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Large amplitude & 1 coherent structures in non-neutral plasmas confined 
in a cylindrical trap 

Ross L. Spencer and Grant W. Mason 
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 
(Received 14 December 1992; accepted 25 February 1993) 

The computation of 8 = 1 coherent structures in non-neutral plasmas with arbitrary density 
profiles and for large displacements of the plasma from the symmetry axis of a confining 
cylindrical trap is described. As the structures are displaced from the axis, they revolve about the 
symmetry axis with a frequency that typically increases with displacement. The plasma also is 
distorted into an approximately elliptical shape. The frequency shifts and the eccentricities as a 
function of displacement, plasma size, and the shape of the density profile are both computed 
numerically and calculated analytically. The results are shown to be consistent with data of 
Fine, Driscoll, and Malmberg [Phys. Rev. Lett. 63, 2232 (1989)] which are measured for 
relatively large, constant-density (waterbag) plasmas (R/a = 0.38-0.7 1) and modest off-axis 
displacements (D/u < 0.3). Here R is the radius of the plasma at half of peak density when 
centered, D is the off-axis displacement, and a is the radius of the cylinder. 

I. INTRODUCTION 

Consider a perfectly conducting, grounded cylinder of 
infinite length with radius a (see Fig. 1 ). External coils 
create a uniform longitudinal magnetic field & within the 
volume of the cylinder. A non-neutral cold plasma of par- 
ticles with charge 4 and density n(r) is injected into the 
cylinder from one end to form an axisymmetric structure 
with a density profile that is flat or monotonically decreas- 
ing with radius. The self-field of the charge distribution 
creates a radial electric field which is perpendicular to the 
axial magnetic field, and the resulting EXB drift causes 
the plasma to rotate about the axial symmetry axis. If the 
density profile is flat and the density relatively low, 2~: 
4 of, the rotation frequency will be constant and is given 
by’ 

co+ - 0$/20,= - 2rrcqn,,/ BO, (1) 

where wp is the plasma frequency and w, is the Larmor 
frequency. If the density profile is not flat there will be a 
shear in the rotational flow. 

If the plasma is moved off-axis (Fig. 1 ), image charges 
are induced on the conducting boundary, giving rise to an 
additional radial electric field which will cause the plasma 
to revolve about the center of the cylindrical trap at fre- 
quency o while continuing its spin rotation. As the plasma 
moves farther from the axis and approaches the wall, the 
frequency of the revolution increases and the shape of the 
plasma becomes nonlinearly more and more elliptical. Lin- 
ear analysis’ predicts, for small displacement D from the 
center and electric field E, at the cylinder wall, 

WZ=W+ -cEJBOa. (2) 

Observations of coherent structures of the type described 
here have been made and reported by Fine, Driscoll, and 
Malmberg2 at the University of California, San Diego. The 
structures are observed to revolve for up to 10’ times. Fine 

et al. have measured the frequency shift and quadrupole 
moment of the plasma as a function of increasing off-axis 
displacement of the center-of-mass. In particular, they 
have made an empirical fit to the frequency-shift data, 

(w-wO)/wO=( D/cz)~[ 1.0-7.3(R/~)~], (3) 
where R is the radius at half of peak density of the plasma.2 

We describe here the computation of these coherent 
structures for arbitrary density profiles and for large dis- 
placements from the cylinder axis. Our work complements 
work of Prasad and Malmberg,j O’Neil and Smith,4 Fine,’ 
and Lund, Ramos and Davidson.6 In Sec. II we describe 
the basic theory of the coherent structures within the cold- 
fluid, drift approximation. In Sec. III we describe a numer- 
ical algorithm for computing the structures and, in Sec. IV, 
we compare the results of the computation of revolution 
frequencies for sharp and diffuse density profiles with the 
empirical lit of Fine et al. In Sec. V we use the observation 
from the computational study that the potential profiles in 
the rotating frame are ellipses to motivate an analytic cal- 
culation that yields an approximation to both the frequen- 
cies of revolution and the eccentricities of the coherent 
structures as a function of size and displacement from the 
symmetry axis of the cylinder. In Sec. VI we compare 
computational, analytical, and empirical results. 

