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Simulations of electrostatic modes of non-neutral plasmas with small
aspect ratio in a Penning trap

Grant W. Mason, Ross L. Spencer, and Jonathan A. Bennett
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 3 November 1995; accepted 1 February 1996!

The dependence on induced charge, experimental geometry, and temperature of electrostatic modes
in very low aspect ratio non-neutral plasmas in a Penning trap is considered. The modes are of
interest as non-destructive diagnostics of the shape of the plasmas. These investigations include
equilibrium calculations of plasma shapes and profiles at finite temperature and particle-in-cell
simulations of axisymmetric modes. The results of the simulations are compared to the
zero-temperature theory by Dubin@Phys. Rev. Lett.66, 2076 ~1991!# taken to first-order in the
aspect ratio and to experimental measurements by Weimeret al. @Phys. Rev. A49, 3842~1994!#. In
general, it is concluded that the Dubin theory provides a means to obtain reasonable estimates of
plasma parameters, including density, radius, and axial length, for plasmas in the very important
regime for which the axial length is comparable to the Debye length. In addition, dependence on
induced charge, equilibrium shape, and plasma temperature are identified which can likely be used
to improve agreement between theory and experiment. ©1996 American Institute of Physics.
@S1070-664X~96!02105-6#

I. INTRODUCTION

Penning traps such as the one shown in Fig. 1 use a
combination of electrostatic and magnetic fields in cylindri-
cal geometry to confine one or more charged particles for
extended periods of time. Recently Gabrielseet al.1 have
used such a trap to confine an individual antiproton and mea-
sure its cyclotron frequency in a known magnetic field as a
sensitive test of the charge-parity-time reversal~CPT! theo-
rem for baryonic matter. In some uses of Penning traps, large
enough numbers of particles are confined so that one has the
coherent behavior that characterizes a non-neutral plasma.
For example, Greaves and Surko2 have begun experiments in
which they bombard a non-neutral positron plasma confined
in a Penning trap with an electron beam to do studies that
have potential relevance to positron-electron plasmas in as-
trophysics. Others confine ions for experiments to study ion-
ion collisions, recombination rates and collisions between
ions and neutral atoms, etc.3

In some experiments it is desirable to have a nondestruc-
tive method of measuring the density, rotation frequency, and
shape of the plasma. For example, such information would
be particularly important if the plasma were being used as a
target in collision experiments. In principle this might be
done by measuring the electrostatic mode frequencies of the
plasma as the motion induces charge oscillations in the walls
of the trap and then comparing the frequencies to theoretical
relationships which depend on the desired, but unknown,
characteristics of the plasma. This program has recently been
given considerable impetus by the work of Dubin4 who has
calculated the global modes for a spheroidal, zero-
temperature non-neutral plasma for which the confining
walls of the trap are remote.

Tinkle et al.5 have demonstrated that the frequency of
the quadrupole mode of a spheroidal single-component elec-
tron plasma in a Penning trap has well-characterized depen-
dences on the plasma aspect ratio, length, and temperature.
Excellent agreement between numerical simulations of the

plasma and the experiment demonstrates that the simulations
are a valuable tool for the detailed study of the modes.
Weimer et al.,6 Bollinger et al.,7 and Heinzenet al.8 have
also used measured frequencies and the model of Dubin to
calculate density and aspect ratio of electron and ion plasmas
at low temperature and to study the evolution of shape and
size of the plasma with time.

This paper is primarily an attempt through numerical
modeling to better understand certain discrepancies between
experiment and the Dubin theory that arose in the work by
Weimeret al.6 In the Weimer experiments the plasma takes
the shape of a thin axisymmetric pancake. In these and other
Penning trap experiments in which particles are stored for
long periods of time, torques on the plasma system~probably
from field asymmetries! will cause the plasma to expand ra-
dially into a pancake shape. The only atomic physics experi-
ments where long-lived plasmas are known not to evolve to
this shape are laser cooling experiments where laser torques
are used to spin up the plasma. Thus the pancake regime
explored by Weimer is particularly important to diagnose and
understand.

In Sec. II we review the elements of the theory of Dubin
which makes predictions relevant to the experiments of
Weimeret al. and which were used in interpreting their ex-
perimental measurements. In Sec. III we will describe the
experiment and the discrepancy with theory and identify fac-
tors on which it might depend. In Sec. IV we will describe
the simulation methods used to do numerical experiments
that might indicate the source of the discrepancy. In Sec. V
we will describe the results of numerical experiments that we
performed and, finally, in Sec. VI we will draw conclusions
from our work.

II. THEORY

In the theory of Dubin, a zero-temperature non-neutral
plasma is confined axially in cylindrical geometry by an
electrostatic potential of the form
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f~r ,z!5C~z22r 2/2!. ~1!

The plasma in such an ideal well assumes a spheroidal
shape. The continuity, momentum, and Poisson’s equations
are combined to predict a family of global oscillations which
includes axisymmetric (m50) modes and non-axisymmetric
(m Þ 0) modes. The mode potentials are expressed as prod-
ucts of associated Legendre functionsPl

m andQl
m and the

factor ei (mf2vt), wheref is the azimuthal angle about the
trap axis andv is the mode frequency. The integerl is re-
lated tonz , the number of axial nodes atr50, andnr , the
number of radial nodes in the midplane, by the relationship
l5nz12nr . The mode (l ,m)5(1,0) is the axial center-of-
mass oscillation of the plasma with frequencyvz .

