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panel excited by turbulent boundary layer flow
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In order to address noise control problems in the design stage, structural-acoustic optimization pro-

cedures can be used to find the optimal design for reduced noise or vibration. However, most

structural-acoustic optimization procedures are not general enough to include both heavy fluid load-

ing and complex forcing functions. Additionally, it can be difficult to determine and assess trade-

offs between weight and sound radiation. A structural-acoustic optimization approach is presented

for minimizing the radiated power of structures with heavy fluid loading excited by complex forc-

ing functions. The procedure is demonstrated on a curved underwater panel excited by a point drive

and by turbulent boundary layer flow. To facilitate more efficient analysis, an uncorrelated pressure

assumption is made for the turbulent boundary layer forcing function. The thicknesses of groups of

elements were used as the design variables with an adaptive covariance matrix evolutionary strat-

egy as the search algorithm. The objective function was a weighted sum of total sound power and

panel mass and the Pareto front was computed to show the optimum trade-off between the two

objectives. The optimal designs are presented which illustrate the best methods for reducing radi-

ated sound and mass simultaneously. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4896823]

PACS number(s): 43.40.Rj, 43.40.Dx [LH] Pages: 2575–2585

I. INTRODUCTION

Structural-acoustic optimization (SAO) procedures can

be well suited to optimize a structure for low noise or other

desired acoustic behavior. They can be especially useful for

addressing noise or vibration criteria in the design stage. The

optimization algorithm searches a structural-acoustic design

space to locate the optimum set of design variables using ei-

ther gradient information or evolutionary techniques. The

reliability of the result depends on the fidelity of the

structural-acoustic analysis and the robustness of the search

algorithm.

A number of informative articles on SAO can be found

in the literature over the last 25 yrs. The structures of interest

have included simple beams/plates,1–5 curved shells/cylin-

ders,6–9 sandwich structures,9–13 musical instruments,14,15

and various automotive/aerospace vehicle components.16–19

Many of these works used analytical methods or finite ele-

ment (FE)/boundary element (BE) analyses to compute the

radiated pressure or power from single or multi-point har-

monic excitation as the objective function to be reduced.

Some included static pressure loads5 or acoustic excitation

of the structure such as monopole sources9,12 or plane

waves.13,20 Due to the computation cost often associated

with BE analysis, the number of design variables has typi-

cally been relatively low. A summary of the different objec-

tive functions, design variables, and constraints from these

and other works is found in review articles by Marburg21

and Marburg and Nolte.22

Relatively few articles have considered SAO with

spatially-complex forcing functions particularly when heavy

fluid loading was included. In many instances, spatially-

complex or partially-correlated forcing functions are more

realistic than the point drive, static pressure, or acoustic

plane wave approaches which have been used in the litera-

ture. A few exceptions include Fahnline et al., who found

the optimum metal alloy for a laser free-formed hydrofoil

subjected to trailing edge flow forces,23 and Grissom et al.
who optimized the vibration absorber location for a pressure

vessel excited by uncorrelated random pressures over the

entire structure.24 Joshi et al. optimized the location and cur-

vature of ribs on a stiffened panel excited by a diffuse acous-

tic field16 and turbulent boundary layer (TBL) flow.25 In

these papers, the frequency resolution was coarse in order to

make the solution time tractable. However, the spacing

between frequency bins was insufficient to adequately

resolve the resonance peaks of the response, causing the true

value of the response to be biased. In an effort to reduce the

objective function, the optimizer pushed the response peaks

in between frequency bins thus creating a bias in the objec-

tive function and therefore an artificial optimal design.

Additionally, heavy fluid loading was not considered in their

formulation.

It is desirable to develop a general SAO procedure

which can include arbitrary forcing functions and heavy fluid

loading so that TBL-induced noise of marine structures can

be reduced. This paper presents such a procedure and dem-

onstrates it on a curved underwater panel that is excited by a

point drive and then by TBL flow at 10 knots. Since noise

reduction often comes at the cost of increased mass, the opti-

mization will be performed for the two-objective problem,

where the weighted sum of the panel mass and radiated
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sound power is reduced. The weighting coefficient is varied

to estimate the Pareto optimality front which illustrates the

competing nature of the two objectives and shows the opti-

mal trade-off between designs. The optimization is first per-

formed on the panel excited by a point drive to show proof

of concept and illustrate the usefulness of the Pareto front.