II. THEORY 

We describe the plasma in the cold-fluid, drift approx- 
imation in which the inertia of the particles and the tem- 
perature vanish.’ Hence, we assume conditions in which 
the Larmor radius is small compared to the dimensions of 
the system and in which the revolution of the structures is 
driven by the EXB drift at frequencies much less than the 
cyclotron frequency, allowing inertial effects to be ignored. 
The longitudinal magnetic field Be is assumed uniform and 
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FIG. 1. A plasma of area rRz is bounded by p(B) within a conducting 
cylinder of radius a. A constant, uniform magnetic field BO perpendicular 
to the plane of the diagram is created by external coils (not shown). 

the bounding cylinder is considered to be a perfect conduc- 
tor. We assume that the longitudinal dependence of all 
variables is suppressed. 

In the model used here, the density is related to the 
electric potential through Poisson’s equation, 

V’#= -47rqn. (4) 

The fluid drift velocity is given by, 

v= - (c/B,)V@G. (5) 

For this flow V l v is identically zero, so the plasma may be 
taken to be an incompressible fluid. The continuity equa- 
tion then becomes, 

an ~+v'Vn'o* 

The vorticity of the plasma is given by, 

cop= V X v = - 4?rqcn/ B&. (7) 

(Levy and, more recently, Driscoll and Fine have pointed 
out the isomorphism between these equations and the two- 
dimensional Euler equations for a constant density 
fluid.7-9 ) 

The coherent structures observed by Fine et al. are 
remarkably stable, revolving many thousands of times 
about the symmetry axis of the cylinder before dissipating.’ 
In a coordinate system which rotates with the center-of- 
mass, the structures can be thought of as steady states for 
which the time derivative of the density vanishes. 

Let primed quantities be defined in the rotating frame 
and let unprimed quantities refer to the laboratory frame. 
Let w represent the rotation frequency of the frame. Then, 
the electric field transforms between the frames according 
to 

E’=E+(rwBo/c)i, (8) 

i.e., 

#‘=+oBoi2/2c. (9) 

Poisson’s equation becomes, 
V2@ = - 4rqn - 2w Be/c. (10) 

We also have, 

v’= - (c/Bo)V$‘x&. (11) 
In the rotating frame an/at = 0, so that the continuity 
equation becomes, 

&*Vf$‘XVn=O, (12) 

which is identically satisfied if n = n (4 ’ ) . 
Our computation reduces to solving Poisson’s equation 

in the form3 

V2&=--Lhrqn(&) -2wBo/c. (13) 

III. COMPUTATIONAL ALGORITHM 

The essential computational problem is the handling of 
the nonlinearity represented by n(f) and w on the right- 
hand side of Poisson’s equation. 

We begin with an axisymmetric plasma of arbitrary 
radial profile temporarily located at the axis of symmetry 
of the cylinder. In practice we have usually used profiles 
parametrized by the expression, 

tanh[ -k(?‘/$j-1)] +h 
n(r) =no tanh(k) +h ’ (14) 

This parametrization allows us to vary the profile from a 
flat-topped and sharp-edged profile (“waterbag”) to one 
that has a monotonically decreasing, diffuse boundary. The 
parameter no is the peak density, r. controls the position of 
the shoulder, k > 0 controls the steepness of the shoulder, 
and 0 < h< 1 controls (somewhat) how far the plasma ex- 
tends beyond ro. The density is set to zero for larger values 
of Y beyond the radius r, where Eq. (14) yields negative 
values. In practice the area parameter R (the radius of the 
centered plasma measured to the point of half of peak 
density), ho, and the grid spacing are specified at the be- 
ginning of the calculation. The parameters r,, ro, and k are 
then computed to ensure that negative densities are 
avoided and that the shoulder occurs at the correct place 
for the given R/a and spans at least three grid spacings. If 
a diffuse profile is required, k is multiplied by a fraction 
which has the effect of diffusing the shoulder. While this 
parametrization is convenient, others, including purely nu- 
merical loads, could be used. 