The expressions that follow from the Dubin theory de-
pend on the aspect ratioa of the plasma which is defined to
be the ratio of the half-length of the plasma to its radius. In
the zero-temperature theory, the plasma is sharp-edged and
the aspect ratio is well-defined. For thin plasmas in which
a is small, the frequency expressions may be reduced to a
first-order approximation in the aspect ratio resulting in a
series of relationships for each of several modes. Experimen-
tally, the plasmas of interest here have the aspect ratio of a
thin pancake (a'0.01) resembling a drumhead. This
‘‘drumhead’’ may vibrate with both axisymmetric and non-
axisymmetric modes and both types are measured in the
Weimeret al. experiment, although the work described here
treats only the axisymmetric casem50. For the modes of
interest here, the approximate relationships are

uv1,0u5vz , ~2!

uv3,0u5vzF12
5

16
pa G , ~3!

uv5,0u5vzF12
161

256
pa G , ~4!

uv7,0u5vzF12
969

1024
pa G . ~5!

For small aspect ratios~0.01 or less!, these approxima-
tions are precise to about 0.01%@having dropped terms of
ordera2'(0.01)2] when used to determine frequencies but
are less precise~about 2%! when used to solve fora, since it
depends on a difference between frequencies which is small
compared to the magnitude of the frequencies themselves.
The frequencyvz in these equations is the frequency of the
axial center-of-mass motion of the plasma and is determined
by the charge and mass of the confined particles, the geom-
etry, and the external electrical potentials of the trap. For an
ideal trap as assumed by Dubin, this frequency is the same
for particles at any radius within the trap and is independent
of the amplitude of the oscillation of the particles.

The Dubin theory also predicts radial profiles of the
axial displacement for the modes of the spheroidal plasmas.
Defining x to be the ratio of radius within the plasma,r , to
the plasma radius,r p , the modes have shapes~in the limit
z→0) given by4

dz~x!~ l ,0!}
Pl~A12x2!

A12x2
, ~6!

wherePl are the set of Legendre polynomials. Specifically,

dz~x!~3,0!}~122.5x2!, ~7!

dz~x!~5,0!}~127x217.875x4!, ~8!

dz~x!~7,0!}~1213.5x2137.12x4226.81x6!, ~9!

wheredz(x) is the axial displacement of the pancake as a
function of radius for the indicated mode.

Finally, to first order ina, the theory relates the plasma
frequency,vp , to vz anda,

vp5vz~11 1
4pa!. ~10!

Thus, if the aspect ratio can be obtained, one can obtain the
plasma density from the plasma frequency. Knowing the par-
ticle number and assuming uniform density and spheroidal
shape, one can then obtain the radius,r p , and thickness,
zp , of the plasma.

III. EXPERIMENT

The experimental situation to which the theory is to be
applied differs from the ideal theoretical situation in several
respects. Even though experiments may be performed at low
temperatures, the densities are also low and the plasma is
thin leading to Debye lengths that are comparable to the
thickness of the plasmas. Hence, temperature effects may be
present. The walls of the trap are not infinitely far away, so
induced charges may be important. The magnetic field is not
exactly parallel to the trap axis nor does the trap necessarily
have ideal cylindrical symmetry. And finally, the electrostatic
field that provides the harmonic well of the trap does not
give the ideal form of Eq.~1! so that even the axial particle
bounce frequency may have both amplitude and radial de-
pendence. Thus, there are several potential sources of dis-
crepancy between theory and experiment which may limit

FIG. 1. Penning Trap. The trap produces an approximation to an electro-
static confining potential well of the formf5C(z22r 2/2) by applying a
voltage difference between the endcaps~right and left! and the ring
~middle!. A potential is applied to the guard ring to tune the confining
properties of the trap. Charged particles are confined in the radial direction
~vertical! by a uniform horizontal magnetic field.
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the degree to which useful diagnostic information can be
extracted from the measurement of global mode frequencies.

In the experiments of Weimeret al., cryogenic cooling
was used to reduce the electron temperature to close to 4 K.
Magnetron sideband cooling was then used to stabilize and
compress the electron cloud. Over long times~3000 s! the
trapped plasmas were then observed to undergo a radial ex-
pansion which decreases the aspect ratio of the plasma and
eventually leads to loss of confinement. Since the total ca-
nonical angular momentum of the system is conserved in the
absence of torques,9 the radial expansion and consequent loss
of plasma can be interpreted as evidence for torques for
which the likely cause is asymmetries in the electric or mag-
netic fields of the trap. The trap itself is only about one
centimeter in diameter and consists of machined parts that
only approximate the surfaces of a hyperboloid. To compen-
sate, the trap is provided with a guard ring of variable poten-
tial which can be used to tune the trap to more nearly ideal
harmonic conditions, but it is still impossible to tune the trap
everywhere simultaneously.