Results for the TBL-excited panel are then presented for a 9

design variable problem and a 98 design variable problem,

where the design variables are defined as the thicknesses of

groups of elements. The optimal reduction in sound power is

achieved by a design which pushes the resonance peaks

away from the peak in the TBL pressure spectrum. Finally,

the results are compared for the three cases showing the gen-

eral trends when more complexity is introduced into the opti-

mization problem.

II. METHODS

A. Structural-acoustic analysis

To compute the vibration response of a driven structure

in physical coordinates, one must solve the damped, forced

equation of motion with a time-harmonic excitation

M€x þ B _x þ Kx ¼ Fejxt; (1)

where M, B, and K are the mass, damping, and stiffness mat-

rices, F is the force vector, and x is the angular frequency.

This is typically performed on a discretized structure using

FE analysis. The velocity frequency response function (FRF)

can be determined as

HðxÞ ¼ jx½�x2M þ jxBþ K��1: (2)

Fluid-loading and complex impedance effects can also be

included by adding their respective matrices to the denomi-

nator of the right hand side of Eq. (2). The computation of

the added mass and damping caused by the fluid will be dis-

cussed subsequently.

Since the response can be recreated using a summation of

normal modes, significant computational savings can be

obtained by working in modal space as there are typically far

fewer modes than physical points. The modal FRF equation can

be obtained once the normal modes, denoted as /, are known:

hðxÞ ¼ jx½�x2mþ jxbþ k��1: (3)

In Eq. (3), m¼/TM/ is the modal mass, b¼/TB/ is the

modal damping, and k¼/TK/ is the modal stiffness. When

the mode shapes are mass-normalized, the modal mass ma-

trix becomes the identity matrix and the modal stiffness ma-

trix becomes a diagonal of eigenvectors, x2
n. The velocity

response can therefore be computed in physical coordinates

in terms of modes according to

VðxÞ ¼ HðxÞF ¼ ½/hðxÞ/T �F ¼ /hðxÞf ; (4)

where f¼/TF is the modal force vector.

For random analysis, spectral density quantities can be

computed using the expected value

GVV ¼ 2limT!1
1

T
E V xð ÞVH xð Þ
� �

; (5)

where E is the expectation operator and T is a reference pe-

riod. To accommodate these computations in modal coordi-

nates, the modal forcing function cross-spectral density

(CSD) matrix is defined as

Gf f ¼ /TGFF/: (6)

GFF can be any stochastic excitation that is stationary and er-

godic so that Gff describes the coupling between any matrix

of external forces and the vibration modes. More generally,

Eq. (6) represents the modal acceptance of energy matrix

and can be rewritten in the form

Gf f ¼
ð ð

S

/i/jGFFdS; (7)

which resembles the joint acceptance function.26

The modal amplitudes caused by the forcing function

can now be computed to form a modal response CSD matrix

Gww ¼ hðxÞGf f hðxÞH: (8)

This is the modal equivalent of the multiple input multiple

output problem (in matrix form) found in Bendat and

Piersol.27 The velocity response matrix can now be defined

in terms of Gww as

GVV ¼ /Gww/H: (9)

The radiated sound power spectral density can be com-

puted, given the resistance matrix R is known, using

GPrad
¼
XM

m¼1

XM

n¼1

rmnGwmwn
; (10)

where rmn¼/T
mR/n is the modal resistance matrix and M is the

number of retained modes. This analysis procedure has been

used to predict TBL-induced acoustic power sources in elbowed

pipes.28 The modal resistance matrix can be computed using an-

alytical formulations for simple cases or using BE methods.

For this work, the fluid loading effects were determined

by estimating the fluid impedance matrix

Z(x)¼R(x)þ jX(x) using BEs. A lumped parameter BE

method was used to determine the surface pressure given a

unit volume velocity of each BE.29 The resulting fluid

forces, which completely characterize the additional mass

and damping from the fluid,30 were then converted to have

units of dynamic stiffness, transformed to modal space and

incorporated directly into Eq. (3).31

hðxÞ ¼ jx½�x2mþ jxbþ k � jxrðxÞ � xxðxÞ��1:

(11)

The variables r and x are the modal resistance and reactance

matrices of the fluid, respectively. By including the fluid-

loading matrices directly into the modal transfer function
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h(x), the in vacuo modes can still be used as the basis set for

the analysis, an idea which was first introduced by Lax.32

During the optimization, the acoustic matrices were

assumed to not vary significantly since the base structure

thickness changes are small compared to the wavelengths of

interest.33 This results in significantly-reduced computa-

tional times since the matrices are only computed once and

stored.23,34 The only computation required is a matrix pre-

and post-multiplication to transform R into modal space. The

application of this concept to SAO is detailed more fully in

Marburg et al.5

The analysis procedure outlined above computes the

structural-acoustic response at discrete frequencies.

