate it to a finite summa-
tion and still reach the desired accuracy in the low frequency
range. For high frequencies, where a very large number of
modal functions must be included to achieve an acceptable
accuracy, MA is less applicable.

Normal mode analysis �NMA�1 is probably the simplest
and most widely used modal analysis in the literature. It is,
however, only suitable for enclosures with rigid or very
lightly damped boundaries. Dowell, et al. developed a more
comprehensive modal analysis theory, so-called classical
modal analysis �CMA�, which is based on the Green’s diver-
gence theorem.2 CMA is capable of computing sound fields
in damped enclosures but, as a consequence, the modal func-
tions are coupled and the convergence speed is usually very
slow.3 NMA and CMA use the same set of eigenfunctions
solved from an eigenvalue problem as the modal functions,
but have different mechanisms to generate the modal ampli-
tudes. This set of eigenfunctions is called the “normal
modes” in this paper to distinguish from other sets of modal
functions discussed later. The normal modes and the linear
combination of them only satisfy rigid boundary conditions;
therefore, large errors are often observed in the regions near
damped boundaries. This issue can be understood as the
Gibb’s phenomenon.4
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The eigenfunctions that satisfy the same boundary con-
ditions as the enclosure can be solved numerically from an
exact eigenvalue problem5,6 and are called “exact modes” in
this paper. The exact modes are uncoupled and automatically
match the boundary conditions, which make them a very
good candidate for the modal functions of modal analysis.6

However, there are several negative properties associated
with them. First of all, the completeness of this set of modal
functions is always assumed without being proven. Second,
the “orthogonality” relationship among these functions is ab-
normal, which may cause inconvenience for many applica-
tions. Finally, solving the exact eigenvalue problem involves
numerical root searching in the complex domain which is
complicated and time consuming. Because of these disad-
vantages, MA using the exact modes �exact modal analysis
or EMA� is not utilized much in the literature.

In this paper, a new set of modal functions �modified
modes�, which partially satisfy the boundary conditions, will
be introduced. Compared to the normal modes, modified
modes are also coupled but can be easily simplified in many
cases. Modal analysis based on the modified modes �MMA�
also introduces errors on boundaries but performs better than
CMA. Unlike the exact modes, modified modes are orthogo-
nal and complete. Although a numerical root search is still
required, only real values need to be considered, which
greatly simplifies the searching algorithm.

In the literature related to modal analysis, distributed
sources on boundaries, such as a piston source mounted on
the inside surface of a room, are often considered. Point
sources, though more fundamental and very important for
many applications such as sound power prediction for
sources inside rooms, active noise control, and so on, are not
sufficiently studied, partially due to the very slow conver-
gence rate of MA in the near field. Maa proposed a method
of introducing the free field Green’s function �FFGF� in ad-
dition to the MA solution for sound fields, which essentially
divides the sound field into a direct field and a reverberant

7,8
field. Although his development was based on a faulty as-
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sumption that the classical modes are not complete, the idea
of dividing the enclosure’s sound field into a direct field and
a reverberant field has merit. In this paper, a hybrid model
that combines the free field Green’s function and a modal
expansion will be presented based on a rigorous mathemati-
cal derivation. Examples shown later in this paper confirm
that this hybrid method not only greatly improves the con-
vergence rate, but also provides a better way to study the
physical properties of enclosed sound fields. For a complex
source, the hybrid method can be easily modified by replac-
ing the FFGF with the free field response of the source. A
simple example will be given in Sec. IV C.

This paper is organized as follows. In Sec. II, the general
theory of modal expansion will be reviewed; a modified
modal expansion and a hybrid model will also be introduced.
In Sec. III, results of different modal expansion models will
be compared and discussed for both one dimensional and
three dimensional cases. Further examples of implementing
the hybrid modal expansion will be discussed in Sec. IV.

II. THEORETICAL DERIVATION

Inside an enclosure, the sound pressure field excited by a
point source satisfies the wave equation

�2p −
1

c2

�2p

�t2 = − Q0�t���r − ro� , �1�

where p is the sound pressure, c represents the acoustic
phase speed, and Q0�t���r−ro� represents the point source.

Taking the Fourier transform of both sides of Eq. �1�, it
becomes the non-homogeneous Helmholtz equation:

�2p̂ + k0
2 p̂ = − Q̂0��0���r − ro� , �2�

where ˆ indicates a frequency domain quantity, �0 is the
excitation frequency, and k0 is the acoustic wave number.

