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Super-resolution within a one-dimensional phononic crystal
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ABSTRACT:
An equivalent circuit model has been developed to model a one-dimensional waveguide with many side-branch

Helmholtz resonators. This waveguide constitutes a phononic crystal that has been shown to have decreased phase

speed below the resonance frequency of an individual resonator. This decreased phase speed can be exploited to

achieve super-resolution using broadband time reversal focusing techniques. It is shown that the equivalent circuit

model is capable of quantifying this change in phase speed of the crystal and also the small-scale wave-resonator

interactions within the crystal. The equivalent circuit model enables the parameterization of the physical variables

and the optimization of the focusing bandwidth by balancing the combination of increasing resolution and decreasing

amplitude near the resonance frequency. It is shown that the quality factor—in this case, the quality factor deter-

mined by the geometric shape of each resonator—controls the range of frequencies that are strongly affected by the

Helmholtz resonators. VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0013832
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I. INTRODUCTION

Time reversal (TR) is a signal processing method to

obtain a focus of waves.1–3 Originally called matched signal

processing,4,5 it combines an exploration step (forward

step), where the impulse response is obtained, with a focus-

ing step (backward step), which uses the time-reversed

impulse response to generate a constructive interference of

waves. First used in underwater acoustics, TR has found

application in several fields, including seismology,6 litho-

tripsy,7 and nondestructive evaluation.3

TR has been used to localize acoustic sources.

Applications include locating finger taps to use a solid

media as a touch interface,8 localizing the source of a gun-

shot in an urban environment,9 and localizing and character-

izing the great Sumatra earthquake.10 These methods of

localization require a backward step that is performed by

modeling the environment, including scatterers, and numeri-

cally back propagating the impulse response signals from

the receivers to find a point of maximum convergence. TR

localization and imaging is well known to be limited by the

diffraction limit, though if the finite size of imaged sources

exceeds a half wavelength, then the true spatial extent is

clouded by interference in focused waves.11

When focusing waves using TR, both direct and scat-

tered waves simultaneously converge to a point in space cre-

ating a constructive focus that is diffraction-limited.

Focusing to a spatial extent smaller than the diffraction limit

is termed super-resolution. The diffraction limit has multiple

useful definitions but typically constrains the spatial extent

of the converging of waves to be no smaller than a half

wavelength, k=2.12 The primary assumption of the diffrac-

tion limit given is that the focus must be in the far field of

the source. Several examples exist where super-resolution

was achieved in a modified system, several of which used

TR. One example is of microwaves focusing among resona-

tors.13 In this work, the authors placed small antennae

receivers among many resonating antennae. Similar work

was also done with focusing acoustic waves among soda can

resonators,14 though later it was shown that TR was not nec-

essary due to the regular arrangement.15 Super-resolution

has also been achieved experimentally by using absorbers16

surrounding the focus as well as numerically17 by simulating

a similar region of absorption near the focus. Obtaining

super-resolution with TR has also been demonstrated with

near field amplification18 and by using an active acoustic

sink19 as well as a passive acoustic sink.20 Each of these

examples was done with objects located within or informa-

tion obtained within the near field.21

As described by Maznev et al.,12 the diffraction limit

cannot be broken. They assert that sub-diffraction-limited

focusing is only possible when violating an assumption of

the diffraction limit. A simple physical explanation is that

the waves will conform to boundary conditions with perhaps

higher spatial frequency than the wave contained elsewhere.

Applying this additional restriction would mean that the dif-

fraction limit requires that the focus not only must be in the

far field of the source but also must be in the far field of any

subwavelength objects. Focusing in a phononic crystal

clearly violates this restriction, so although the diffraction

limit is not being broken, according to this definition, the

properties of the crystal allow for super-resolution focusing

compared to waves outside the crystal.a)Electronic mail: bea@byu.edu
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The spatial extent of a TR focus in a one-dimensional

(1-D) system is limited by principles like those in

diffraction-limited systems. Although in the 1-D case, there

is no aperture for diffraction to occur, the interference of

direct and scattered waves creates a focal peak limited by

the smallest wavelength. Because the measurement axis is

the same as the propagation direction, there is no increase in

measured wavelength due to oblique angles of approach.

Previous work in TR has shown that focusing near reso-

nators or absorbers can produce a spatial focus much smaller

than a wavelength. In this paper, a 1-D duct with periodic

side-branch resonators is modeled that constitutes a pho-

nonic crystal.22 This model has been studied in the context

of transmission spectra,23 band structure,24 and the influence

of detuned resonators.25 However, previous studies26,27 use

an effective medium approach, and the resonators’ effect is

spread over the length of the duct. To predict the wave-

focusing ability that TR offers in this system, it is essential

to know the influence of resonator geometric properties as

well as focus position relative to resonator position.15 In

essence, the equivalent circuit model allows characterization

of the wave field within the crystal.

The purpose of this paper is to present an equivalent cir-

cuit model of focusing waves in a duct with many resona-

tors, using TR. Typically, the TR process involves

measuring an impulse response, hA;B, between two points (A

and B), reversing that impulse response (flipping it in time),

and playing the reversed impulse response from one of the

two points, which can result in focused energy at the other

point.1–3 Tanter et al. mention that TR focusing is equiva-

lent to an autocorrelation of an impulse response.28 More

specifically, simulating TR in the time domain consists of

obtaining hA;B and then performing an auto-correlation of

hA;B, thereby obtaining the temporal response (“focal sig-

nal”) at point B due to broadcasting the time-reversed

impulse response, hA;B �tð Þ, from point A. Mathematically,

this is calculated as

rB tð Þ ¼ hA;B �tð Þ � hA;B tð Þ; (1)

where rB is the response of the signal at point B. When cal-

culating the response at other locations (such as point C)

due to the broadcast of hA;B �tð Þ, the response becomes

rC tð Þ ¼ hA;B �tð Þ � hA;C; (2)

where rC is the response at point C while focusing occurs at

point B. In the frequency domain, an auto-correlation is an

auto-spectrum, and the cross correlation is a cross-spectrum.