Therefore, the total analysis time depends on the total num-

ber of frequencies evaluated. Since the frequency resolution

required to resolve a resonance peak depends on its quality

factor, Q¼ f/Df, higher-frequency peaks with the same

damping level will require a coarser frequency array to

achieve the same resolution. To minimize the number of

evaluation frequencies without compromising the resolution,

the spacing between evaluation frequencies ~df was deter-

mined using the previous evaluation frequency and the

damping loss factor (g¼ 1/Q):

~df ¼ f0g
N � 1

; (12)

where f0 is the previous evaluation frequency and N is the

desired number of points within a half-power band if a reso-

nance peak were to exist at f0. This is a special case of a log-

arithmic frequency array that will resolve all resonance

peaks with approximately N points while reducing the total

number of evaluation frequencies and total computation

time.

B. Turbulent boundary layer forcing function

The forcing function matrix for turbulence-induced wall

pressures resulting from flow over a structure can be com-

puted using the product of a pressure auto-spectrum (u) and

a pressure cross-spectrum function (C),

GFF ¼ uðxÞCð~r;xÞ: (13)

The point pressure spectrum u sets the amplitude of the

force and depends on the flow conditions. The pressure spec-

trum used in the research was a modified version of the

Chase model35 defined as

u xð Þ ¼ 3q2u4
s

f �
f=f �ð Þ2

f=f �ð Þ2 þ â2
n o3=2

2
64

3
75e�14f �=u2

s ; (14)

where f is the frequency, f*¼U/2/p/d* and all other varia-

bles are defined in Table I. Figure 1 shows the frequency de-

pendence of the spectrum for flow at 10 knots. The peak in

the spectrum occurs at 61.5 Hz.

The cross-spectrum C defines the partially-correlated

regions of pressure over the structure and is often referred to

as a coherence function. A well-known TBL coherence func-

tion model was proposed by Corcos36 as

Cðn1; n2;xÞ ¼ e�b1jxn1=Ucje�b2jxn2=Ucjejxn1=Uc ; (15)

where n is the separation distance (the streamwise direction

denoted with subscript 1 and spanwise with subscript 2)

between points xl and x�, b is the decay constant (stream-

wise and spanwise), and Uc is the convective flow velocity.

Although the Corcos model is often used in the literature due

to its relative simplicity, it has been shown to overpredict

low-wavenumber energy.37 To correct this, Mellen37 sug-

gested the following TBL model:

Cðn1; n2;xÞ ¼ e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1jxn1=UcjÞ2þðb2jxn2=UcjÞ2
p

ejxn1=Uc :

(16)

The Corcos and Mellen models are compared in Fig. 2.

When the correlation length Lc¼Uc/x/b of the TBL

pressure fluctuations is much less than unity, there is essen-

tially no correlation between each point. This is mathemati-

cally written as a series of delta functions populating the

coherence matrix and is analogous to a spatially random

(rain-on-the-roof) excitation. The correlation length can be

much less than unity at either high frequencies or low con-

vective speeds, making the uncorrelated approximation valid

with many underwater vehicles.

When computing the modal force [Eq. (6)], the spatially

random excitation is approximately achieved when the

structural wavelength is large compared to the Lc. This is

equivalent to kc � kb where kc¼Uc/x is the convective

TABLE I. TBL flow parameters.