The boundary condition is usually assumed locally re-
acting and given as follows:

� p̂

�n
/p̂�S = � = − ik0

�0c

z
, �3�

where �0 is the air density, z is the specific acoustic imped-
ance of the boundary, and � is the normalized specific acous-
tic admittance. Note that this � differs from the standard
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definition of the specific acoustic admittance by the constant
−ik0�0c, which is a pure imaginary number.

The solution, p̂, can be expressed as a linear combina-
tion of modal functions, �n,

p̂ = �
n=1

N

qn�n, �4�

where the modal amplitude, qn, can be complex and N is the
total number of modal functions. �These modal functions are
spatially dependent, i.e., �n=�n�r��, but for notational sim-
plicity the spatial dependence is omitted here.� From Euler’s
equation, one can easily obtain the modal expression for par-
ticle velocity �assuming ei�t time dependence�,

v̂ = −
1

i��
�
n=1

N

qn � �n. �5�

A frequent choice for �n is the eigenfunctions of the follow-
ing eigenvalue problem:

�2�n = �n�n = − kn
2�n, �6a�

��n

�n
/�n�S = ��, �6b�

where �n denotes the eigenvalue, and �� could be any value
of choice. If �� is real, however, the eigenvalues are real and
the resulting modal functions are guaranteed to be complete
and orthogonal.9 Orthogonality implies Cmn=���V�m

� �nd3x
=�mn�mn, where �mn is the Kronecker delta function, and
�mn is a normalization constant. The eigenvalues are often
assumed non-positive, and thus written as −kn

2 as shown in
Eq. �6a�, but they could be positive if ���0 for some or all
of the boundary.

To solve for qn, the Green’s theorem can be applied as
follows:

� � �
V

��m
� �2p̂ − p̂�2�m

� �d3x = 	
S

�m

� � p̂

�n
− p̂

��m
�

�n
�da ,

�7�

where the volume integral covers the entire volume inside
the enclosure, and the surface integral is evaluated on the
entire inside surface of the enclosure. Substitution of Eqs.
�2�, �3�, and �5� into Eq. �7� gives
� � �
V

�− Q̂0��r − r0��m
� − ko

2p̂�m
� + km

2 p̂�m
� �d3x = 	

S

�� − ���p̂�m
� da

⇒� � �
V

�k0
2 − km

2 �p̂�m
� d3x + 	

S

�� − ���p̂�m
� da = − Q̂0�m

� �ro�

⇒ �
n

�k0
2 − km

2 �Cmnqn + �
n

Dmnqn = − Q̂0�m
� �ro�

⇒ �
n

��k0
2 − km

2 �Cmn + Dmn�qn = − Q̂0�m
� �ro� , �8�
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where Dmn=�S��−����m
� �nda. Thus, qn can be solved from

this linear equation group, which can also be written in ma-
trix form as

�k0
2 − k1

2�C11 + D11 D12 ¯

D21 �k0
2 − k2

2�C22 + D22 ¯

] ] �

� · q1

q2

]

�
= − Q̂0�1

��ro�

− Q̂0�2
��ro�

]

� ,

A · Q = B , �9�

where Amn= �k0
2−km

2 �Cmn+Dmn, Qn=qn, and Bm=−Q̂0�m
� �ro�

As mentioned at the beginning of this paper, the number,
N, of modal functions is usually infinity. Moreover, matrix A
is, though often sparse and Hermitian, nondiagonal. There-
fore, the qn’s are coupled and it is impossible to obtain an
exact solution.

In practice, however, if qn goes to zero quickly enough
as n goes to infinity, it is possible to keep only a finite num-
ber of �n’s as well as qn’s and obtain a desired accuracy.

Results that have been developed can be applied to en-
closures of any shape. However, this paper will only focus
on rectangular shapes. In particular, the dimensions of the
rectangular enclosure are Lx	Ly 	Lz and one of the corners
sits at the origin with the three adjoint edges lying along the
positive direction of the X, Y and Z axes. In addition, it is
assumed that the specific acoustic admittance, �, is constant
for each of the boundaries, and is denoted by �x0, �xL, �y0,
�yL, �z0 and �zL, where �x0 stands for � at x=0, �xL stands
for � at x=Lx, and so forth.