In practice the trap was tuned by confining a small num-
ber of electrons near the origin, exciting their axial center-
of-mass motion to increasing amplitudes, and adjusting the
guard ring voltage to eliminate amplitude dependence of the
frequency of the mode, i.e. to make the well ideal, at least in
the region near the origin. This tuning process is a local
rather than a global tuning process. In the experiments of
Weimer et al., tuning was accomplished with a guard ring
voltage of16.3 V. However, the detection of the modes was
improved ~for unknown reasons! when detuned to12.9 V
and it was at this voltage that the data shown in Fig. 5 of
Weimeret al.were taken.10 The mode frequencies leading to
the figure were measured with an estimated precision of
about 0.01%.10

Figure 5 of Weimeret al.6 shows a plot over time of the
changing aspect ratio of an electron plasma in the trap as
computed from Eqs.~2!–~5!. However, at each point in time,
different values of the aspect ratio emerge from the Dubin
equations for the different modes, with a fairly constant
spread over time of 20–25%. The predicted aspect ratios are
monotonically decreasing with increasing number of radial
nodes. Since the equations themselves are thought to be pre-
cise to within at least 2%, the spread seems to be anomalous.
In what follows, we investigate by numerical experiments
some possible causes of the spread.

IV. SIMULATION

To investigate the behavior of the plasmas via simula-
tion, we first compute equilibria using a Poisson-Boltzmann
code.11 The code allows us to approximate the interior sur-
faces of the trap, including the guard ring. Figure 2 shows a
typical configuration of plasma and details of the trap. The
endcaps~right and left ends! are held at210.45 V, the ring
~top! is held at 0.0 V, and the guard ring is set at selected
values,Vg , to compare tuned and detuned traps. The com-
puting region is sufficiently large~1.37 cm axially and 0.8
cm radially! so that details of the endcap, ring, and guard

ring are simulated. The ring has an inner radius of 0.5 cm.
The point of closest axial proximity of the endcap to the
origin is 0.35 cm.

The plasmas considered here are strongly magnetized by
a constant magnetic field along the axis of the trap so that the
axial and radial motions of the electrons are decoupled. The
Poisson-Boltzmann equilibrium code solves nonlinear Pois-
son equations of the form,

¹2f52
q

e
n~r ,f!. ~11!

The code can be used to solve for either equilibria with a
specified midplane density profile or for self-consistent ther-
mal equilibria12 with specified values of central density and
radial extent corresponding to some fixed canonical angular
momentum. Because the plasmas in the experiments were so
long lived that global thermal equilibrium might have been
approached, and because there was no experimental informa-
tion about radial profiles, we thought it reasonable to assume
that the plasma was in global thermal equilibrium. In order to
facilitate comparison with Dubin’s theory and with the ex-
periments, the equilibrium calculation was run in such a way
~unless otherwise indicated! that the central density and the
plasma radius were adjusted during the iteration process to
give a fixed number of electrons~43,000 as reported by
Weimeret al.6! and also to give the same canonical angular
momentum as a cold spheroid with a chosen plasma radius
and aspect ratio. This procedure is equivalent to the
physically-realizable process of heating a cold spheroid with-
out applying any torque to it.

Equilibria thus calculated are provided as the starting
point for a particle-in-cell~PIC! simulation of the plasma
within the trap. The code is faithful to the geometry and
plasma characteristics established in the equilibrium code. In
this r2z simulation, particles are tracked in a two-
dimensional phase space (z,vz). Since the plasma is axisym-

FIG. 2. Simulated Penning Trap. The endcaps~right and left!, ring ~top! and
guard rings are modelled by line segments held at the constant potentials of
the Weimer experiment. In both the model and the actual experiment, the
surfaces are straight as shown. The lengths of the lines in the model are
faithful to the length of the cuts in the experimental trap. The plasma is the
vertical structure in the center of the diagram. Observe that for this longer
plasma, the width of the plasma increases with radius. The numerical model
has azimuthal symmetry about the horizontal axis at the bottom of the fig-
ure.
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metric and drift motion is assumed in the plane perpendicular
to the confining magnetic field, ther -coordinates of the par-
ticles never change once they are loaded. The PIC simulation
assumes the same ideal cylindrical symmetry and, hence,
computes mode frequencies for a plasma with stationary ra-
dial profile.

Although precise radial mode structures are not known
for the geometry of the experiment, we use the known mode
structures from the ideal Dubin theory@Eqs.~7!–~9!# to seed
axisymmetric modes of the simulated plasma. Time se-
quences that track the center of mass motion as well as the
overlap integrals of the density-weighted axial displacement
of the plasma with the seeding functions are produced and
Fourier analyzed to yield mode frequencies. Lorentzian fits
to the peaks of the spectrum are used to refine the precision
of the mode frequencies. A typical spectrum of modes is
shown in Fig. 3. Aspect ratios are computed from Eqs.~2!–
~5! for such modes and compared to see if the anomalous
spreading observed in the experiments can be observed as
conditions in the simulation are varied.

Because we are using a grid~80 radial3500 axial! to
simulate the plasma and because we want to represent the
effects of the geometry of the experiment surrounding the
plasma, we are limited by our computer memory resources to
grids that can resolve the plasma thickness when the aspect
ratios are on the order of 0.01 or larger. This corresponds to
about a half-dozen grid cells across the thin dimension of the
plasma. Experimentally, the data begin at aspect ratios near
to this value, but the plasmas then evolve to become progres-
sively thinner until the aspect ratio is about 0.002. Thus, we
are not able to simulate the experiment over its full range of
aspect ratios. In any case, we simulate the plasma for a single
choice of aspect ratio at a time. No attempt is made to follow
the evolution of the aspect ratio of the plasma.