Density (q) 1000 kg/m3

Friction velocity (us) 0.1542 m/s

Free-stream velocity (U) 5.14 m/s (10 knots)

Convective velocity (Uc) 3.598 m/s

Boundary layer disp thickness (d*) 0.0022 m

Kinematic viscosity (�) 1.15� 10�6

Stream-wise decay constant (b1) 0.11

Span-wise decay constant (b2) 0.7

Turbulence constant (â) 0.12

FIG. 1. (Color online) The point pressure spectrum (modified Chase model)

using flow parameters found in Table I.
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wavenumber and kb is the structural wavenumber. Since Gff

is modal-based, kb will be the modal wavenumber and is

therefore fixed in frequency and wave speed. Once the

uncorrelated assumption has been satisfied for a single

mode, it will also hold for all higher order modes since the

convective wavenumber has a one over frequency depend-

ence while the bending wavenumber has a one over square

root of frequency dependence.

Ichchou et al.38 show that in the uncorrelated realm, the

integration of the forcing function and the mode shapes

become independent and can be computed separately.

Furthermore, in the high frequency limit, the spatial integral

of Eq. (16) isð1
�1

ð1
�1

C n1; n2;xð Þdn1dn2

¼ p
2

b3
1

1þ b2
1

� �3=2

 !
2Uc

b1x

� �
2Uc

b2x

� �
: (17)

The integration limits can be taken to infinity since the corre-

lation lengths are very small. Equation (17) is similar to the

low-wavenumber approximation by Hambric et al.39 and

exactly equivalent to the k¼ 0 form of the wavenumber sen-

sitivity function. Figure 2 shows the wavenumber sensitivity

function of the Corcos and Mellen coherence model. The

low wavenumber region is mostly independent of wavenum-

ber and matches the uncorrelated approximation within 1 dB

below kb/kc¼ 1/7 � 0.143 (see Fig. 2). This approximation

also bypasses the requirement to overly refine the FE model

in order to resolve the TBL fluctuations.40

C. Adaptive covariance matrix evolutionary strategy

Many of the papers dealing with SAO have used

gradient-based optimization algorithms. Gradient-based

methods require either explicit or approximate design vari-

able sensitivity analysis to determine the derivative of the

objective with respect to the design variables. While

gradient-based algorithms can be very efficient on linear,

convex, and unimodal problems, they typically do not per-

form well on discontinuous, multi-modal, or noisy objective

functions. Evolutionary or stochastic algorithms on the other

hand often perform well on highly complex or discontinuous

functions, but usually at the cost of a large number of func-

tion evaluations. Evolutionary algorithms use random search

and competition to mimic natural processes such as mating,

mutation, and selection and evolve a population over a series

of generation. By using probabilistic transition rules to guide

the search, they can escape local optima and have a better

global performance than gradient methods. For most mid- to

large-sized optimization problems, many function evalua-

tions are often required for the algorithm to search the space,

though typically much fewer than if a random or exhaustive

search had been used.

When performing optimization, the objective function

must be defined as a scalar. For optimization problems where

the objective function varies with frequency, such as many

structural-acoustic problems, Fobj must be cast into a scalar

form using integration or some other averaging. Butkewitsch

and Steffen investigated frequency response optimization

using a combined objective-constraint approach to minimize

the maximum of the FRF and discovered that the maximum

value of a frequency response can be highly discontinuous

over the design space.41 Since gradient-based methods usu-

ally have difficulty with discontinuous search spaces, sto-

chastic methods are often more appropriate for SAO when

frequency-based objective functions are used.

The optimization algorithm that was used for this

research was a real-valued evolutionary strategy with covari-

ance matrix adaption (CMA-ES) developed by Hansen.42

The algorithm adapts the covariance matrix of a proposed

set of solutions to favor the solutions with the best fitness

value. Figure 3 shows a graphical representation of the sam-

pling procedure for a two design variable problem. The

FIG. 2. (Color online) The Corcos (solid line) and Mellen (dashed line) sen-

sitivity function (wavenumber spectrum) can be approximated by uncorre-

lated pressures (dotted line) at low wavenumbers.

FIG. 3. The sampling and covariance matrix adaption of the CMA-ES algorithm as printed in Hansen (Ref. 43). An initial distribution is assumed and a series

of samples are taken randomly from the distribution and evaluated (left). The points with the best fitness are used to estimate the new covariance matrix based

on the distance from the initial mean (middle). A new mean is computed and the next generation covariance matrix is created (right).