A. Classical modal analysis

For classical modal analysis, �� in Eq. �6b� is set to be
zero. Therefore, the eigenfunctions �normal modes� and ei-
genvalues can be solved easily for rectangular enclosures,

�n = �lmo = cos�kxlx�cos�kymy�cos�kzoz� , �10a�

kxl =
l


Lx
, kym =

m


Ly
, kzo =

o


Lz
,

kn
2 = kxl

2 + kym
2 + kzo

2 , �10b�

where l, m and o are nonnegative integers.
This set of normal modes is complete and orthogonal

because �� is real, but it is always infinite and usually
coupled for non-rigid boundaries. The hope here is that qn

converges to zero quickly so that truncations can be made.
Moreover, if the damping is small, or more precisely �−��
�1, Amn can be “uncoupled” by setting nonzero off-diagonal
terms to zero to simplify the computation.2 Studies on one-
dimensional �1-D� sound fields in ducts show that when
damping is added to the system the coupled model has to be

3,10
considered and many more iterations are needed. Ref. 10
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also points out that even if a large number of terms are in-
cluded the coupled model still converges poorly for the
acoustic intensity.

The classical modal analysis converges slowly not only
for the acoustic intensity but also for sound pressure as well
as particle velocity, especially in the spatial region close to
the boundaries.

B. Modified modal function

In order to reduce the effects of off-diagonal terms in the
matrix A in Eq. �9�, yet keep �� real, a good choice for �� is
the real part of �. The modified modes thus can be solved for
from Eq. �5�, and have the form

�n = �lmo = �cos�kxlx� −
�x0�

kxl
sin�kxlx�� · �cos�kymy�

−
�y0�

kym
sin�kymy�� · �cos�kzoz� −

�z0�

kzo
sin�kzoz�� , �11�

where kxl, kym and kzo can be solved from the following equa-
tions:

tan�kxl · Lx� =
��x0� + �xL� �kxl

�x0� · �xL� − kxl
2 ,

tan�kym · Ly� =
��y0� + �yL� �kym

�y0� · �ym� − kym
2 ,

tan�kzo · Lz� =
��z0� + �zL� �kzo

�z0� · �zL� − kzo
2 . �12�

The general derivation carried out at the beginning of Sec. II
�Eqs. �4�, �5�, �6a�, �6b�, and �7�–�9�� is also applicable for
modal analysis based on this new set of modal functions.

Generally, the values of kxl, kym and kzo in Eqs. �12�
cannot be solved analytically, and thus a numerical method is
needed. Because �� is real, these modified modes are com-
plete and orthogonal. The eigenvalues, �n=−kn

2, are real, but
they could be positive for stiffness like boundary conditions.
Therefore, kxl, kym and kzo could be pure imaginary numbers.

A is still not a diagonal matrix, since Dmn�0. However,
unlike normal modes, this new set of modal functions do not
reach maxima on the boundary and, in addition, the value of
�� also reduces the value of �−�� which can be found in the
expression for Dmn. This implies a reduced effect of the off-
diagonal terms, Dmn in A.

Because the boundary condition is partially satisfied, the
modified modal analysis is expected to perform better than
normal modal analysis.

C. Hybrid modal analysis

Due to the singular nature of a point source, all the
modal models discussed above converge very slowly at field
points close to a point source. In order to overcome this
problem, a free field Green’s function is introduced to the

solution of Eq. �2�:
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p̂�r� = G�r�ro� + F�r� , �13�

where G�r �ro� represents the pressure field associated with
the free-field Green’s function that satisfies Eq. �2� by itself,
and F�r� is a solution of the homogenous Helmholtz equa-
tion. G�r �ro� can be expressed as

G�r�r0� =
Q̂0��o�

4
�r − ro�
e−iko·�r−ro�, �14�

where ro designates the location of the point source.
From the point of view of room acoustics, the sound

field is now divided into a direct field, G�r �r0�, and a rever-
berant field, F�r�. For the near field, the direct field domi-
nates; at large distances, the direct field decays at a rate
proportional to 1 / �r−ro�, and, eventually, beyond a certain
distance the reverberant field becomes stronger than the di-
rect field. Note that neither G�r �ro� or F�r� satisfies the
boundary condition represented by Eq. �3�, but together they
can potentially be constructed to do so.