Thus, the temporal relations become spectral relations

through a simple Fourier transformation,

hA;B tð Þ � hA;B �tð Þ ! HA;B xð ÞH�A;B xð Þ (3a)

and

hA;C tð Þ � hA;B �tð Þ ! HA;C xð ÞH�A;B xð Þ: (3b)

Note that � denotes a convolution, whereas * denotes a

complex conjugation. A parametric study of the quality fac-

tor of the resonators and focusing position on the spatial

extent and amplitude of waves in the duct is also presented.

It is shown that the focusing bandwidth and resolution can

be improved by using resonators with low absorption and a

low quality factor. The model presented here enables a

quick study of many other physical properties of interest.

Note that continuous waves are employed here, which can

be focused with TR even with single frequencies.29

Equivalent circuit, or lumped element, models have

been used in acoustics30 to study 1-D systems and the inter-

action of waves with side branches, changing cross section,

and arbitrary impedances.31–36 This model can only explore

the plane wave propagation of waves in the duct, and conse-

quently, side branches occur at discrete points along the

duct rather than over an area. However, this simplified

approach allows for faster numerical studies of physical

parameters over a range of frequencies.

II. EQUIVALENT CIRCUIT MODEL

The equivalent circuit model utilizes electrical elements

that represent lumped acoustic elements but also includes

complex, frequency-dependent impedance elements to

account for the phase changes of the wave as it propagates

some distance. To model an infinite domain outside the

region of resonators, anechoic terminations are added to

both ends of the duct as resistors. An anechoic termination

matches the characteristic acoustic impedance of the duct

(with a resistance value of q0c=S), where q0 is the density of

air, c is the speed of sound, and S is the cross-sectional area

of the duct. This impedance element simulates a semi-

infinite duct. This element also eliminates the standing

waves that would be created in a duct of finite length, which

we want to avoid since the standing waves can overshadow

the effects we are trying to study.

Sources can be added as side branches in the duct. The

equivalent circuit represents the source by placing it in par-

allel with the anechoic termination. This implies that some

of the energy radiated by the source propagates toward the

network of resonators, and some directly propagates toward

the anechoic termination. Loudspeakers can be modeled as

constant current sources because their internal impedance is

much higher than q0c=S. The source strength is chosen to be

unity in the appropriate units as the resulting transfer func-

tion is ultimately the desired result of the model, and it does

not depend on source strength (i.e., linear acoustic propaga-

tion is assumed).

Propagation through a duct segment of constant cross

section is accomplished by use of the acoustic “T-

network.”37 Three reactive, frequency-dependent elements

placed in a T-shaped configuration model the proper evolu-

tion of the phase as the wave propagates through the circuit

(see Fig. 1). The two elements on the horizontal branch of the

T are each of value ðjq0c=SÞtan kL=2ð Þ, while the element on

the vertical branch of the T has a value �ðjq0c=SÞcsc kLð Þ.
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Each T-network can span an arbitrary distance with respect

to a wavelength of a constant cross section portion of the

waveguide just by changing the single length, L, parameter

(and by modeling the appropriate cross-sectional area). In

this model, there is a T-network between the source and the

first resonator and then a T-network between each resonator.

An acoustic resonator can be modeled using an equiva-

lent electrical resonating circuit consisting of the series com-

bination of a resistor, inductor, and capacitor, forming an

“RLC circuit.” The inductive element represents the mass-

like inertia of the air in the neck that undergoes a lumped

acceleration without compression. This acoustic mass has an

equivalent inductance of MA ¼ q0l=S, where l is the length

of the neck (including end corrections) and S is the cross-

sectional area of the neck. The volume of the resonator

below the neck can be considered a lumped compliance that

undergoes compression but no acceleration. The volume is

then represented as an equivalent capacitor with a capaci-

tance of CA ¼ V= q0c2
� �

, where V represents the volume of

the resonator below the neck. Without any absorptive mate-

rial in the resonator, the losses are due to thermoviscous

effects38 and can be represented by a resistor with an acous-

tic impedance value of RA ¼ 2mcaw, where m is the total

acoustic mass of the neck and aw is the absorption coeffi-

cient for wall losses.39 For the dimensions of the system,

the value of the acoustic resistance changes by only �7%

across the frequency band of interest; thus, we obtained a

frequency-averaged value for these losses and used this

single number value for RA. The RLC circuit is naturally

resonant in the same way the Helmholtz resonator has a sin-

gle lumped-element resonance. The study presented in this

paper uses Helmholtz resonators that always have a reso-

nance frequency of 700 Hz. This frequency was arbitrarily

chosen. We expect similar findings to occur for resonators

having different frequencies of resonance.

In the assembled circuit, the only circuit nodes exist

within the T-network (non-physical) and at the junctions

with resonators and sources (see Fig. 1). For arbitrary

spacing of measurement points at locations along the

waveguide/duct between resonators, additional nodes

must be introduced. Measurements of the wave field at

locations along the waveguide can be done in the circuit

through the introduction of a circuit node represented at

the physical location of interest for a measurement. This is

accomplished by splitting the T-network into a pair of

T-networks that span the same physical distance as the

original network. This produces a node between the net-

works at the measurement position. Calculating the elec-

tric potential (i.e., voltage) at the measurement point is

equivalent to measuring the acoustic pressure at the physi-

cal point in space.