In order to obtain sufficient precision in the frequencies
of the simulated modes, we take 131072 time steps of one-
quarter nanosecond each. Based on these parameters, the
spectral peaks should be localized to within

Dv

v
5

2p

vNDt
. ~12!

Allowing for an improvement factor of 1/3 obtained by fit-
ting a Lorentzian to the peaks, we obtain an estimated pre-
cision, Dv/v'0.02%. This agrees with our empirical ob-
servation that the numerical simulations reproduce the mode
frequencies roughly to about 5 parts in 38000 when started
with different initial seeding perturbations. As noted in Sec.
II, Eqs. ~2!–~5! then yield the aspect ratio with a precision of
about 2–3%.

V. NUMERICAL EXPERIMENTS

In this section we describe numerical experiments with
simulated plasmas designed to measure the extent to which
induced charge, realistic geometry, and temperature affect
the measurement of aspect ratios via Eqs.~2!–~5!. For pur-
poses of defining the aspect ratio, we measure the radial and
axial lengths of the plasma to the point at which the density
falls to half-maximum.

We first turn our attention to the possible effect on the
mode frequencies of induced charge in the conducting sur-
faces of the trap. In the Appendix we estimate the effects of
image charge using electrostatics in the complex plane. The
calculation indicates that the major effect on mode frequen-
cies of induced charge in either the ring or the endcaps is to
lower the frequency of the center-of-mass mode preferen-
tially, with decreasing relative shifts as the mode number
increases. The shifts in frequency from this effect for plas-
mas with a uniform density profile translate into a narrowing
of spread or actual reversal of the ordering of the aspect
ratios as they emerge from Eqs.~2!–~5! when compared to
the experimental data of Weimeret al.

We then performed numerical experiments to test this
conclusion using equilibria which were not in global thermal
equilibrium, but rather equilibria which were constrained to
have a flat radial density distribution similar to the uniform
density distributions treated in the Appendix. We estimated
the effect of induced charges on the predicted aspect ratios
by creating an equilibrium at 4 K with a central density of
1.5731013/m3, a radial extent of 3.6 mm and an aspect ratio
of 0.0090 in an ideal hyperbolic well~not the trap of Fig. 2!.
Its axial and radial extent and confining voltages were com-
parable to those of the Weimer experimental trap. We then
froze the values of the potential at the boundaries of the
computing region~at horizontal positionsz563.5 mm! as
obtained in the equilibrium determination to serve as bound-
ary conditions for the PIC simulation and obtained mode
frequencies for~1,0!, ~3,0!, and ~7,0!. @The ~5,0! mode was
not seeded in these numerical experiments since we were
interested in the spread between~3,0! and ~7,0!.# We then
repeated the entire process with the right-left boundaries
moved inward toz562.5 mm.

The results of the simulations were consistent with the
predictions of the calculation in the Appendix. Moving the
walls closer to the plasma to increase the induced charge
effect reduced the center-of-mass mode frequency by 10
parts in 35,000~significant at our level of precision!, but
shifted the~3,0! and~7,0! modes downward by less than half

FIG. 3. Mode Spectrum from PIC code. The time sequence analyzed is the
motion of the center-of-mass of the plasma. The prominent peak is the
frequency of the axial center-of-mass motion of the plasma,~1,0!. The less
prominent peaks are the~3,0!, ~5,0!, ~7,0!, and ~9,0! modes ordered from
right to left. In this case the guard ring voltage of the trap is16.3 V and the
radius of the plasma is about 3.2 mm.
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of this amount, an amount which is not significant~border-
line! at our level of precision. The shifts produce aspect ra-
tios from Eqs.~2!–~5! which are actually reversed in order
from the experimental values, i.e. increasing aspect ratio
rather than decreasing with increasing mode number. Al-
though not insignificant, the effect of the induced charge
works in the wrong direction to explain the spreading effect
observed in the experimental data.

We now turn to a more ‘‘realistic’’ set of simulations in
which we replace the ideal hyperbolic confining well with a
well created by an endcap, ring, and guard ring such as is
shown in Fig. 2. In Fig. 4 we show the radial profile of the
axial center-of-mass mode frequency that a small test charge
would experience in the trap without any other electrons. We
refer to this purely geometric characteristic of the well as the
vacuum Penning frequency profile. In the ideal geometry

used in the induced charge simulations just discussed, this
profile is constant as a function of radius. In more realistic
geometry, however, the profile depends on radius and on the
guard voltage. Figure 4 shows profiles for three choices of
guard ring voltage: 0.0,12.9, and16.3 V. Observe that the
scale of the vertical axis is truncated so that the differences
are exaggerated.

One observes that the profiles are significantly different
at the level of precision of both experiment and simulations.
Rather than having a single axial center-of-mass mode fre-
quency, for example, plasmas that extend beyond 2.0 mm
must adjust to some new common frequency. From Fig. 4 it
appears that plasmas that have radial extent less than 2.0 mm
would find the trap that is tuned with a guard voltage of16.3
V to be an ideal trap, since the profile for this voltage is most
nearly flat near the origin. Further, if the trap were tuned by
observing the behavior of electrons nearr50, one would

FIG. 4. Vacuum Penning frequency profiles as a function of radius. As the
guard ring voltage is increased, the vacuum Penning frequency becomes a
function of radius. The solid curve is for a guard ring voltage of16.3 V. The
curve for12.9 V is bracketed by the curves for 0.0 V and16.3 V. Observe
that the vertical scale is truncated so that the differences are exaggerated.