F�r� can be solved in terms of modal expansions, and
any modal functions can be used. However, on one hand,
because the reverberant field usually dominates on the
boundaries, a modal function set that can better match the
boundary condition is desired; on the other hand, the exact
modes may not be the best candidate since, in addition to the
issue of completeness and orthogonality, F�r� should not sat-
isfy the boundary condition by itself. Therefore, the modified
modes are expected to be a desirable candidate. The mode
amplitudes, qn, can be solved by a means that is very similar
to the development carried out before. The only difference is
that the right hand side of Eq. �8� is modified and the new
equation reads

�
n

��k0
2 − km

2 �Cmn + Dmn�qn = − 	
S

�m
� 
�G −

�G

�n
�da .

�15�

Consequently, the B matrix in Eq. �9� is modified to Bm=
−�S�m

� ��G−�G /�n�da. Note that Bm now involves a surface
integral which may not be easy to evaluate analytically, but a
numerical evaluation is generally straightforward. By recog-
nizing the spherical spreading nature of G and �G /�n one
can mesh the surface S accordingly to make the computation
more efficient.

III. COMPARISONS

A. Normal modes vs. modified modes in one-
dimensional „1-D… cases

The sound wave inside a 1-D plane wave duct has been
covered extensively by many authors.11–13 The exact closed
form solution for this problem provides a benchmark with
which modal analysis results can be compared.3,10,14

Assume that the 1-D duct has a length, L, and that, for
simplicity, two terminations are made of the same material
with the specific acoustic impedance, z. A point source
driven at frequency f0 is located inside the duct at xo. The

governing equation for this problem is
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d2p̂

dx2 + k0
2p̂ = − Q̂0��x − x0� . �16�

The exact plane wave solution for the sound pressure can be
written as

p̂exact = − Q̂0�A cos k0x + B sin k0x� , �17�

where

A = �
k0 cos�k0�L − x0�� − � sin�k0�L − x0��

2k0� cos k0L + �k0
2 − �2�sin k0L

if x � x0,

�k0 − � tan k0L��k0 cos k0x0 − � sin k0x0�
k0�2k0� + �k0

2 − �2�tan k0L�
if x � x0,�

B = �− A ·
�

k0
if x � x0,

A ·
� cos�k0L� + k0 sin�k0L�
k0 cos�k0L� − � sin�k0L�

if x � x0
�

and � can be found in Eq. �3�. The exact solution for the
particle velocity can be solved from Euler’s equation, and
reads

v̂exact =
− iQ̂0

�0c
�A sin k0x − B cos k0x� . �18�

The modal expansion solution of Eq. �16� can be solved for
from Eqs. �4�, �5�, �6a�, �6b�, and �7�–�9� and reads

p̂modal = �
n=1

N

qn�n. �19�

For modal function sets studied in Sec. II, kn can be solved
from Eq. �12�, which can be simplified to the following
equations for the 1-D plane wave duct:

kn tan
 knL

2
� = − ��, �20a�

or kn cot
 knL

2
� = ��. �20b�

Note that each equation above by itself only provides half of
the solution set for kn, but the latter equation, Eq. �20b�, is
found missing in some of the literature.1,6,11 The roots of
these two equations could be imaginary numbers if the
boundaries are represented by a stiffness. However, for this
case there should be no more than one imaginary root for
each of these equations. For these roots, one can simply re-
place the trigonometric functions in Eqs. �19� by the corre-
sponding hyperbolic functions to maintain the root search in
the real domain.

The error associated with modal expansion solutions can

be indicated by a single value:
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Errorp =��
0

L

�p̂modal − p̂exact�2dx

�
0

L

�p̂exact�2dx

. �21�

Although only the sound pressure is shown in Eq. �21�, er-
rors for other quantities, e.g., particle velocity, acoustic in-
tensity, squared pressure and so forth, can also be calculated
in a similar fashion.

Three specific examples will be discussed here to com-
pare modal expansion results. In these examples, L, x0 and f0

are unchanged and have values of 2 m, 0.6 m and 500 Hz
respectively. The specific acoustic impedance of the duct
ends, however, varies as shown in Table I. Damped duct “1”
and “2” have the same normal-incidence absorption coeffi-
cient but different phase angles for z.

Figure 1 compares coupled CMA and MMA. Both mod-
els work very well and converge to the exact solutions
quickly. As the damping increases, especially when the phase
angle of the specific acoustic impedance is greater than 
 /4,
MMA starts to exhibit a notable faster convergence speed for
sound pressure, and is thus more accurate with even a
smaller number of modes. For particle velocity, MMA is
only slightly better than CMA in terms of prediction errors.
Additional studies show that the convergence speed of both
MMA and CMA is slow at the source location. Moreover,

TABLE I. 1-D ducts for comparing modal models.

za  b

Lightly damped duct 50+50i 0.04
Damped duct 1 7−4.8i 0.32
Damped duct 2 2+4i 0.32

aNormalized by �oc.
bNormal-incidence absorption coefficient.