Figure 1 shows a simplified waveguide system with

only four resonators in the lower half of the figure. The

equivalent electrical circuit is shown above. Circuit ele-

ments depicted as boxes represent frequency-dependent

impedances with values given previously. The RLC circuit

FIG. 1. (Color online) An equivalent circuit model of a waveguide with four side-branch resonators. The equivalent circuit (top) is shown with the corre-

sponding acoustic system (bottom). Dashed lines represent the direct analog between domains. Solid (blue) triangles represent anechoic wedges in the acous-

tic domain and are modeled as purely resistive, impedance matched elements in the electrical domain. The loudspeaker source is modeled as a current

source in the electrical domain. Two of the six “T-networks” for modeling propagation in the electrical domain (labeled [1] and [2]) match the portions of

the waveguide that they represent.
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components are represented by classic electrical imped-

ance equation forms for the electric analogs of those

acoustic elements. The acoustic system shows a micro-

phone measuring the pressure at a point in the waveguide

where a node has been introduced in the model by splitting

the T-network.

Iterating over a list of measurement points, each produ-

ces a unique circuit as each measurement point requires the

insertion of a node. Using Kirchhoff’s voltage law for loop

analysis, the circuit can be formed into a system of equa-

tions. Each equation consists of the sum of potential drops

over the elements in the loop due to the current in the loop

as well as the current in the adjacent loops through shared

loop elements. In matrix form, this linear system of equa-

tions can be represented as Z~I ¼ ~V , where Z is the matrix

of impedance values (here representing acoustic impedan-

ces), ~I is the vector of unknown current values (here repre-

senting acoustic volume velocities), and ~V is the known net

potentials (here representing acoustic pressures) for each

loop. The resulting potentials in ~V will all be zero except

for the loops that contain a source. Because the source is

modeled as an ideal flow source and is in parallel with the

anechoic termination, a Thevenin equivalent potential

source was substituted that places the new potential source

in series with the anechoic element.40 This reduces the cir-

cuit by one loop and provides a known net voltage for that

single loop. Solving for the unknown currents can then be

done with a numeric linear solver. We used MATLAB’s built-

in linear solver, mldivide. Once the currents are calcu-

lated, the voltage at the measurement point can be calcu-

lated by finding the potential relative to ground. This is

achieved by calculating the potential drop across the ele-

ments that lead to ground. To calculate the potential at the

measurement node labeled in Fig. 1, the potential drop

along the shortest path to ground is calculated. In the case of

Fig. 1, that is two of the elements of propagation T-network

[1], just downstream of the node. First the potential across

the vertical element is calculated using the currents from the

loops on both sides of that element, and then the potential

across the left horizontal element is calculated using just the

current in that loop. Summing the potential from both ele-

ments results in the complex acoustic pressure at that mea-

surement point due to a single source. Solving the circuit at

each frequency in the bandwidth provides the desired trans-

fer function between the source and that single measurement

point.

After obtaining the transfer function at each measure-

ment point, the spatial extent of TR in the frequency domain

is performed by choosing a focal location and calculating

the cross-spectra of the transfer function of the target loca-

tion with the transfer function of every measurement posi-

tion.41,42 The resulting set of cross-spectra describe the

response at each measurement point when producing a focus

at the focal location. Repeating the process for a source at

each end and summing the results generated by each of the

sources provide the spatial extent of the focus when both

sources are active.

To conduct a parametric study of physical parameters, a

model was chosen that would remain the same between

studies except for the specific parameter to be varied. The

model used represents a system with a 3 m long waveguide

with a cross-sectional diameter of 10 cm. Cross-modes are

not expected in this waveguide until frequencies greater

than 2 kHz. A velocity source was added at each end of the

duct with equal amplitudes. The resonator region consists of

51 side-branch resonators positioned every 2 cm in the cen-

tral third of the waveguide from 1 to 2 m. The resonators

have a resonance frequency that is held at 700 Hz. The spac-

ing between resonators is 0.04k (where k is the wavelength

of the resonance frequency) or 2 cm in this case.

Measurements are made throughout the duct with a spacing

of 0.0025k or �1.2 mm by changing the length variable in

the T-network circuit elements. A focus position was chosen

to be equally distant between two resonators at 1.51 m

(nearly equidistant between the sources). The bandwidth

studied was 550–710 Hz.

Figure 2 shows the process of simulating TR focusing

for a single source at a single frequency. Figures 2(a) and

2(b) show the magnitude and phase of the transfer function,

H, between a source and the target focus position with a line

marking 625 Hz. Figure 2(c) shows the relative response,

realðHÞ, at every position within a duct at this same fre-

quency of 625 Hz. Performing the cross-spectrum between

the single value of H at 625 Hz and the response at all posi-

tions returns the response everywhere when focusing at this

one frequency to this one position. Because Fig. 2 shows the

normalized response, this is equivalent to a phase shift that

produces a large response at the target focus position. This

phase-shifted response is shown in Fig. 2(d). A movie show-

ing the response as a function of phase shift is shown in

Mm. 1. This process can be conducted at every frequency,

FIG. 2. (Color online) The process of simulating TR in the frequency

domain. The magnitude and phase of the frequency response at a target

focal location are shown in (a) and (b), with 625 Hz marked with a black,

dashed line. The relative response (the real part of the response) throughout

the duct is shown in (c). The conjugate of the response at the focal position

is then multiplied by the complex response at every position to produce a

focus at the target focal location (d).
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and the results are summed to produce the response across

the whole bandwidth.

Mm. 1. Movie illustrating the phase-shifting of a single

frequency to make the source emission produce a posi-

tive peak at the focal location. This is a file of type

“mp4” (0.8 MB).