FIG. 5. Midplane density profiles. The profiles shown are for plasmas of
shorter radial extent (a50.01920.022) where the effect of the nonideal
shape of the ring and the effect of the guard ring is less pronounced. The
solid curve is for a guard ring voltage of16.3 V. The curve for12.9 V is
bracketed by the curves for 0.0 V and16.3 V.

FIG. 6. Midplane density profiles. The profiles shown are for plasmas of
medium radial extent (a50.01420.017). The solid curve is for a guard ring
voltage of16.3 V. The curve for12.9 V is bracketed by the curves for 0.0
V and16.3 V.

FIG. 7. Midplane density profiles. The profiles shown are for plasmas of
longer radial extent (a50.009920.014) where the effect of the nonideal
shape of the ring and the effect of the guard ring are more pronounced. The
solid curve is for a guard ring voltage of16.3 V. The curve for12.9 V is
bracketed by the curves for 0.0 V and16.3 V.
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judge the best tuning voltage to be16.3 V. Indeed, this was
precisely the experimental value of the tuning voltage ob-
tained by Weimeret al. using the local tuning procedure al-
ready described in Sec. III. However, if the radius of the
plasma began with a radius of about 2.0 mm and then gradu-
ally increased in radius with time, it would extend further
and further into a region where the tuning is not ideal. Under
these conditions, the actual choice of a guard ring voltage of
12.9 V by Weimeret al.10 might be a better compromise.

The equilibrium density profiles~here we use global
thermal equilibria! which can exist in the trap also depend on
the guard ring voltages as shown in Figs. 5, 6, and 7. The
three cases shown in Fig. 5 are larger aspect ratio numerical
plasmas shown for each of the three guard ring voltages, 0.0,
12.9, and16.3 V. Figure 6 shows somewhat smaller aspect
ratios and Fig. 7 shows a similar plot for the smallest aspect
ratios in the series.

For the smallest aspect ratios~larger radial extent! of
Fig. 7, the guard ring voltage of12.9 V produces a midplane
density profile which is nearly flat-topped and which has a
very sharp rolloff near its radial end. Of the three profiles,
this is most nearly like what one might expect for a zero-
temperature case such as is assumed in the Dubin theory, i.e.
flat top and sharp edge. The choice of16.3 V for the guard
ring voltage again produces an equilibrium with a sharp
edge, although the flat top is noticeably absent. We observe
also in the case where the guard ring voltage is 0.0 V, the
equilibrium has a fairly diffuse boundary, and it is not so
clear exactly how the aspect ratio is to be defined.

In order to investigate the effect of the distortion of ra-
dial profiles arising from the non-ideal geometry and thermal
effects on the spread of aspect ratio predictions of the Dubin
theory, we created numerical equilibria of different aspect
ratios and guard ring voltages in our model trap of Fig. 2.
These were used as the starting point for PIC simulations of
them50 modes of the trap. The guard ring voltages were
taken to be 0.0 V,12.9 V, and16.3 V. The radii of the
plasmas ranged in three steps for each voltage from approxi-
mately 2.4 mm~largest aspect ratio! to approximately 3.2
mm ~smallest aspect ratio!. Thus, there were nine separate
cases to be compared. Tables I and II summarize the results
for nine combinations of guard voltage and radial extent of
the plasma. Table I shows the frequencies from which the
aspect ratios of Table II are computed using Eqs.~2!–~5!. In
some instances the spacing between modes was irregular~not
the expected slightly monotonically changing spacing with

increasing mode number! and these frequencies are de-
scribed as ‘‘some uncertainty in identifying mode.’’ These
instances are associated with some noisiness in the Fourier
transforms of the time sequences used to identify modes.

Referring to Table II, we observe several patterns. The
aspect ratios obtained from the Dubin theory@Eqs. ~2!–~5!#
are lower~by factors ranging from 0.40–0.80! than the actual
aspect ratios of the plasmas from which they are derived.
The largest discrepancies of this sort are associated with a
guard potential of 0.0 V. In this case the plasma has a more
diffuse radial boundary than the other cases, one which is
least like the flat-topped, sharp-edged profiles used in the
zero-temperature theory. If the temperature is elevated from
zero to 4 K, the Debye length of the plasmas increases, the
axial and radial profiles become more diffuse, and the central
density of the plasma decreases. The Dubin formulas are
blind to this temperature effect and the result is that the
theory predicts aspect ratios that are lower than are correct
for a given plasma. As the guard voltage is increased, the
profiles tend to have a sharper radial profile and the agree-
ment with the theory improves.