Figures 2 and 3 show representative density profiles. 
Figure 2 shows a centered waterbag with a radius that is 
half that of the wall (k= 11.83, h=0.9). Figure 3 shows a 
density profile of the same radius (at half of peak density), 
but with a diffuse profile (k= 1.479). The plasma is shown 
off-axis as it appears at the conclusion of the computation. 
Throughout this paper we use h=0.9. In subsequent sec- 
tions for diffuse boundaries, we have used k=O.5260, 
1.052,2.104, respectively, for R/a=O. 125,0.250,0.500. For 
sharp boundaries, we have used k=4.208,8.417,16.83, re- 
spectively, for R/a=O. 125,0.250,0.500. 

We distribute the density onto an m X m Cartesian grid 
which overlays the cylinder. The Laplacian operator is dif- 
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FIG. 2. Waterbag density profile shown centered. The grid size shown is 
71 x 71. Shape parameters used in Eq. (14) are h=0.9, k= 11.83. 

ferenced with the usual five-point star except near the cyl- 
inder wall. At the edge of the cylinder, a form of the op- 
erator is constructed which uses points on the 
boundary. lo,’ ’ The resulting set of equations for Ip, repre- 
senting the finite difference approximation to Poisson’s 
equation, is solved directly with a banded-matrix solver. 
Typically we use m = 101. 

We are now faced with the problem that Eq. ( 13) has 
a vast number of solutions because of the freedom to 
choose n (4’). We make the problem mathematically more 
manageable, and physically more interesting, by looking 

FIG. 3. Diffuse-boundary density profile shown displaced from the cyl- 
inder axis. The grid size shown is 7 1 x 7 1. Shape parameters used in Eq. 
( 14) are h=0.9, k= 1.479. Equation (14) is used to generate a centered 
density distribution. A numerical code then computes the distribution as 
it would appear if moved from a centered to an off-axis position and 
allowed to distort to satisfy F.q. (13). 

for the off-axis states that would resuh from slowly dis- 
placing our initial symmetric state from the center. (Imag- 
ine, for instance, a weak instability driven by resistance in 
the wall.) However, the numerical code is not a time evo- 
lution code. The solution to Eq. ( 13) is found directly. 
This approach is to be contrasted with that of Lund et aZ.6 
who also connect an axisymmetric state with an off-axis, 
nonaxisymmetric state using a different parametrization of 
the problem. The connections are not the same in the two 
approaches. 

Since the fluid is incompressible, when the centered 
plasma is moved off-axis and the plasma shape becomes 
distorted, the density contours continue to bound invariant 
areas A. Thus, there is a function n(A) which remains 
invariant, and its invariance guarantees that the number of 
particles in the plasma is conserved. The function is com- 
puted very easily from the initial axisymmetric density load 
and is stored as a lookup table in the computer code. 

However, Poisson’s equation requires a functional re- 
lationship between n and 4’. We can compute such a rela- 
tionship if, in addition to knowing n(A), we can compute 
the function, A(#‘). This latter function is not invariant 
and must be recomputed at each iterative step in the com- 
putation. In practice we define ~=I#‘/&,,, and store A( {) 
as a lookup table. 

To compute an off-axis equilibrium, we choose the po- 
sition at which we wish the density to be centered. We 
move the undistorted (and, hence, incorrect) axisymmet- 
ric density load to that position, estimate an w for the 
chosen displacement and make an initial solve of Poisson’s 
equation. We then repeat the following iterative steps unti1 
we have convergence as evidenced by a residual calculated 
by numerically comparing the right-hand with the left- 
hand side of Poisson’s equation. 