In summary, each simulation includes the following

steps:

(1) Create a circuit with impedance values calculated for a

single frequency.

(2) Split a T-network into two T-networks to create a node

where the response can be measured.

(3) Solve the circuit for the flow in every loop of the

circuit.

(4) Calculate the potential at the spatial measurement point

relative to ground using Ohm’s law and the known

flows and impedances.

(5) Repeat steps 2–4 for every spatial measurement point

in the duct.

(6) Repeat steps 1–5 for every frequency in the bandwidth

of interest.

(7) Calculate the cross-spectra between the frequency

response at the target focal location and the frequency

response at each spatial measurement point.

(8) Sum the real part of the cross-spectrum at each spatial

measurement point.

(9) Repeat steps 1–8 for a second source on the other end

of the duct.

(10) Superpose results from both sources.

III. RESULTS

In one dimension, the diffraction limit can be defined as

the full width at half maximum (FWHM) of the highest fre-

quency sine wave in the bandwidth. For a sine wave, the half

maximum points occur at kx ¼ ½p=6; 5p=6� or, equivalently,

x ¼ ½k=12; 5k=12�. Thus, the FWHM of the pressure distribu-

tion of 1-D waves is k=3. Figure 3 shows a representative TR

focus within the waveguide composed of the focusing that

occurs over a range of frequencies. The focus shows a

FWHM of �kmin=12, or a fourfold improvement over focus-

ing that would be obtained without the presence of the reso-

nators. By inspecting individual frequencies in Fig. 2, the

shortened wavelength components are visible within the reso-

nator region. In the absence of resonators, the waves propa-

gate with a free-space wavelength. Because the interaction of

waves near the resonance frequency of a resonator leads to

more reflection of those waves, the pressure amplitude drops

within the phononic crystal. However, these strong interac-

tions also result in a higher spatial frequency. TR focusing is

defined as being at the location where the amplitude is the

largest. In the case of Fig. 3(d), the amplitude is largest at the

target focal location. However, the neighboring “sidelobe”

peaks have significant amplitudes. The amplitude of the side-

lobes is largely influenced by the limited bandwidth

employed in the focusing, as would be expected from super-

position and Fourier analysis. The use of a wider bandwidth

reduces the amplitudes of the sidelobes relative to the focal

amplitude. Known TR methods for reducing the amplitude of

sidelobes include the idea of iterative TR (Ref. 14) and the

inverse filter.28 These methods typically achieve relative side-

lobe amplitude reductions at the expense of a lower focal

amplitude. In this paper, no additional methods have been

applied, and the results use only the most basic TR process. It

is important to note that it is more difficult to achieve lower

sidelobe amplitudes in a 1-D medium, with only two sources,

and using continuous wave TR.29,43 The focus amplitude is

larger because the spatial extent of the focusing at each fre-

quency constructively interferes at that location due to the TR

process.29 Note that frequencies above the resonance fre-

quency do not spatially oscillate and are heavily attenuated

by the resonators, and although those frequencies do not con-

tribute significantly to the focus, they do worse than the dif-

fraction limit, resulting in less significant super-resolution (if

they are included in the bandwidth).

The focusing achieved at frequencies near resonance

lends itself to an analysis of the effective wavelength of each

frequency at the focal location. An effective wavelength, keff ,

for each frequency component, f , of the focusing can be

found by measuring the FWHM of the peak closest to the tar-

get focal location and setting the FWHM equal to keff=3 (the

FWHM of a sine wave in a 1-D system). This keff can be

larger or smaller than the free-space wavelength due to the

interactions with the resonators. Using keff and f , the phase

speed of the wave can be calculated, v ¼ f keff .

Figure 4 shows the phase speed versus frequency for

this example network of resonators. Below resonance, the

phase speed is below the speed of sound in the model. In

this model, the phase speed is below the speed of sound for

all frequencies down to 47 Hz with a phase speed of 257 m/s,

which is the lowest frequency that can be measured in the

domain. Near resonance, the wave field is oscillating with

a spatial frequency that matches the physical spacing of the

resonators, though with very small amplitudes. However,

immediately after crossing the resonance frequency, the

wave ceases to spatially oscillate within the resonator

FIG. 3. (Color online) Focus over a uniform bandwidth of 600–650 Hz.

Individual frequencies are shown [(a), (b), and (c)] as examples with the

entire combined bandwidth shown on the right (d).
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network, and instead the wave exponentially decays across

the resonator network. Because the waves do not spatially

oscillate in the resonator network, the effective wavelength is

greater than the length of the resonator network. At higher

frequencies, the acoustic waves do not interact strongly with

the resonators, and once again, the signal propagates with

effective wavelengths less than the length of resonator net-

work, allowing for the phase speed to be measured. At even

higher frequencies, the effective wavelengths eventually

return to the normal, plane-propagation wavelengths, and the

phase speed converges back to the speed of sound.

To validate the results from the equivalent circuit model,

the dispersion relation given by Bradley26 and later by

Sugimoto and Horioka27 is used to compute a phase speed for

the physical system presented here. This phase speed is a

large-scale effect of the phononic crystal, and the equivalent

circuit model should result in the same phase speed while

allowing for finer exploration of the focusing waves. The two

systems being modeled are only different in the length of the

phononic crystal. The effective medium models use an infi-

nite crystal, but the equivalent circuit model requires a finite

length to the phononic crystal. Representation of an infinite

domain would require knowing the input impedance to a

semi-infinite crystal and using that impedance as the termina-

tion on the finite domain. As shown in Fig. 4, the analytical

model by Bradley26 as presented by Sugimoto and Horioka27

shows excellent agreement with the results from the equiva-

lent circuit model. This agreement lends confidence to the

equivalent circuit model approach to explain large- and

small-scale interactions with the resonators.