However, the spread of the aspect ratios obtained from
the formulas is smallest for a guard potential of 0.0 V and
somewhat larger for guard potentials of12.9 V and16.3 V.
The spreads in the case ofVg512.9 V ~the Weimer experi-
mental condition! range from 10–15% for different aspect
ratios, but we do not see~nor did Weimeret al.! a systematic
correlation with aspect ratio, i.e. with the degree to which the
plasma protrudes into the region where the Penning fre-

TABLE I. Frequencies of axisymmetric modes of simulated plasmas. The
frequencies shown are for different modes,~i,0!, for given choices of guard
potential (Vg) and plasma aspect ratio,a, in Fig. 2. These are the ‘‘data’’
produced in the numerical experiments.

Vg a ~1,0! ~3,0! ~5,0! ~7,0!
~V! (3108 s21)

0.0 0.022 3.7910 3.7525 3.7116a 3.6702
0.0 0.017 3.7929 3.7677 3.7480a 3.7210
0.0 0.014 3.7927 3.7736 3.7543 3.7315a

2.9 0.020 3.7896 3.7408 3.7060a 3.6572
2.9 0.014 3.7872 3.7525 3.7222 3.6967
2.9 0.011 3.7847 3.7579 3.7340 3.7121
6.3 0.019 3.7912 3.7351 3.6869 3.6520
6.3 0.017 3.7870 3.7472 3.7121 3.6803
6.3 0.0099 3.7835 3.7566 3.7327 3.7106

aSome uncertainty in identifying this mode.

TABLE II. Aspect ratios from Dubin theory for simulated plasmas. Results are shown for different choices of guard potential (Vg) and plasma aspect ratio,
a, in Fig. 2. Subscripted valuesa ( i ,0) are obtained from the frequencies of Table I using Eqs.~3!–~5!. HereDa5a (3,0)2a (7,0) ; ā5(a (3,0)1a (7,0))/2.

Largest Medium
Vg ~V!

Smallest

0.0 2.9 6.3 0.0 2.9 6.3 0.0 2.9 6.3

a 0.022 0.020 0.019 0.017 0.014 0.017 0.014 0.011 0.0099
a (3,0) 0.010 0.013 0.015 0.0068 0.0093 0.011 0.0051 0.0072 0.0072
a (5,0) 0.011a 0.011a 0.014 0.0060a 0.0087 0.010 0.0051 0.0068 0.0068
a (7,0) 0.011 0.012 0.012 0.0064 0.0080 0.0095 0.0054a 0.0064 0.0065

Da/ā ~%! 2.8 10 20 6.2 15 12 5.4 11 11
a (3,0) /a 0.48 0.65 0.79 0.41 0.66 0.64 0.38 0.67 0.73

aSome uncertainty in identifying this mode.
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quency profile dips. The spread is larger than expected on the
basis of the precision of the formulas~2%!, but less than the
spread of the Weimer data~20–25%!.

If the guard ring voltage is16.3 V, the plasma of small-
est aspect ratio in the series of three has an aspect ratio of
0.0099~from the equilibrium code!. Figure 7 shows that this
equilibrium ~at least in the radial midplane! is relatively
sharp-edged and has close to the same radius as the smallest
aspect ratio equilibrium at12.9 V. From the PIC simulation
and the Dubin formulas we obtain aspect ratios of 0.0072,
0.0068, and 0.0065, which are very nearly the values ob-
tained for the small aspect ratio equilibrium when the guard
ring voltage was12.9 V. The spread in aspect ratios is 11%.
The close agreement between the aspect ratios from the two
different cases is reassuring since in both cases the plasmas
have relatively sharp and similar radial definition.

If one assumes that the aspect ratio of the simulated
plasma is known from applying Eq.~3! to frequencies ob-
tained from the simulations, one may obtain the inferred den-
sity of the plasma from Eq.~10!. Assuming uniform density
and spheroidal shape for which the volume is
V54/3pr p

2zp , one may infer a radius and axial length for the
plasma. Since these quantities are also known in advance for
the simulated plasma, one may estimate the degree to which
these quantities might be obtained if the modelled plasmas
resemble experimental conditions. The results of this com-
parison are shown in Table III.

Table III shows that the densities are overestimated by
factors ranging from 1.25–2.70 if this program is carried out.
Note that the comparison is made to the central density of the
simulated plasma which is also the maximum density except
in those cases where the guard voltage has created a density
maximum at the radial extremity of the plasma (Vg516.3
V!. The estimates worsen as the guard voltage increases and
also as the radial extent of the plasma increases. The axial
length of the plasma is systematically underestimated, again
with the largest discrepancy in the case of vanishing guard
voltage. The presence of the guard voltage tends to narrow
the axial length of the plasma and compensates somewhat for
the diffuse axial boundary of the plasma arising from the
non-zero operating temperature. Finally, there is rather re-
markable agreement in these instances between the radius of

the simulated plasma and the inferred radius, particularly
with guard voltages of 2.9 and 6.3 V.

We now shift our attention to temperature as a possible
variable. In this study we fixed the guard ring voltage at
12.9 V ~the operating voltage of the Weimer experiment!.
We began with the conditions used in generating the 4 K
equilibria used in the study just described, but recomputed
the equilibria with the electron temperature elevated to 16 K.
Three aspect ratios were again considered. See Table IV.