( 1) Because the density distribution is not yet correct for 
the desired off-axis position, the resulting 4 will not be 
centered at the desired target position. Hence, compute a 
new w which moves the peak of (p’ radially to the desired 
position. 

(2) Recompute A(g) and with n(A) and A(c), compute a 
new density distribution for the right-hand side of Pois- 
son’s equation. 

(3) Check for convergence. Stop, or, proceed to the fol- 
lowing step. 

(4) Given the density function, n(A (f)) from step (2)) 
solve Poisson’s equation for #’ on the grid. 

(5) If the (6’ field has slipped laterally (as opposed to 
radially) away from the desired displacement center, re- 
store it by rotating the field back to the desired position. 

(6) Repeat, beginning with step ( 1). 

If necessary, one may underrelax on the iteration of r#’ 
and w, but in practice this algorithm has proved stable 
without underrelaxation in most instances with conver- 
gence occurring after fewer than 50 iterations. Because 

1740 Phys. Fluids B, Vol. 5, No. 6, June 1993 R. L. Spencer and G. W. Mason 1740 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitationnew.aip.org/termsconditions. Downloaded to  IP:

128.187.97.22 On: Wed, 19 Mar 2014 17:13:49



n(A) has been held invariant, the code conserves the num- 
ber of particles. This fact is independently checked by an 
integration of the final density distribution. 

For clarity in what follows, we will refer to results 
obtained from the equilibrium code described here as 
“computed results.” 

IV. COMPARISON TO THE EMPIRICAL FIT 

I 

Thin Plasma, CR/a) = 0.125 
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To compare with Eq. (3), we have computed fre- 
quency shifts as a function of displacement from the cyl- 
inder axis for plasmas of different sizes and for two types of 
density profile. 

The displacement D of the plasma from the cylinder 
axis is taken to be the distance from the origin to the 
center-of-mass. The displacements we have considered are 
limited by the constraint that the plasma not contact the 
cylinder wall. For plasmas that themselves have radii of 
half the wall radius, this means that the maximum value of 
D/a is 0.5. For thinner plasmas D/a may be larger. (It 
might be possible to move the plasma even closer to the 
wall by beginning the process of numerical convergence 
from an already deformed rather than circular plasma, but 
we have not done so, partly because of the additional com- 
plexity and partly because the present approach spans ex- 
isting data.) 

We have considered three plasma sizes for illustration. 
These are characterized by the ratio of the radius at half of 
peak density R to the radius of the wall a: R/a=O. 125, 
0.250,0.500. These plasmas are referred to, respectively, as 
“thin,” “medium,” and “fat.” 

Also for comparison, we have considered two types of 
density profile characterized by the parameter k in the 
initial density parametrization defined above. A form that 
closely approximates a sharp-edged waterbag results from 
setting k=4.21-16.8. A much more diffuse boundary re- 
sults from setting k=0.52&2.10. The choice of k depends 
on the size of the plasma and the grid spacing as explained 
in sec. III. 

For a given choice of density profile and size, a series of 
about a half-dozen computations at different values of dis- 
placement were made and a spline fit was created which 
could be compared to the empirical fit of Eq. (3). The 
comparisons are shown in Figs. 4-6. Each figure represents 
a different size of plasma. The two curves in each figure 
are, in addition to the empirical curve, results for the 
waterbag profile and for the diffuse profile. 

The best agreement is clearly for the larger plasma 
and, indeed, Fine indicates that the empirical fit arises 
from plasmas with R/a between 0.38 and 0.71. In our 
computation, R/a=0.5. The empirical fit does not agree 
with the computed curves for medium and thin plasmas, 
indicating a more complicated interplay between displace- 
ment and plasma radius than the form of the empirical 
curve allows. 

dispiacement (D/a) 

FIG. 4. Frequency shifts for a thin plasma (R/a = 0.125) with a sharp 
boundary and with a diffuse boundary compared to the empirical fit. The 
curves for sharp and diffuse boundaries are virtually identical (solid line) 
and the lowermost curve (dot-dashed) at top right is the empirical for- 
mula of Fine et al. The grid used is 101X 101. 