FIG. 1. �Color online� Accuracy test for the coupled modal expansions in 1
duct 2�. The errors in predicting the complex pressure field and the complex
�21� is evaluated, but regions within 0.1 m from the point source and 0.005

“– –:” CMA.
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errors cannot be eliminated for the particle velocity on the
boundaries, but MMA has constantly much less error than
CMA.

To compare the “uncoupled” models �the off diagonal
terms of matrix A in Eq. �9� are simply set to zero�, errors for
squared pressure and squared particle velocity are computed
instead of complex quantities because both models tend to
introduce large errors in phase. As shown in Fig. 2, MMA is
up to ten times more accurate than CMA for both squared
quantities. It needs to be pointed out that, unlike the coupled
models, the “uncoupled” models do not converge to the exact
solution even in terms of amplitude, and, instead, reach an
error level that cannot be reduced with additional modes,
although the error using MMA is likely to be acceptable on a
logarithmic scale. Figure 3 compares the “uncoupled” model
predictions for the sound pressure level and particle velocity
level to the exact solutions. For the case of damped duct 2,
errors introduced by “uncoupled” MMA are generally ac-
ceptably small �within 0.2 dB except for the nodal points and
source location� while large errors are observed with the “un-
coupled” CMA. Although MMA dose not predict the correct
value at nodal points, it does predict the locations of nodes
correctly. Both “uncoupled” models, however, have large er-
rors when computing the acoustic intensity �not shown in
this paper�, which is the result of significant phase errors for
both “uncoupled” models.

Finally, it is worthwhile to take a look at the values of �
for the three boundary conditions and the corresponding val-
ues of �� used in MMA. At 500 Hz, � can be calculated
using Eq. �3�. The values are −0.09−0.09i, 0.61−0.89i and
−1.83−0.92i for the lightly damped duct, damped duct “1”
and damped duct “2,” respectively. MMA uses the real part
of � for �� and CMA always uses zero. For the coupled
models, both CMA and MMA perform well for the lightly
damped duct because the value of � is small, which leads to
a small difference between � and �� for both modal models.
As the modulus of � increases, CMA tends to converge more

cts at 500 Hz ��a� lightly damped duct, �b� damped duct 1, and �c� damped
cle velocity field are plotted as functions of the number of modes. Equation
m the boundaries are excluded when evaluating the integrals. “—:” MMA;
-D du
parti
m fro
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slowly. The convergence rate of MMA, however, depends
not only on the modulus of � but also on the phase. For
example, � for the damped duct “2” is larger than that for the
damped duct “1”; therefore CMA performs worse for the
damped duct “2”. However, that is not the case for MMA,
which is due to the fact that the real part of � is larger than
the imaginary part for the damped duct “2”, while the oppo-
site is true for the damped duct “1”. When it comes to the
“uncoupled” models, a similar trend can be observed, except
that the difference between MMA and CMA is more clear.
Even for the lightly damped duct, there is a notable differ-
ence between the results of CMA and MMA.

B. Comparisons in three-dimensional cases

For three-dimensional �3-D� enclosed sound fields, the
closed form solution usually does not exist, so there is not a
simple benchmark to compare with. However, since both
classical modes and modified modes are complete and the
coupled modal expansions should converge absolutely for
the entire enclosed volume except at boundaries and source

FIG. 2. �Color online� Accuracy test for the “uncoupled” modal expansion
damped duct 2�. The errors in predicting the squared pressure field and the
Equation �21� is evaluated, but regions within 0.1 m from the point source an
MMA; “– –:” CMA.

FIG. 3. �Color online� �a� Sound pressure level and �b� particle velocity lev
solution at 500 Hz in the damped duct 2 �z=2+4i�. 200 modes are includ
pressure level or particle velocity level. Curves below the dash dot line plo

CMA.
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locations, a coupled modal expansion result can be accurate
enough to be the benchmark if enough modes are included.