The effect of the elevated temperature is to leavevz

unchanged, but to shift the~3,0!, ~5,0!, and~7,0! frequencies
upward. The shift is least for~3,0!, but is systematically
larger for the higher modes. The shift in frequencies is such
as to increase the spread of the aspect ratios from 10%, 15%,
and 11% in Table II to 14%, 30%, and 18%, respectively.
These figures do come closer to the experimental spreads
reported by Weimeret al. Thus, the spread in experimental
aspect ratios could be explained if the electron temperature
in the experiments were higher than assumed~by a factor of
4 in our numerical simulations!.

VI. CONCLUSIONS

This work was motivated by the desire to understand the
degree to which the theory of Dubin can be applied to Pen-
ning trap experiments when the Debye length is comparable
to the plasma thickness in realistic geometry. In particular,
we hoped to understand better the spread in aspect ratios that
results from applying Dubin’s theory to the data from
Weimer’s experiments.

Numerical experiments to correlate the spread in aspect
ratios with the proximity of the walls of the trap~induced
charge effects! demonstrated that the effect of induced
charge is to preferentially shift the center-of-mass mode fre-
quency downward, with systematically decreasing relative
shifts downward with increasing mode number. The conse-
quence of these shifts is to reduce the actual discrepancy
between the aspect ratio deduced from the~3,0! mode com-
pared to its actual value, but to decrease the spread of values
~or even reverse the ordering compared to the experimental
data! emerging from Eqs.~2!–~5!. Thus our attention was
directed increasingly to the effects of realistic geometry in

TABLE III. Plasma parameters from Dubin theory for simulated plasmas. Results are shown for given choices
of guard potential (Vg) and plasma aspect ratioa in Fig. 2. Inferred quantities are calculated assuming a
spheroidal plasma whose aspect ratio is calculated from Eq.~3! using frequencies from Table I. Comparison is
made to parameters that are known for the simulated plasmas of Fig. 2.

Vg
~V!

a n0
~1013 m 23!

n0 ~inferred!
~1013 m23!

rp
~mm!

rp ~inferred!
~mm!

zp
~1022 mm!

zp ~inferred!
~1022 mm!

0.0 0.022 3.74 4.59 2.29 2.79 4.93 2.87
0.0 0.017 3.27 4.57 2.56 3.21 4.24 2.18
0.0 0.014 2.89 4.56 2.81 3.52 3.84 1.82
2.9 0.020 3.63 4.61 2.32 2.57 4.70 3.37
2.9 0.014 2.98 4.57 2.76 2.89 3.90 2.69
2.9 0.011 2.33 4.55 3.16 3.15 3.39 2.27
6.3 0.019 3.50 4.62 2.32 2.45 4.47 3.70
6.3 0.017 2.63 4.58 2.56 2.76 4.24 2.95
6.3 0.0099 1.68 4.55 3.06 3.15 3.02 2.28
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which the hyperboloid well is only approximated and must
be subsequently tuned by a guard ring potential.

Numerical experiments in which the detailed geometry
of the trap is simulated, including the presence of a guard
ring, indicate that the well potential is distorted in such a
way that the vacuum Penning frequency has radial depen-
dence. As the guard ring potential is increased, the distortion
increases at larger radii and there is an increase in the spread
of aspect ratios that emerges from Eqs.~2!–~5!, although in
our numerical experiments the spread is lower~10–20%!
than the experimental data of Weimer~20–25%!. The spread
is not directly correlated to the radial extent of the plasma,
but seems rather to be correlated to distortions in the shape
and radial profile of the plasma that occur because the
plasma thickness is comparable to the Debye length.

The effect of elevating the temperature in numerical ex-
periments on equilibria in global thermal equilibrium is to
increase the spread of the aspect ratios from Eqs.~2!–~5! and
is the most likely cause of the experimental spread emerging
from this study, although the temperature would have to be a
factor four larger than assumed in the experiments. We note
that the induced charge effect~primarily reducing the center-
of-mass mode frequency! and the effect of increasing tem-
perature~primarily increasing the higher mode frequencies!
are countervening effects in determining the aspect ratios via
Eqs. ~2!–~5!. If correction is made for induced charge, the
spread in aspect ratios is likely a sharper function of tem-
perature than these simulations and the experiments~which
have built-in induced charge effects! demonstrate.

In general, however, we conclude that the Dubin theory
does indeed provide a means to obtain reasonable estimates
of plasma parameters, including density, radius and axial
length, for plasmas even in the very important regime for
which the axial length is comparable to a Debye length. In
addition, we have identified dependencies on induced charge,
equilibrium shape, and plasma temperature which might be
used to improve agreement between theory and experiment.
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APPENDIX: INDUCED CHARGE

In this appendix we make an estimate of the effects on
mode frequencies of induced charge on the conductors
shown in Fig. 1. To simplify the calculation, the cylindrical
geometry is replaced by an approximate Cartesian geometry
where the properties of complex-valued functions can be em-
ployed. In this approximate geometry the plasma is modelled
as an infinitely long slab of charge with thickness 2zp and
width 2r p , wherer p is the plasma radius and wherezp is the
half-thickness of the thin plasma. The plasma inside the slab
consists of particles of chargeq, massm, and uniform den-
sity no . The effect of the ring-electrode is studied in the
geometry shown in part~a! of Fig. 8, while the effect of the
endcaps are studied in the geometry of part~b! of the same
figure. The quantityr w is the distance from the center of the
plasma to the ring electrode, whilezw is the distance from
the center of the plasma to either endcap. For simplicity, only
the results for conductor angleb50 will be given in detail.
The more general case of non-zerob can be handled by the
conformal mapping,

w5e2 ibzg; g511
2b

p
, ~A1!

which maps the complexw-plane (w5x1 iy) shown in Fig.
8 to the upper-halfz-plane where an image-charge calcula-
tion like the one given below in thew-plane can be em-
ployed.