V. CALCULATION OF FREQUENCY SHIFTS AND 
ECCENTRlClTlES 

To calculate analytically the interplay between plasma 
size and off-axis displacement in determining the frequency 
shift and shape of the equilibria, we use the following ob- 
servation from the results of the equilibrium code de- 
scribed above: the potential contours in the rotating frame 
are self-similar ellipses to very good approximation even 
for large displacements. This fact is established from our 
numerical code by comparing the ratios of the major and 
minor axes of the contours and by comparing the area 
within the contours to the area of ellipses with the same 
major and minor axes. 

The elliptical contours are not centered at exactly the 
same point, but the discrepancy for different values of the 
potential in the region occupied by the plasma is of order 
l%.-2%. The discrepancy seems to be smaller for diffuse 
protiles (0.1%-0.2%) and larger for waterbags (l%- 
2%). As a measure of self-similarity, the ratio of the major 

Medium Plasma, (R/a) = 0.250 

o.at-- 

u 0.6. 

i 
w  

30.4. 
% 
5 
e: 
w 0.2. 

o-. -_ . 
0 0.1 0.2 0.3 0.4~U.5 0 6 

displacement (D/a) 

FIG. 5. Frequency shifts for a medium-size plasma (R/u = 0.250) with 
a sharp boundary and with a diffuse boundary compared to the empirical 
fit. The solid curve is the sharp boundary case, the dashed curve is the 
diffuse boundary case, and the dot-dashed curve is the empirical formula 
of Fine et al. The grid used is 101 X 101. 
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FIG. 6. Frequency shifts for a fat plasma (R/a = 0.500) with a sharp 
boundary and with a diffuse boundary compared to the empirical fit. The 
solid curve is the sharp boundary case. The diffuse boundary case is the 
dashed curve. The empirical fit curve of Fine et a/. lies between (dot- 
dashed). The vertical scale is significantly reduced compared to Figs. 4 
and 5 indicating a flattening of the curves as they approach the origin. As 
R/a increases further, both the empirical fit and our calculations predict 
the onset of a negative frequency shift for small D/Q. The grid used is 
101x 101. 

axis to the minor axis of the contours is the same to within 
5% for potential contours within the region occupied by 
the plasma. In contrast to the centering, this ratio seems to 
be smaller for waterbags (0.5%), but larger for diffuse 
profiles (3%-4%). 

As an approximation, then, consider an elliptically 
shaped distribution of density centered on the x-axis at 
position D (see Fig. 1). For simplicity we will take the 
profile to be a waterbag with uniform density n^ although 
we also present results for a diffuse (parabolic) profile. In 
order to make the displaced solution be dynamically con- 
nected to an axisymmetric waterbag of radius R, the area 
of the elliptical waterbag is required to be rrR2. The radius 
of the grounded cylinder is, again, a. The elliptical shape of 
the edge of the waterbag is given in terms of cylindrical 
coordinates, p and 0, with origin at the center of the 
plasma, 

R2Ji_;z 
p2(e~=(1-~2)+~~COS (28)’ 

(15) 

where E is the eccentricity of the ellipse. Since the problem 
is two dimensional, we may conveniently switch to com- 
plex variables by defining (in the laboratory frame) a 
source point, a field point and the electric field as, 

z’=x’+iy’, (16) 

z=x+iy, (17) 

and, 

E=E,-iE,. (18) 

The complex-valued Green’s function for the complex 
electric field is,” 

1 
GE(z,z’) = 2 - 

z-z’ + 2 a /z (19) 

Because of the conducting wall, there are two sources of 
electric field-the plasma itself and the image charges. The 
first term in the Green’s function represents the charge of 
the plasma itself and the second represents the image 
charges. 