Convergence tests were carried out to compare four
coupled models: CMA, MMA, GCMA and GMMA, where
GCMA refers to the hybrid model using CMA and GMMA
refers to the hybrid model using MMA. Sound fields in three
different rectangular enclosures were computed and com-
pared. The enclosures have the same dimensions �e	

	2 m3� but, as shown in Table II, different specific imped-
ances for the boundaries. A point source was randomly cho-
sen to be located at �1.09 m, 1.20 m, 0.7 m�, and the driving
frequency is 400 Hz.

Figure 4 compares the values of �n=0
N �qn�2 and

�n=0
N �qnkn�2 /k0

2 that are computed from four “coupled” mod-
els. The hybrid models converge notably faster than pure
modal models. MMA and GMMA converge faster than CMA
and GCMA respectively. The difference in terms of the limit
values between the hybrid model results and pure modal
model results is due to the fact that hybrid models treat the
direct sound field and reverberant field separately but the
pure modal models consider them together.

1-D ducts at 500 Hz ��a� lightly damped duct, �b� damped duct 1, and �c�
red particle velocity field are plotted as functions of the number of modes.
05 m from the boundaries are excluded when evaluating the integrals. “—:”

mputed by “uncoupled” modal expansion models compared with the exact
each model. In each plot, curves above the dash dot line represent sound
errors of two modal models. “—:” exact solution; “· · 	 · ·:” MMA; “– –:”
s in
squa
d 0.0
el co
ed in
t the
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Since the GMMA model shows the fastest convergence
speed in all the cases, the results computed by this model
�2	104 modes included� will be considered as the bench-
marks to which other models can be compared. The errors of
models can be calculated by Eq. �21� with p̂exact being re-
placed by the benchmark value and the linear integrals being
replaced by volume integrals that cover the whole interior of
an enclosure. Figure 5 plots the errors for squared pressure
and squared particle velocity versus the number of modes
included in the coupled models. In general, the errors de-
crease as the number of modes increases for all the coupled
models. However, the hybrid models converge much faster
and thus have much less error than the pure modal models
with a limited number of modes. In addition, GMMA shows
obvious advantages over GCMA for the damped boundary
conditions where the specific acoustic impedance of the
boundary has a large phase angle.

The slow convergence speed of the pure modal models,
especially for the particle velocity, is largely due to the sin-
gularity at the point source location. Averaged errors in the
region that is at least 0.3 m away from the point source have
also been computed. The convergence speed and accuracy of
the pure modal models improve greatly, but are still notably
worse than that of the hybrid models �Fig. 6�.

Figure 7 compares the errors for the “uncoupled” mod-
els. Again the hybrid models work much better than the pure
modal models. However, unlike the coupled models, “un-
coupled” GMMA and GCMA reach an error level quickly
and tend to stay at that level. Errors of the pure modal mod-

TABLE II. Rectangular enclosures used for convergence test.

z a s
b Fs

c

Lightly damped 200+340i 0.01 1290
Damped enclosure 1 10+5.5i 0.4 190
Damped enclosure 2 1+2.9i 0.4 190

aNormalized by �oc.
bSabine’s absorption coefficient calculated from z �see Ref. 1�.
cSchroeder frequency �Hz�.

FIG. 4. �Color online� Convergence speed of the coupled modal expansion m

damped 1, and �c� damped 2� at 400 Hz. “–�–:” CMA; “–�–:” GCMA; “–�–:”
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els decrease very slowly as the number of modes increases.
GMMA exhibits notably better accuracy than other models.
For the damped enclosures �s=0.4�, the averaged error is
around 10 percent.

Above all, the coupled hybrid models converge notably
faster and have much better accuracy than the other models
when a limited number of modes are included. The differ-
ence between the GMMA and GCMA models can be either
minor �“lightly damped” and “damped 1”� or relatively large
�“damped 2”� depending on the boundary conditions, but
given that GMMA usually requires more computational re-
sources �CPU time and memory�, GCMA is probably more
desirable in practice. For “uncoupled” models, the pure
modal models can introduce significant errors even if the
enclosure is lightly damped, but the hybrid models can im-
prove the accuracy greatly. Since there is no notable differ-
ence between “uncoupled” GMMA and GCMA in terms of
computational resource requirements, GMMA is always pre-
ferred due to the better accuracy.