2578 J. Acoust. Soc. Am., Vol. 136, No. 5, November 2014 M. R. Shepherd and S. A. Hambric: Optimized panel excited by flow



covariance matrix is initially populated with a defined num-

ber of candidate solutions which are distributed about a

mean value. This distribution is then adapted based on the

fitness of each solution and their respective distance from

the mean. New candidate solutions are sampled according to

the multivariant distribution and the process is repeated until

a stop criterion is reached. For a convex-quadratic function,

the covariance matrix will adaptively estimate the inverse

Hessian matrix and thus is similar to the quasi-Newton gra-

dient-based method.43 However, the design space is not con-

fined to any particular geometrical condition (i.e., convex or

concave). CMA-ES is also known to have several invariance

properties which make it superior to many other stochastic

optimization algorithms.42

III. CURVED PANEL OPTIMIZATION

The curved panel optimized in this paper is a notional

representation of a panel from a marine vehicle. A FE model

was created using 2688 linear shell elements with material

properties of steel (see Table II). The panel was approxi-

mately 2.1 m� 0.8 m with 84 elements in the long direction

and 32 elements in the short direction and an approximate

element area of 6.2� 10�4 m. Element thickness was used

as the design variables during the optimization. The shorter

edges are both simply supported while the longer edges are

unconstrained and the panel curvature is approximately 6�

along the center. The flow direction is along the length of the

panel as shown in Fig. 4. The first six mode shapes and natu-

ral frequencies of the panel with thickness of 31.8 mm are

shown in Fig. 5.

The optimization problem is stated formally as

min: Fobj; (18)

subject to: ~xL 	~x 	~xU;

where~x is the vector of design variables and the superscripts

L and U indicate lower and upper bounds, respectively. The

objective function Fobj is a weighted sum of the total radi-

ated sound power (Ptot) (Ref. 44) and the panel mass w,

where each objective is normalized by its initial value, as

denoted by the subscript 0,

Fobj ¼ a
Ptot

P0

� �
þ 1� að Þ w

w0

� �
: (19)

The weighting coefficient a was varied between 0 and 1 to

determine a Pareto front.45

Since the total radiated sound power was computed with

non-uniform frequency spacing, Ptot was computed accord-

ing to

TABLE II. Dimensions and material properties of the curved panel.

Streamwise length 2.086 m

Spanwise length 0.8 m

Radius of curvature 9.96 m

Modal loss factor 0.02

Young’s modulus 195 GPa

Density 7700 kg/m3

Poisson’s ratio 0.28

FIG. 4. (Color online) FE mesh of the curved panel. The arrows indicate the

direction of the flow. The short edges were simply supported and the long

edges were free.

FIG. 5. (Color online) The mode

shapes and natural frequencies of the

curved panel with isotropic thickness

of 31.8 mm (top view). The lighter

shades indicate large deflection (posi-

tive or negative) while the darker

shades represent no motion.
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Ptot ¼
X

i

Pidfi: (20)

The analysis frequency was set from 10 to 500 Hz with the

first 50 modes used in the modal summation. The natural fre-

quency of highest-order mode was verified for the lowest

thickness cases to be at least 1.5 times the highest analysis

frequency.

Three optimization cases were performed. For the first

case, nine strips of elements were grouped together and the

thickness of each group was used as the design variable. The

thickness was initially set to 31.8 mm and varied from

between 12.7 and 50.8 mm. The panel is shown in Fig. 6

with the strips shown in separate colors. The panel was

excited with a point drive in the center of the panel, oriented

in the normal direction (indicated by the arrow in Fig. 6).

The initial covariance matrix was set to have a standard

deviation of 0.007 so that the initial distribution encom-

passed the range of the possible thicknesses. The radiated

sound power for the point drive panel is shown in Fig. 7.

In the second case, the panel was excited by TBL flow

at 10 knots. The flow speed is sufficiently slow enough so

that the uncorrelated pressure approximation was used (see

Sec. II B). The Mellen cross-spectrum model was used with

the modified Chase point pressure spectrum, with flow pa-

rameters as listed in Table I.

The final optimization case was also excited by TBL at

10 knots but with the thickness of 98 patches of elements as

the design variables (see Fig. 8). The element groups were 5

elements wide and 6 elements long with 7 groups along the

width of the panel and 14 along the length. Three rows of

element groups were only four elements wide.

The population size was initially set at 4þ floor(3 ln N),

where N is the number of design variables, as recommended

by Hansen.43 The optimization was then repeated with dou-

ble the population size to diversify the search. Since the ini-

tial design variables are chosen at random, this provides

stronger evidence that a local minimum was not found.