If we integrate over the ellipse with this Green’s func- 
tion, we can calculate the real part of E, E, , at x = D, y = 0 
from 

E(z) =q 
s 

G(z,z’)n(z’)dA’. (20) 

Letting x= D, we can then obtain w from, 

CE, WE--, 
x& (21) 

i.e., w is just the EXB drift frequency of the center of the 
plasma in the laboratory frame. Note that this result will 
depend on the eccentricity of the ellipse which will enter as 
a parameter in the integration. Unfortunately, the eccen- 
tricity is not known a priori, but our equilibrium code tells 
us that in the rotating frame the contours are self-similar 
ehipses to good approximation. We may therefore focus 
our attention on the value of the eccentricity at the o-point 
(the center of the ellipse in Fig. 1) which marks the center 
of the plasma. 

Near the o-point, we have in the rotating frame, 

(x-xd2 (Y-YcJ2 
(aE;/~3y)~+ (dE:/ax),, (22) 

By inspection the profiles, near the o-point, are ellipses 
with eccentricity, 

$- 1 _ (qlaY)o 
(aEJ/ax,o . (23) 

Poisson’s equation in the rotating frame [Eq. ( 13)], the 
transformation of the electric field from rotating to labo- 
ratory frame [Eq. (8)], and, 

0 mJd& -= 
WO D/a (24) 

[derived from Eq. (21)] may be used to obtain, 

2= 
z(a~;,/a~)~-4~qn^ 

(aEx/ax)o-2~qn”(R2/a2JC[ (Ex)dEwI/(D/a)} ’ 
(25) 

Here E, is the value of the electric field at the cylinder waI1 
when the plasma is located at the center of the cylinder 
with an axisymmetric profile. For a waterbag, we use 
Gauss’ law to obtain, 

2?rqR2n^ 
E,=- a ’ (26) 
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Our problem thus reduces to using the Green’s func- 
tion to compute &(x) from which we calculate 
(&Y,/&)e and (RX), at the o-point marking the center of 
the plasma. We have, therefore, 

-5 
( D+pemie) 

a’-xD-xpe-“) p dp d0. (27) 

Because the result is only required near the o-point, we 
may take x - D 4 p(8) and only retain terms that give a 
nonvanishing result for dE,/ax at x = D. The first term can 
be integrated exactly in p. Only the linear term in (x-D) 
in the resulting sum need be retained for the integration 
over 8. The second term can also be integrated exactly in p, 
followed by an angular integration of an expansion in 
xp(@/(a’ - XL)). We then obtain, 

E,--,2m$a E--p [ 1 S@(E)] +2r@?a 
( ) 

(D/a) (R/a)2 
x (l-xD,a”) +2?rqriai (-ljk 

1 

(2k- l)!! (x/a)2k-1(R/a)2k+2 e4/4 
x (k+l)! ( 1-xD/a2)2k+i ( ) 

k’2 
c2 

where 

B(E) = 
$2 

l-$Ez+Jiz’ 

Defining 

o---o0 D2 
(I( 

(R/a)4 
-- - w. - a 1-[1-(R/a)2]2 

k’2 

From the latter expression we observe that the frequency 
shift becomes negative when (R/a)2 > l/2, i.e., R/a 
> 0.707. This value of R/a agrees with the result of O’Neil 
and Smith and the approximate value implied by Eq. (3). 
We also observe this threshold (R/a z 0.702 for D/a 
=0.04) with the numerical code using the waterbag ap- 
proximation described in Sec. III. 

If the density is given a diffuse parabolic profile with a 
cutoff at Y = R,, 

we obtain n(r) =n,[ l-(r/R,)*], (37) 

w 1 1 
~=1-(D/a)2-t(D/a)2[l-(D/a)2] 

(2k- l)!l 
(k-t-l)! 

k’2 

(28) 

(29) 

(30) 

(31) 

we may repeat the calculation. The radius at half of peak 
density R is related to R, by R = R,/&. Defining, 

2 zz i (-l)k 2+ 2k-1 

Par 1 ( (D/af) 

and we obtain 
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p=2 
( D/a)2(R/a)2 (R/a? 