IV. PARAMETRIC STUDY OF RESONATOR
IMPEDANCE

Of the variables used to construct the model, perhaps

the most conspicuous is that of the impedance of the

resonators. In previous research utilizing phononic crystals

of soda cans, the impact of the resonator shape (and, hence,

its impedance or impact on quality factor) on the resolution

improvement was not studied. If the frequency bandwidth of

study is small compared to the resonance frequency and is

close to the resonance frequency, f0, the shape of the imped-

ance curve of the resonators is governed by the mass and

compliance of the resonator. The shape of a resonator’s

impedance curve is often described by the quality factor of

the resonator. This acoustic quality factor, Q, incorporates

three variables, namely, mass, compliance, and resistance,

Q ¼ f0
fu � fl

¼ x0MA

RA
¼ 1

RA

ffiffiffiffiffiffiffi
MA

CA

r
; (4)

where fu and fl are the half power frequencies above and

below f0, respectively, and x0 ¼ 2pf0 ¼ MACAð Þ�1=2
is the

angular resonance frequency. Because of the dependence on

resistance, the Q is frequently used to study the behavior of

a resonator as the damping is changed. For our study, we

keep the resistance as well as the resonance frequency the

same. However, the values of mass and compliance can

change (one going up while the other goes down proportion-

ally) while maintaining the same resonance frequency, but

the MA=CA ratio changes and, therefore, Q changes.

Changing this ratio causes the resonance peak in the imped-

ance magnitude to sharpen or broaden. A high Q leads to a

sharp resonance peak, where a low Q leads to a broad reso-

nance peak. It is important to note that although one is sharp

and one is broad, if the resonance frequency and the resis-

tance are kept constant, the values of the impedance minima

will be the same (see Fig. 5). The pressure amplitude of the

response of an individual resonator will also remain the

same for a forced excitation.

The acoustic mass and compliance are constrained by

physical necessity. One constraint that we used was to

ensure that the acoustic mass and compliance must maintain

the lumped-element characteristics of a Helmholtz resonator

(though a higher order model for the resonator could have

been used that would have modeled something like a quarter

FIG. 4. (Color online) Comparing phase speed between equivalent circuit

model and the effective medium approach used by Bradley (Ref. 26) as pre-

sented by Sugimoto et al. (Ref. 27). Solid blue line, calculated wave speed

from the FWHM of the closest peak to the focus. Dotted-dashed green line,

from the model presented by Sugimoto et al. Dashed black line, bulk wave

speed in air. Dotted red line, resonance frequency of an individual resona-

tor. A drop in phase speed is visible below resonance, and above resonance

the wave eventually propagates and the phase speed drops to that of the

speed of sound in air.

FIG. 5. (Color online) Impedance curves for three different shaped resona-

tors. The quality factors of the resonators (going from top to bottom) are 30,

20, and 10. The acoustic impedance of a 4-in. diameter duct is also plotted

as the dashed line. Resonance is 700 Hz. To increase visibility, the resona-

tors shown are not scaled with size. Inset, impedance curves at resonance.
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wavelength resonance and higher order modes along the res-

onator’s length). This constraint means that every dimension

of the neck and volume must be small compared to a wave-

length so that no standing waves can form. To separate these

regions and use the classical equations for resonance, it has

been found44 that the cross section of the neck must be less

than �40% of the cross section of the volume.

A range of Q was calculated with the physical con-

straints that the neck must be strictly less than k=4 and the

cavity must have the largest dimension less than k=4. The

minimum neck length is also restricted as its physical length

goes to zero and only the acoustic end corrections remain,

and this provides a nonzero lower bound to the acoustic

mass. As the neck gets longer, the acoustic mass increases,

but so does the thermoviscous resistance. For the examples

given, the Q was limited to a range of 10–30 (these values

were determined for an individual resonator unattached to

the waveguide). These resonators produce shapes like those

found on the right side of Fig. 5.

Figure 5 shows that with the same resonance frequency,

a lower Q results in a broader impedance curve near their

minima. A resonator couples well to the acoustic waves if it

has an impedance similar to that of the waveguide. A

broader impedance curve results in more frequencies close

to the impedance of the waveguide and stronger interactions

with the resonators. Thus, a lower Q resonator will interact

with the waves in the waveguide over a broader range of fre-

quencies. It is similarly desirable to have a lower Q when

using Helmholtz resonators for filtering acoustic waves.38 A

lower Q implies a smaller length neck, a large neck cross-

sectional area, and a larger volume for the resonator.

Across the range of Q, competing priorities arise.

Figure 6 shows that frequencies closer to the resonators’ res-

onance frequency and resonators with a lower Q lead to a

smaller effective wavelength. However, in Fig. 7, it is appar-

ent that the amplitude of the focus is lower in these condi-

tions. Although a broader resonance peak allows the

resonator to influence a greater range of frequencies and

thus provide a sharper focus (as shown by the effective

wavelength; Fig. 6), the amplitude of the focus also goes

down (as shown by the focal amplitude; Fig. 7). These same

competing priorities are found at every Q as the frequency

approaches resonance; the overall peak amplitude goes

down, but the spatial extent of the focusing also becomes

narrower. Thus, there is a trade-off between the spatial reso-

lution one may obtain and the amplitude of the focusing. It

was also found, when using a finite bandwidth of frequen-

cies, that the sidelobe amplitudes become more comparable

to the focal amplitude as the frequencies in the bandwidth

approach the resonators’ resonance frequency.