IV. EXAMPLES OF USING THE HYBRID MODAL
ANALYSIS

A. Sound power

The sound power for a source inside an enclosure can be
computed by integrating the acoustic intensity over a Gauss-
ian surface inside the enclosure, where a Gaussian surface is
defined as a closed three-dimensional surface through which
a flux of the field is to be calculated. In this example, a
rectangular enclosure �dimensions: e	
	4 m3, z= �0.5
+1i��0c, s=0.76� will be considered, and the point source
randomly located at �1.09, 1.04, 1.12� is driven at 495 Hz.
The Gaussian surfaces are rectangular shapes with each side
being parallel and equal distance, d, to the nearest boundary
of the enclosure. Figure 8 compares the sound power results
computed by coupled GMMA and CMA �1400 modes are
used�. The x axis represents the distance between the Gauss-
ian surface and the enclosure boundary. When d�1.04 the
Gaussian surface begins to exclude the point source; there-

ls for enclosures with different boundary conditions ��a� lightly damped, �b�
ode

MMA; “—:” GMMA.
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FIG. 5. �Color online� Accuracy test for the coupled modal expansion models in enclosures ��a� lightly damped, �b� damped 1, and �c� damped 2� at 400 Hz.
The errors in predicting the squared pressure field and the squared particle velocity field are plotted as functions of N, the number of modes. “–�–:” CMA;
“–�–:” GCMA; “–�–:” MMA; “—:” GMMA.
FIG. 6. �Color online� Errors of the coupled models when the near field region is excluded. The errors for the squared pressure field and the squared particle
velocity field in three enclosures ��a� lightly damped, �b� damped 1, and �c� damped 2� are calculated as functions of the number of modes at 400 Hz. “–�–:”

CMA; “–�–:” GCMA; “–�–:” MMA; “—:” GMMA.
FIG. 7. �Color online� Accuracy test for the “uncoupled” modal expansion models in enclosures ��a� lightly damped, �b� damped 1, and �c� damped 2� at 400
Hz. The errors in predicting the squared pressure field and the squared particle velocity field are plotted as functions of N, the number of modes. “–�–:” CMA;

“–�–:” GCMA; “–�–:” MMA; “—:” GMMA.
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fore the sound power is expected to be zero. GMMA cap-
tures this sharp change very well. In addition, since the driv-
ing frequency is above the Schroeder frequency of the
enclosure �111 Hz�, the sound power emitted from the point
source in the enclosure should be approximately equal to its
free field power radiation. GMMA is able to predict the level
of the sound power accurately everywhere while CMA fails.

B. Direct field and reverberant field

The concepts of the direct field and the reverberant field
have long been accepted by acousticians. An expression for
the time averaged sound pressure in terms of the direct sound
pressure and the reverberant sound pressure has been ob-
tained based on the energy diffusion equation as15

p2 = ��0c� 1

4
rd
2 +

4�1 − e�
Se

� , �22�

where � is the source power, S is the inner surface area of
the room, rd stands for the distance from the point source to
the field point, and e is the effective absorption coefficient.
The first term on the right hand side of Eq. �22� represents
the direct field and the second term represents the reverber-
ant field. The critical distance is defined by the distance from
the source to where the direct sound pressure is equal to the
reverberant sound pressure and can be computed by the fol-
lowing formula:

Rc =� Se

16
�1 − e�
. �23�

There has been much discussion on how to best compute
the effective absorption coefficient, e.

16–22 In this example,
the effective absorption coefficient of a room will be com-
puted numerically based on GMMA, and compared to the
results of some existing formulas. Dimensions of the room
under test are �15	
	5 m3. Different boundary condi-
tions are implemented, and the Sabine absorption coefficient
varies from 0.05 to 0.8. The Schroeder frequency for these

FIG. 8. �Color online� Sound power of an enclosed sound field computed by
coupled GMMA and CMA at 495 Hz. The enclosed sound field is excited by
a pure tone point source in a damped rectangular enclosure. The sound
power results were obtained by integrating the acoustic intensity over mul-
tiple Gaussian surfaces which are rectangular shapes with each side being
parallel and equal distance �d� to the nearest boundary of the enclosure.
“—:” GMMA prediction; “– –:” CMA prediction; “– ·–:” free field source
power.
conditions varies from 447 to 100 Hz. Five frequencies in the
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630 Hz one-third octave band were chosen to drive a point
source. Sound fields are computed ten times at each fre-
quency with the source location randomly chosen each time.
The averaged critical distances calculated directly from the
direct field and reverberant field results are used to calculate
the effective absorption coefficient using Eq. �23�. Figure 9
compares the numerical results with Sabine’s formula and
Eyring’s formula. The GMMA results �with around 1500
modes� generally fall in the middle of them, which is very
similar to the results of Joyce18 �the curve “s=7 /9” in his
Fig. 4� and Jing et al.22