When the results were not identical, the more optimal of the

two runs was used in the Pareto curve. If the two results

were greater than 5% different, one of the runs was repeated.

The optimizer stop criterion for all three cases was defined

by a minimum objective change or maximum number of

function evaluations. The number of function evaluations

was determined using run-time estimates and available com-

pute time. To ensure the optimizer had converged to a solu-

tion, the objective function was compared to previous

generations. The run parameters for the three cases are listed

in Table III.

A. Case I: Point drive with nine design variables

The optimization was first performed on the curved panel

with a point excitation. The radiated sound power for several

values of the weighting coefficient a is shown in Fig. 9. When

a¼ 1.0, only radiated sound is used to compute Fobj and there-

fore the lowest radiation is achieved. However, significant

reduction is also achieved for a¼ 0.75. The lowest reduction

is found when a¼ 0 since only the mass is used to determine

Fobj. The total sound power levels are shown in Table IV.

The Pareto optimality front estimate is shown in Fig. 10

and illustrates the competing nature of the two objective

functions. When a¼ 1, the objective function minimizes

only the radiated sound power (the right end of the curve) at

the cost of increasing weight. When a¼ 0, the objective

function minimizes only the weight (the left end of the

curve) at the cost of increasing the radiated sound power.

The total difference in weight between the two ends of the

Pareto front is 194.8 kg while the difference in radiated

FIG. 6. (Color online) FE mesh of the curved panel with the thicknesses of

nine strips of elements used as the design variables (distinguished by differ-

ent shades). The location of the point drive is shown as an arrow.

Optimization was performed with a point drive and with TBL excitation.

FIG. 7. (Color online) Radiated sound power for the point-driven panel with

uniform thickness.

FIG. 8. (Color online) FE mesh of the curved panel with the thicknesses of

98 patches of elements used as the design variables (distinguished by differ-

ent shades). Optimization was performed for TBL excitation at 10 knots.

TABLE III. The number of design variables, population size, and stop crite-

rion (number of evaluations) for the three different optimization cases.

Case Excitation Design variables (~x) Population size # Evaluations

1 Point drive 9 10/20 1500/2500

2 TBL 9 10/20 1500/2500

3 TBL 98 17/34 4000/5500
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sound is 8.2 dB. For weighting coefficients between zero and

one, the two objectives are considered simultaneously and

the Pareto front shows the ideal trade-off conditions for

reducing both.

Table IV shows the values used to build the Pareto front

for each value of a. The value objective function is also

shown. The maximal trade-off between the two objectives is

found at the “knee” region of the front when a¼ 0.5. The

knee represents the solution with the most reduction in both

weight and sound power. To the right of the knee, the objec-

tive is more sensitive to weight and significant reduction in

weight can be achieved with relatively low increase in radi-

ated sound. To the left of the knee, it is more sensitive to

radiated sound power and significant reduction can be

achieved with relatively low increase in weight.

The optimized thickness distributions for case I are

shown in Fig. 11. The a¼ 0.0 case found the smallest thick-

ness (1.27 mm) for each strip to achieve the lowest mass, as

expected. The a¼ 1.0 case on the other hand, only considers

the radiated power so that the panel was thickened on the

strip where the drive is located. The two strips surrounding

this strip were also thickened even more than the center

panel to create an impedance mismatch to partially isolate

the input energy. The cases for a¼ 0.0 – 1.0 show the center

strip and side strips thickening gradually to balance reducing

sound and mass. The thickness of the first strip of elements

is also gradually increased as a increased.

Although these optimization results can be confirmed

intuitively, figuring out the balance between mass and sound

can be very difficult to determine without the aid of a global

optimizer. Additionally, the information in the Pareto front

can be very valuable for decision making. For example, the

relative benefit of reducing sound can be easily related to the

cost of added mass. Alternatively, the panel can be designed

for the lowest sound radiation given an absolute mass con-

straint or vice versa.

B. Case II: TBL excitation with nine design variables

Optimization was then performed on the curved panel

excited by TBL flow at 10 knots. The Pareto front for this

FIG. 9. (Color online) Radiated sound power for the curved panel with a

point drive and nine design variables, where a¼ 1.0 corresponds to reducing

radiated sound only and a¼ 0 corresponds to reducing mass only.