‘(e)+ [1-(D/a)2]2+[l-(D/a)2]’ wbag 
I 

( D/a)2(R/a)2 (R/al2 
+P(E)f[1-(D/a)2]2+[1-(D/a)2]2 

(32) 

These latter two expressions may be solved numerically to 
obtain w( D/a,R/a) and E( D/a,R/a). 

Retaining only the lowest-order terms in R2, D2, and 
2, we obtain for the waterbag, 

‘= 
4( D/a)z(R/a)2 

[1-(D/a)2]2 ’ (33) 

o---w0 ( D/a)2 (R/a)’ -- 
cl-(D/a)” 1-[1-(D/a)2]4 (34) 

00 

O’Neil and Smith4 have shown that for small displace- 
ment D (and, hence, small e2), the frequency shift for 
waterbag profiles actually becomes negative when 
(R/a)2 > l/2. If we take D/a and 2 to be very small, but 
do not similarly restrict R/a, our analytic results reduce to 

4( D/a)2(R/a)” 
e2~ [1-(R/a)2]2 

and 

(35) 

(36) 

(2k- I)!! ( D/a)2k(RJa)2k P/4 
x (k+2)! [1-(D/a)2]2k ( ) 

k’2 
l-2 (38) 
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0 1 2 
&~1-(D/a)2f(D/a)2[1-(D/a)21 

(2k- l)!! 
(k+2)! 

( D/a)2k(RJa)2k c4/4 
x [1-(Wa)212k ( ) 

k/2 
I-2 (39) 

and 

E2=2 1 ( D/a>‘(RJaj2 ‘-)+T [14D/a)2]2 +[iT$;;*]l 1 

I ( D/a)2(Rc/a>2 UWa>2 
+‘(‘)+i [l-(D/aJ2’j2 ‘[1-(D/a)212 

(40) 

Reverting to the use of R rather than R, to facilitate com- 
parison with the waterbag case, we have, to lowest order, 

4(D/a)‘(R/a)’ 
‘- [1-(D/a)*12 ’ (41) 

’ (42) 

Note that the eccentricity formula for the waterbag [Eq. 
(33)] is the same as the formula for the parabolic profile 
[Eq. (41)]. However, the frequency shift formulas [Eq. 
(34) and Eq. (42)] differ. 

We observe that for the parabolic density profile there 
is also a threshold in plasma size above which the fre- 
quency shift is negative. For D/a and es small, but R/a not 
restricted, our results for the parabolic profile reduce to 

4z 4( D/a)*(R/a12 
1 -4(R/a12+ (4/3)(R/a14 (43) 

w---w0 D2 4 
( H 

(R/al4 -- - 
w. - a l-j [1-4(R/a)2+(4/3)(R/a)4] * 

Thus, for the diffuse parabolic profile, the reversal in the 
sign of the frequency shift occurs when R/a > 0.500, i.e., 
RJa > 0.707. 

While the lowest-order expressions for either waterbag 
or parabolic profiles result in separate formulas for u/we 
and 2, in general one must resort to a numerical technique 
to solve for 2. For clarity, however, in comparing these 
results with those obtained from our equilibrium code 
(“computed results”), we will refer to all results from this 
section as “analytic results.” 

VI. COMPARISON OF ANALYTIC AND COMPUTED 
FREQUENCY SHIFTS 

We now compare computed and analytic frequency 
shifts for a waterbag profile in the thin and medium sizes 
shown in Figs. 4 and 5, i.e., for R/a=O. 125,0.250. Tn these 
instances we use the lowest-order expressions [Eqs, (33) 
and (34)] obtained in Sec. V for the waterbag case. In the 
case of R/a=O. 125, a plot of the lowest-order approxima- 
tion to the frequency shift as a function of displacement 
[Eq. (34)] is indistinguishable from the plot of computed 
shifts in Fig. 4. Only a slight difference between the lowest- 
order analytic result of Eq. (34) and the computed fre- 
quency shifts is apparent for R/a=0.250 as seen in Fig. 7, 
The empirical expression of Fine et al. is also shown for 
comparison. 