The oscillations visible in the amplitude dependence

displayed in Fig. 7 are a result of attempting to focus

between two resonators. Each of the sources produces a

maximum near the focal location, but the maximum is

always over a nearby resonator. As the source frequency

changes, the maximum may move between resonators. The

ability for the two sources to be in phase at the focal location

is not always guaranteed.

As mentioned in the Introduction, part of the advantage

of using equivalent circuits is the ability to explore the dis-

cretization of the space. Maznev et al. previously found that

for single frequency focusing, the peak amplitude was

always over a resonator, whether the intended focus location

was over a resonator or not.15 The equivalent circuit model

treats the intersection of the resonator and the duct as occur-

ring at a single point in space. Although this intersection is

not physical, this behavior of the focusing reported in the

experimental findings by Maznev et al. is replicated in the

equivalent circuit model. Figure 8 shows the peak amplitude

at the intended target location of the focusing as the target

focal location is moved across the locations of four of the

resonators, including attempts to focus sound at many loca-

tions between the resonators. Also shown is the spatial

extent of two representative foci at 1.48 m (nearly exactly

between resonators) and 1.517 m (near, but not exactly at, a

resonator). Focusing near a resonator produces a higher

amplitude. In fact, focusing near a resonator can produce a

higher amplitude focus at other points than an attempt to

FIG. 6. (Color online) Fractional effective wavelength (keff=k) of waves

among the resonators across a range of frequencies. Data omitted for unde-

termined effective wavelengths.

FIG. 7. (Color online) Amplitude of the focus across a range of quality fac-

tors and frequencies. The oscillations visible in the data are a result the

maximum moving between resonators.
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focus at that point. This is shown in Fig. 8, where the (dotted-

dashed cyan) focus occurring near the 1.52 m resonator produ-

ces amplitudes over an interval of 6.6 mm that are greater than

an attempted focus at those positions. The resonators then are

the target of the focusing, and reducing the spacing increases

the focusing resolution. Thus, as stated by Maznev et al., no

matter how small the FWHM may become, the space has

been effectively discretized by the resonators, and the true res-

olution is that of the resonator spacing. It seems likely then

that focusing between the resonators is simply a superposition

of focusing at the adjacent resonators.

V. CONCLUSION

An equivalent circuit model has been presented that

describes the behavior of waves in a phononic crystal with

finite length and anechoic terminations. The model has been

verified by comparing the phase speed to results from the lit-

erature. Effects among the resonators that have been previ-

ously observed in experiments have been observed in the

equivalent circuit model. It has been shown that the pres-

ence of the resonators decreases the phase speed and leads

to super-resolution when combined with TR focusing tech-

niques. The quality factor of the resonators has been

explored, and it has been shown that broadband focusing is

more easily achieved with low quality factors when the

resistance is kept constant. The trade-off between resolution

and focal amplitude, and hence the quality of the focusing

(here lower quality focusing means high sidelobe ampli-

tudes relative to the focal amplitude), has also been

explored, with frequencies near resonance yielding better

spatial resolution but also contributing lower amplitude

toward the focusing over a bandwidth of frequencies. This

model can be used to explore other phononic crystal config-

urations in one dimension to obtain both phase speed behav-

iors and wave-resonator interactions.

This equivalent circuit model fits the analytical models

as presented by Sugimoto et al. when looking at the effect

of the medium on the large-scale parameter of phase speed.

Although the methods of arriving at the phase speed are

very different, the close agreement in the results shows that

the equivalent circuit model can describe a crystal as if it

were an effective medium. It also can be used to study

waves within the crystal, and results match the small-scale

effect of the focus snapping to an individual resonator as

seen in the experimental results of Maznev et al. Although

super-resolution has been shown, it has also been shown

that the limiting resolution is the placement of the resona-

tors, which serve as the effective measurement apparatus,

with the resonators acting as individual pixels, and a focus-

ing resolution below the spacing of the resonators is not

possible.

The equivalent circuit model can describe large and

small effects that are exhibited by a wave traversing a 1-D

phononic crystal. This model has been used to parameterize

some of the physical variables present in the model and has

shown that the Q influences the bandwidth of contributing

frequencies. This model has been shown to be useful for

exploring this model and can describe other configurations.

Previous work in phononic crystals has explored the influ-

ence of losses and alternating resonance frequencies on the

absorption and phase speed of the waves.25 This model

could be used to explore additional and arbitrary complica-

tions in the configuration of resonators.

ACKNOWLEDGMENTS

Funding was provided by Los Alamos National

Laboratory, Subcontract No. 527136, under the technology

maturation program. Additional support was provided by

the BYU College of Physical and Mathematical Sciences.

1M. Fink, “Time reversed acoustics,” Phys. Today 50(3), 34–40 (1997).
2B. E. Anderson, M. Griffa, C. Larmat, T. J. Ulrich, and P. A. Johnson,

“Time reversal,” Acoust. Today 4(1), 5–16 (2008).
3B. E. Anderson, M. C. Remillieux, P.-Y. L. Bas, and T. J. Ulrich, “Time

reversal techniques,” in Nonlinear Acoustic Techniques for
Nondestructive Evaluation, 1st ed., edited by T. Kundu (Acoustical

Society of America, New York), pp. 547-581 (2018).
4A. Parvulescu and C. S. Clay, “Reproducibility of signal transmissions in

the ocean,” Radio Electron. Eng. 29(4), 223–228 (1965).
5C. S. Clay and B. E. Anderson, “Matched signals: The beginnings of time

reversal,” Proc. Meet. Acoust. 12(1), 055001 (2011).
6C. S. Larmat, R. A. Guyer, and P. A. Johnson, “Time-reversal methods in

geophysics,” Phys. Today 63(8), 31–35 (2010).
7G. Montaldo, P. Roux, A. Derode, C. Negreira, and M. Fink, “Ultrasound

shock wave generator with one-bit time reversal in a dispersive medium,

application to lithotripsy,” Appl. Phys. Lett. 80, 897–899 (2002).
8R. K. Ing and N. Quieffin, “In solid localization of finger impacts using

acoustic time-reversal process,” Appl. Phys. Lett. 87(20), 204104 (2005).
9S. Cheinet, L. Ehrhardt, and T. Broglin, “Impulse source localization in

an urban environment: Time reversal versus time matching,” J. Acoust.