TABLE IV. Optimized results for the point-drive panel with nine design

variables for each weighting coefficient. a¼ 1.0 corresponds to reducing

radiated sound only and a¼ 0 corresponds to reducing mass only.

a Power (dB re 1 pW) Weight (kg) Fobj DdB Dw

0.0 72.2 164.4 0.399 �1.13 �247.2

0.125 70.1 172.5 0.426 �3.26 �239.1

0.25 68.2 187.2 0.417 �5.16 �224.4

0.5 67.7 195.6 0.373 �5.67 �215.9

0.625 66.9 214.2 0.339 �6.37 �197.4

0.75 64.4 326.1 0.295 �8.87 �85.4

1.0 64.0 359.2 0.118 �9.28 �52.3

FIG. 10. (Color online) The Pareto front for the curved panel with a point

excitation. The knee is located at a¼ 0.5. Weight is shown in kilograms.

FIG. 11. (Color online) Thickness distribution of the optimum curved panels

excited by a point drive for each weighting coefficient, where a¼ 1.0 corre-

sponds to reducing radiated sound only and a¼ 0 corresponds to reducing

mass only.
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case is shown in Fig. 12, again showing the competing na-

ture of the two objective functions. The total reduction in

radiated sound power between the two extremes is only

about 1.5 dB while the cost in weight is about 475 kg. This

indicates a much higher sensitivity to weight than to radiated

sound. The curve also indicates that the design space is diffi-

cult to search since it does not follow a smooth concave

function.

Table V shows the values used to build the Pareto front.

The objective function is reduced less than in case I indicat-

ing that it is more difficult to reduce noise on the TBL-

excited panel than on a point drive panel.

The radiated sound power for case II is shown in Fig. 13.

The sound power has peaks between 60 and 72 Hz for all

cases and tails off at low and high frequencies, corresponding

to the maximum in the point pressure spectrum u. The reduc-

tion in sound power is achieved by moving the panel resonan-

ces away from the frequency of maximum TBL energy,

which occurs at 61.5 Hz, the peak in the point pressure spec-

trum (see Fig. 1).

The associated thickness distributions are shown in Fig. 14.

Again the a¼ 0.0 case finds the smallest thickness for each strip.

The a¼ 1.0 case shifts the peaks upward and thickened strips to

their maximum allowed value (except on the edge strips). The

runs between 0.0 and 1.0 show a symmetric pattern alternating

thick and thin strips. The alternating structure shows that imped-

ance mismatching is a good way to reduce noise and save weight

simultaneously.

The cause of the relatively small reduction in sound

power was then considered. The radiated power can be

reduced by either reducing the acceptance of energy (i.e.,

lowering the modal forcing function matrix) or reducing the

efficiency of the radiation. The modal forcing function for

the first mode is shown in Fig. 15 and is lowest when

a¼ 1.0. Since the modes are mass-normalized, the higher

modal mass causes the lower acceptance of energy and

therefore lower sound radiation. This trend is followed by all

modes. The modal resistance matrix, on the other hand, does

FIG. 12. (Color online) The Pareto front for the curved panel with TBL ex-

citation with weight shown in kilograms.

TABLE V. Optimization results for the TBL-excited panel with nine design

variables for each weighting coefficient. a¼ 1.0 corresponds to reducing

radiated sound only and a¼ 0 corresponds to reducing mass only.

a Power (dB re 1 pW) Weight (kg) Fobj DdB Dw

0.0 30.5 164.4 0.399 0.18 �247.2

0.25 30.5 164.7 0.560 0.16 �246.8

0.5 30.2 185.6 0.703 �0.2 �225.9

0.56 30.2 225.6 0.786 �0.12 �185.9

0.625 29.3 454.3 0.902 �1.08 42.7

0.75 29.1 486.1 0.854 �1.28 74.5

1.0 28.9 571.4 0.723 �1.41 159.8

FIG. 13. (Color online) Radiated sound power for the curved panel with

TBL excitation and nine design variables, where a¼ 1.0 corresponds to

reducing radiated sound only and a¼ 0 corresponds to reducing mass only.