C. Complex sources

In practice, sound sources are often complex extended
sources, rather than point sources �monopoles�. For a distrib-
uted source placed inside an enclosure, computation may be
very difficult and time consuming with pure modal models;
however, a simple modification of the hybrid modal expan-
sion method can solve this problem easily for cases where
the size of the source is small compared to the dimensions of
the enclosure. If, for example, the free field directivity pat-
tern, D�r ,� ,��, of a distributed source is known, one can
simply replace the free field Green’s function �G� in Eqs.
�13� and �15� with D�r ,� ,�� and compute the sound field
without much additional computation required. Figure 10
compares the pressure fields of two different sources placed
in the “Damped enclosure 2” �see Table II� using the
GMMA model with around 2000 modes. Two small sources
are located at the center of the enclosure and both are
driven at a frequency of 400 Hz. However, they have differ-
ent free field directivity patterns: �1� an omnidirectional
source �D�r ,� ,��=1�, �2� a complex source �D�r ,� ,��
=�2 cos�� /2��. Pressure fields on the x-y, y-z and x-z planes
that include the source are plotted. Effects of the source di-
rectivity are clearly represented by the GMMA model.

The closed form expression of the free field response of
a source is usually not available, but if the multipole expan-
sion is known, the hybrid modal expansion can be certainly
implemented straightforwardly and Eqs. �13� and �15� can be
modified to

p̂�r� = p̂ + F�r� �24�

FIG. 9. �Color online� Effective absorption coefficient as a function of Sab-
ine’s absorption coefficient calculated in a rectangular room for the 630 Hz
one-third octave band. “—:” GMMA prediction; “– –:” Sabine’s formula;
“– ·–:” Eyring’s formula.
0
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and

�
n

��k0
2 − km

2 �Cmn + Dmn�qn

= − 	
S

�m
� 
�p̂0 −

� p̂0

�n
�da

= − �
m=1

M

Am	
S

�m
� 
��m −

��m

�n
�da , �25�

where p̂0=�m=1
M Am�m, the multipole expansion for the free

field sound pressure of a complex source, and �m represents
the expression of the mth multipole and Am stands for the
amplitude of that multipole.

V. CONCLUSIONS

Different modal expansion methods have been studied in
this paper. A set of modified modes are introduced to deal
with damped enclosures. A free field Green’s function is in-
tegrated to the solution of the non-homogeneous Helmholtz
equation to improve both convergence rate and accuracy of
modal expansions.

Like the normal modes, the modified modes are com-
plete and orthogonal. For damped boundary conditions, the
modified modes are mutually coupled, which causes the
computation time to increase significantly, as is the case for
the normal modes. However, by partially satisfying the
boundary conditions, MMA not only performs better than

FIG. 10. �Color online� Sound pressure level computed by GMMA for �a� a
monopole source and �b� a small complex source in a rectangular room
�damped room 2� at 400 Hz. Both sources are placed at the center of the
room. Pressure fields on the x-y, y-z and x-z planes that include the source
are plotted with the white dots representing the location of the sources. The
directivity pattern of the small complex source is shown in �c�.
CMA in the region near boundaries but also is more accurate
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globally with even fewer modes used. In addition, the “un-
coupled” MMA can predict sound pressure level and particle
velocity level fairly accurately for many damped boundary
conditions, while the “uncoupled” CMA usually introduces
large errors. Usually, MMA requires numerically searching
for the eigenvalues. This process is fairly straightforward and
fast. Utilizing the univariate interval Newton/generalized bi-
section method,6 it took less than 1 s to calculate 20 000
eigenvalues for any of the rooms listed in Table II on a
computer with a 2.1 GHz CPU.

The enclosed sound field can be separated into the direct
field and reverberant field, but these two are treated together
in the traditional modal analysis. The weaknesses include
slow convergence rate �especially in the near field of a point
source� and difficulty in dealing with complicated sources
inside an enclosure. The hybrid modal expansion introduced
in this paper successfully addresses these problems. Studies
on a point source in rectangular enclosures show that the
hybrid modal expansions converge notably faster than the
regular modal expansions and the hybrid “uncoupled” modal
expansions introduce much smaller errors than the regular
“uncoupled” expansions. The hybrid modal expansion can be
easily applied to complex sound sources if the free field re-
sponses of the sources are known.
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