As the size of the plasma increases, the discrepancy 
between our computed and our lowest-order analytic re- 
sults grows, meaning that higher-order terms in the ana- 
lytic expressions become more and more important. In Fig. 
8 we make the same kind of comparison as in Fig. 7, but we 
use the full sums [Eqs. (31) and (32)] and use a zero- 

and 

Y 0. 
: 
s w 
h 
2”. 

$ 
i 

- 0. 

Medium Plasma, (P/al = 0.250 

FIG. 7. Analytic frequency shifts from Eq. (34) compared to computed 
shifts for the waterbag profile with R/u = 0.250 used in Fig. 5. The 
analytic result (solid) differs slightly from the computed result (dashed). 
The lower curve (dot-dashed) is the empirical-fit curve of Fine er al. The 
lowest-order approximation to the analytic result is used. 

FIG. 8. Analytic frequency shifts from Eqs. (31) and (32) compared to 
computed shifts for the waterbag profile with R/a = 0.500 used in Fig. 6, 
The analytic result (solid) and computed result (dashed) are nearly in- 
distinguishable in the curve at top, right. The lower curve (dot-dashed) is 
the empirical-fit curve of Fine et al. Higher-order terms are included in 
the analytic result. The vertical scale is significantly reduced as in Fig. 6. 
As R/u increases, both the empirical fit and theory predict the onset of a 
negative frequency shift for small D/a. 
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displacement (D/a) 

FIG. 9. Comparison of analytic eccentricities (solid line) and computed 
eccentricities (dashed line) for the waterbag profiles of Figs. 4-6. The 
lowest-order approximation [Eq. (33)] is used to obtain the analytic 
curves for R/o=0.125,0.250. Higher-order terms in Eqs. (31) and (32) 
are used to obtain the analytic curve for R/12=0.500 which is identical to 
the computed curve for the waterbag case in Fig. 6. If higher-order terms 
are used for R/a=0.125 and 0.250, the discrepancy between the analytic 
and computed curves disappears for R/a=0.250 and narrows slightly for 
R/a=0.125. 

finding technique to solve for 2. As Fig. 8 shows, we re- 
store nearly full agreement between our computed and our 
analytic results. 

We  can also compare the analytic and computed val- 
ues for plasma eccentricities (see Fig. 9). Again, the cases 
shown are for R/a=0.125,0.250,0.500. For the thin and 
medium sizes we use the lowest-order approximation of 
Eq. (33). For R/a=0.500 we use the full sums and a 
zero-finding technique to find e2 from Eqs. (31) and (32). 

VII. CONCLUSION 

We have used tinite difference methods on a square 
grid to compute frequency shifts and elliptical distortions 

of coherent structures in non-neutral plasmas confined off- 
axis in a cylindrical trap by a uniform, axial magnetic field. 
We  have used a cold plasma, drift approximation model. 
The frequency shifts are shown to depend in a complicated 
way both on the displacement of the plasma from the cyl- 
inder center as well as on the size of the plasma. The 
predicted frequency shifts from our finite difference calcu- 
lation agree well with an empirical fit to data of Fine et al. 
when applied to plasmas for which D/a z 0.5 (the regime 
from which the data are taken). An analytic result based 
on experience gained from the numerical code is shown to 
agree closely with our numerical results as well as with the 
empirical fit of Fine et al. in the appropriate parameter 
regime. The numerical code works as well for arbitrary 
diffuse profiles as for step-function profiles (waterbags) 
while the analytic theory is tractable for at least some 
choices of diffuse profile. 
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