FIG. 14. (Color online) Thickness of the optimum curved panels excited by

TBL for each case of a.
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not follow any regular trends meaning that some modes radi-

ate better for the a¼ 0.0 case while others radiate better for

the a¼ 1.0 case. The overall effect is that the modal radia-

tion efficiency does not change significantly during the opti-

mization. This is consistent with the assumption that the

radiation resistance does not change from design to design.

C. Case III: TBL excitation with 98 design variables

As a final case, optimization was performed on the

TBL-excited curved panel with the thickness of 98 patches

as the design variables. The radiated sound power is shown

in Fig. 16 with the same trends as seen in case II. The reso-

nance peaks in the radiated sound minimization are pushed

away from the 61.5 Hz peak in the TBL energy. The opti-

mized thickness distributions are shown in Fig. 17. Since

there are many more possible design variables, the patterns

are more complex. The trend seems to show a pattern which

resembles a V-shape as a increases where the middle of the

panel is thickened on one side with additional thickening on

the opposite corners.

The Pareto front for this case is shown in Fig. 18, again

showing the competing nature of the two objective functions.

The total reduction in radiated sound power is only about

1.8 dB while the cost in weight is about 310 kg. Table VI

shows the values used to build the Pareto front. In general,

the objective functions are reduced more for the case with 98

patches than for the case with 9 strips. This is likely due to

the greater diversity of possible designs when using smaller

patches in both x and y directions.

D. Effect of increasing complexity on optimization
results

The complexity of the optimization problem was

increased between cases I–II and II–III. When transitioning

from a point drive to a TBL forcing function, the optimizer

basically performed the same. There seemed to be little dif-

ference in the approximate number of functions evaluation

required to converge to a solution. It is reasonable to assume

from this, that the optimizer is “blind” to the difficulty of the

analysis required to compute the objective function.

However, the increased complexity created a more difficult

FIG. 15. (Color online) Modal forcing function for the first mode of optimal

designs from several different weighting coefficients. The lower values indi-

cate a lower acceptance of energy.

FIG. 17. (Color online) Thickness of the optimum curved panels excited by

TBL for each case of a.

FIG. 18. (Color online) The Pareto front for the curved panel with TBL ex-

citation and 98 design patches with weight shown in kilograms.

FIG. 16. (Color online) Radiated sound power for the curved panel with

TBL excitation and 98 design variables, where a¼ 1.0 corresponds to reduc-

ing radiated sound only and a¼ 0 corresponds to reducing mass only.
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search space where little sound reduction could be achieved.

A similar result was reported by Marburg et al. when com-

paring the radiated noise minimized by a point-driven and

static pressure-loaded beam.5 This suggests that the amount

of noise reduction that can be achieved is due more to the

spatially-extended nature of the drive, not the partial

correlation.

Changing from 9 design variables to 98, however, did

have an effect. More function evaluations were required

when there are more design variables and therefore case III

had a longer run time. However, the increase in the number

of function evaluations does not scale linearly with increase

in the number of design variables. Despite this benefit, the

optimized design is much more difficult to visualize and

interpret with a large number of design variables.

Additionally, the optimized design is not likely to be directly

usable and should be used mostly to learn trends and gain

insight. For these reasons, a smaller number of design varia-

bles may be more useful for quick design evaluation.

IV. CONCLUSION

A general SAO procedure has been presented which can

include spatially complex forcing functions and heavy fluid

loading. Optimization was then performed on a curved

underwater panel excited by a point drive and by TBL flow

at 10 knots. The thicknesses of 9 strips/98 patches of ele-

ments were varied as the design variables and a weighted

combination of radiated sound power and mass was mini-

mized. Pareto fronts have been computed to show the rela-

tive sensitivity to reducing both simultaneously.

The results for the point-driven panel with nine design

variables illustrate a gradual stiffening of the center strip at

the location of the drive. The best radiated sound reduction

comes from an impedance mismatch which isolates energy

at the drive location. The Pareto front was computed to

determine the trade-off between reducing noise and reducing

mass.

For the TBL-excited panel, the reduction in radiated

noise came from reducing the modal forcing function. This

was achieved by pushing the resonance peaks away from the

peak in the TBL energy. The optimal designs showed that

alternating thin and thicker strips is the best way to reduce

both weight and radiated sound for TBL excitation curved

underwater panels. The case with 98 design variables

showed a slightly greater reduction in radiated noise since

the element thickness was varied in both the flow and cross-

flow direction.
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