Soc. Am. 139(1), 128–140 (2016).
10C. Larmat, J.-P. Montagner, M. Fink, Y. Capdeville, A. Tourin, and E.

Cl�ev�ed�e, “Time-reversal imaging of seismic sources and application to

the great Sumatra earthquake,” Geophys. Res. Lett. 33, L19312, https://

doi.org/10.1029/2006GL026336 (2006).

FIG. 8. (Color online) Amplitude of different foci as the target position is

moved through a small range of positions near the middle of the set of reso-

nators. The bandwidth is the same as in Fig. 3. Solid blue line, total ampli-

tude at the focus location when TR is performed to focus a wave at that

position. Dotted black lines, resonator positions. Red dashed line and cyan

dotted-dashed line, spatial extent of the focus when focusing at 1.49 and

1.517 m, respectively. The focus location is marked with a dot.

1270 J. Acoust. Soc. Am. 152 (3), September 2022 Kingsley et al.

https://doi.org/10.1121/10.0013832

https://doi.org/10.1063/1.881692
https://doi.org/10.1121/1.2961165
https://doi.org/10.1049/ree.1965.0047
https://doi.org/10.1121/1.3602160
https://doi.org/10.1063/1.3480073
https://doi.org/10.1063/1.1446996
https://doi.org/10.1063/1.2130720
https://doi.org/10.1121/1.4938231
https://doi.org/10.1121/1.4938231
https://doi.org/10.1029/2006GL026336
https://doi.org/10.1121/10.0013832


11B. E. Anderson, M. Griffa, T. J. Ulrich, and P. A. Johnson, “Time reversal

reconstruction of finite sized sources in elastic media,” J. Acoust. Soc.

Am. 130(4), EL219–EL225 (2011).
12A. A. Maznev and O. B. Wright, “Upholding the diffraction limit in the

focusing of light and sound,” Wave Motion 68, 182–189 (2017).
13G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the

diffraction limit with far-field time reversal,” Science 315(5815),

1120–1122 (2007).
14F. Lemoult, M. Fink, and G. Lerosey, “Acoustic resonators for far-field

control of sound on a subwavelength scale,” Phys. Rev. Lett. 107(6),

064301 (2011).
15A. A. Maznev, G. Gu, S. Y. Sun, J. Xu, Y. Shen, N. Fang, and S. Y.

Zhang, “Extraordinary focusing of sound above a soda can array without

time reversal,” New J. Phys. 17, 042001 (2015).
16G. Ma, X. Fan, F. Ma, J. de Rosny, P. Sheng, and M. Fink, “Towards anti-

causal Green’s function for three-dimensional sub-diffraction focusing,”

Nat. Phys. 14(6), 608–612 (2018).
17A. Mimani, “A point-like enhanced resolution of experimental Aeolian

tone using an iterative point-time-reversal-sponge-layer damping

technique,” Mech. Syst. Signal Process. 151, 107411 (2021).
18S. G. Conti, P. Roux, and W. A. Kuperman, “Near-field time-reversal

amplification,” J. Acoust. Soc. Am. 121(6), 3602–3606 (2007).
19J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave phys-

ics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev.

Lett. 89(12), 124301 (2002).
20F. Ma, J. Chen, J. Wu, and H. Jia, “Realizing broadband sub-wavelength

focusing and a high intensity enhancement with a space-time synergetic

modulated acoustic prison,” J. Mater. Chem. C 8, 9511–9519 (2020).
21F. Ma, Z. Huang, C. Liu, and J. H. Wu, “Acoustic focusing and imaging

via phononic crystal and acoustic metamaterials,” J. Appl. Phys. 131,

011103 (2022).
22M.-H. Lu, L. Feng, and Y.-F. Chen, “Phononic crystals and acoustic meta-

materials,” Mat. Today 12(12), 34–42 (2009).
23X. Wang and C. M. Mak, “Acoustic performance of a duct loaded with

identical resonators,” J. Acoust. Soc. Am. 131(4), EL316–EL322 (2012).
24Z. G. Wang, S. H. Lee, C. K. Kim, C. M. Park, K. Nahm, and S. A. Nikitov,

“Acoustic wave propagation in one-dimensional phononic crystals contain-

ing Helmholtz resonators,” J. Appl. Phys. 103(6), 064907 (2008).
25J. Guo, J. Cao, Y. Xiao, H. Shen, and J. Wen, “Interplay of local resonan-

ces and Bragg band gaps in acoustic waveguides with periodic detuned

resonators,” Phys. Lett. A 384(13), 126253 (2020).
26C. E. Bradley, “Acoustic Bloch wave propagation in a periodic waveguide,”

Technical report of Applied Research Laboratories, ARL-TR- 91-19 (July),

University of Texas, Austin, TX, 1991.
27N. Sugimoto and T. Horioka, “Dispersion characteristics of sound waves

in a tunnel with an array of Helmholtz resonators,” J. Acoust. Soc. Am.

97(3), 1446–1459 (1995).

28M. Tanter, J. Thomas, and M. Fink, “Time reversal and the inverse filter,”

J. Acoust. Soc. Am. 108(1), 223–234 (2000).
29B. E. Anderson, R. A. Guyer, T. J. Ulrich, and P. A. Johnson, “Time

reversal of continuous-wave, steady-state signals in elastic media,” Appl.

Phys. Lett. 94(11), 111908 (2009).
30G. Bertuccio, “On the physical origin of the electro-mechano-acoustical

analogy,” J. Acoust. Soc. Am. 151(3), 2066–2076 (2022).
31B. B. Bauer, “Equivalent circuit analysis of mechano-acoustic structures,”

Trans. IRE Prof. Group Audio AU-2(4), 112–120 (1954).
32B. E. Anderson, C. B. Hilton, and F. Giorgini, “Equivalent circuit model-

ing and vibrometry measurements of the Nigerian-origin Udu Utar drum,”

J. Acoust. Soc. Am. 133(3), 1718–1726 (2013).
33C. B. Goates, M. F. Calton, S. D. Sommerfeldt, and D. C. Copley,

“Modeling acoustic resonators using higher-order equivalent circuits,”

Noise Control Eng. J. 67(6), 456–466 (2019).
34S. Pyo and Y. Roh, “Structural design of an acoustic planar array trans-

ducer by using the equivalent circuit method,” Ultrasonics 108, 106219

(2020).
35B. E. Anderson and S. D. Sommerfeldt, “Solving one-dimensional acous-

tic systems using the impedance translation theorem and equivalent cir-

cuits: A graduate level homework assignment,” J. Acoust. Soc. Am.

150(6), 4155–4165 (2021).
36E. Brand~ao, W. D. Fonseca, and P. H. Mareze, “An algorithmic approach

to electroacoustical analogies,” J. Acoust. Soc. Am. 152(1), 667–678

(2022).
37W. P. Mason, Electromechanical Transducers and Wave Filters (Van

Nostrand, New York, 1942), pp. 204–205.
38U. Ingard, “On the theory and design of acoustic resonators,” J. Acoust.

Soc. Am. 25(6), 1037–1061 (1953).
39L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals

of Acoustics, 4th ed. (Wiley, New York, 2000), pp. 284–286.
40H. von Helmholtz, “Ueber einige Gesetze der Vertheilung elektrischer

Str€ome in k€orperlichen Leitern mit Anwendung auf die thierisch-

elektrischen Versuche” (“Some laws concerning distribution electrical

currents conductors with applications to experiments animal electricity”),

Ann. Phys. Chem. 165(6), 211–233 (1853).
41M. H. Denison and B. E. Anderson, “Time reversal acoustics applied to

rooms of various reverberation times,” J. Acoust. Soc. Am. 144(6),

3055–3066 (2018).
42J. V. Candy, A. J. Poggio, D. H. Chambers, B. L. Guidry, C. L. Robbins,

and C. A. Kent, “Multichannel time-reversal processing for acoustic com-

munications in a highly reverberant environment,” J. Acoust. Soc. Am.

118, 2339–2354 (2005).
43S. Yon, M. Tanter, and M. Fink, “Sound focusing in rooms: The time-

reversal approach,” J. Acoust. Soc. Am. 113(3), 1533–1543 (2003).
44R. L. Panton and J. M. Miller, “Resonant frequencies of cylindrical

Helmholtz resonators,” J. Acoust. Soc. Am. 57(6), 1533–1535 (1975).

J. Acoust. Soc. Am. 152 (3), September 2022 Kingsley et al. 1271

https://doi.org/10.1121/10.0013832

https://doi.org/10.1121/1.3635378
https://doi.org/10.1121/1.3635378
https://doi.org/10.1016/j.wavemoti.2016.09.012
https://doi.org/10.1126/science.1134824
https://doi.org/10.1103/PhysRevLett.107.064301
https://doi.org/10.1088/1367-2630/17/4/042001
https://doi.org/10.1038/s41567-018-0082-3
https://doi.org/10.1016/j.ymssp.2020.107411
https://doi.org/10.1121/1.2724238
https://doi.org/10.1103/PhysRevLett.89.124301
https://doi.org/10.1103/PhysRevLett.89.124301
https://doi.org/10.1039/D0TC01984D
https://doi.org/10.1063/5.0074503
https://doi.org/10.1016/S1369-7021(09)70315-3
https://doi.org/10.1121/1.3691826
https://doi.org/10.1063/1.2894914
https://doi.org/10.1016/j.physleta.2020.126253
https://doi.org/10.1121/1.412085
https://doi.org/10.1121/1.429459
https://doi.org/10.1063/1.3097811
https://doi.org/10.1063/1.3097811
https://doi.org/10.1121/10.0009803
https://doi.org/10.1109/T-SP.1954.28249
https://doi.org/10.1121/1.4789892
https://doi.org/10.3397/1/376742
https://doi.org/10.1016/j.ultras.2020.106219
https://doi.org/10.1121/10.0008932
https://doi.org/10.1121/10.0012886
https://doi.org/10.1121/1.1907235
https://doi.org/10.1121/1.1907235
https://doi.org/10.1002/andp.18531650603
https://doi.org/10.1002/andp.18531650603
https://doi.org/10.1121/1.5080560
https://doi.org/10.1121/1.2011167
https://doi.org/10.1121/1.1543587
https://doi.org/10.1121/1.380596
https://doi.org/10.1121/10.0013832

	s1
	l
	n1
	d1
	d2
	d3a
	d3b
	s2
	f1
	f2
	v1
	s3
	f3
	s4
	d4
	f4
	f5
	f6
	f7
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	f8
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44