1. Ring electrode

The motion of the plasma is assumed to be represented
by the functionj(y,t), representing the displacement of the
plasma in the direction normal to the thin dimension of the
plasma@see part~a! of Fig. 8#. Under such a displacement
the perturbed charge density is given by the continuity equa-
tion ~for a rigid shift!,

dn52j~y!
]no
]x

5j~y!no@d~x2zp!2d~x1zp!#. ~A2!

This perturbed density can be transformed into a perturbed
line-charge densitydl into the page in the complex plane of
Fig. 8 by multiplying it by the charge on a particle and inte-
grating it over a small areadxdy. In thex-direction the delta
functions cause the line charge density only to exist at6zp
and in they-direction the integral, for smalldy, is obtained
simply by multiplying bydy, giving

dl5qnoj~y!dyH 11 atx5zp ,

21 atx52zp .
~A3!

We now estimate the effect on the mode frequencies of
the slab produced by the induced charge in the ring electrode
of this dipole-layer charge distribution. We take an image of
the perturbed charge mirrored through the conducting plane
along the real axis into the lower half of the complex
w-plane. The complex electrostatic field produced by this
image charge at any pointw of the plasma is given by13

TABLE IV. Frequencies of axisymmetric modes of simulated plasmas at 16
K. The results are for the simulated plasmas of Table I with the temperature
elevated from 4 K to 16 K. Theguard potential (Vg) is chosen to match the
experimental conditions of Weimeret al.

Vg a ~1,0! ~3,0! ~5,0! ~7,0!

~V! (3108 s21)

2.9 0.020 3.7895 3.7448 3.6729
2.9 0.014 3.7873 3.7532 3.7274 3.7109
2.9 0.011 3.7852 3.7583 3.7364 3.7179
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dEx~w!2 idEy~w!5E
rw2r p

rw1r pqnoj~y8!

2peo
F 21

w2zp1 iy8

1
1

w1zp1 iy8Gdy8. ~A4!

In the small aspect ratio limit wherezp!r p and in the plasma
atw5 iy where the field of the induced charge is to be evalu-
ated, this expression becomes

dEx~y!'
qno2zp
2peo

E
rw2r p

rw1r p d

dw

1

~w1 iy8!
j~y8!dy8

5
qnozp
peo

E
rw2r p

rw1r pj~y8!dy8

~y1y8!2
. ~A5!

It should be noted that a better approximation to the cylin-
drical case could be obtained by using another conducting
plane above the plasma in part~a! of Fig. 8. This, however,
makes the problem much more complicated. Trying some-
thing simple such as doubling the induced electric field does
not work for all points in the plasma because points near one
wall feel a strong effect from that wall and a weak effect
from the other one. Therefore, as an approximation we will
just include the effect of one wall, but only use its field over
the half of the plasma that is nearest to the lower wall, i.e.,
for r w2r p<y<r w .

To estimate the effect of this field on the electrostatic
modes of vibration we assume a time dependence ofeivt and
write the equation of motion in the form

2mv2j~y!5qdEx~y!1 . . . , ~A6!

where the other terms corresponding to physical effects other
than the field of the induced charge have been suppressed.
We multiply this equation by the displacement function
j(y) and integrate it from the center of the plasma to the tip
nearest the conducting plane to obtain an estimate of the shift
d(v2) in v2 due to induced charge:

d~v2!

vp
2 52

zp

p* rw2r p

rw j~y!2dy

3E
rw2r p

rw
dyE

rw2r p

rw1r p
dy8

j~y8!j~y!

~y1y8!2
, ~A7!

wherevp is the plasma frequency in the thin cloud. When
the displacement functionj(y) is taken to be one of Dubin’s
displacement functions for the~3,0! mode, or higher, the fre-
quency shifts are found to be an order of magnitude less than
the frequency shift for the center of mass mode, for which
j is uniform in space. If the displacement is constant, the
integral can be performed to obtain for the center of mass
mode,

d~v2!

vp
2 52

a

p
lnF ~2r w2r p!r w

~2r w1r p!~r w2r p!
G , ~A8!

wherea is the aspect ratioa5r p /zp .
We note in passing that the effect of making the angle

b non-zero is to reduce the frequency shifts. This calculation
is a bit complicated, but to within 10-20% the effect of finite
angle is to reduced(v2)/vp

2 by the factor g2, where
g5112b/p.

2. Endcaps

For the geometry of part~b! of Fig. 8 with b50, we
have

dn52j~x!
]no
]y

~A9!

and

dl5qnoj~x!dxH 11, aty5zw1zp ,

21, atx5zw2zp .
~A10!

With the image charge again mirrored into the lower half
w-plane by a conducting plane along the real axis, we have

dEx~w!2 idEy~w!523E
2r p

r p qnoj~x8!

2peo

3F 21

w2x81 i ~zw1zp!

1
1

w2x81 i ~zw2zp!
Gdx8. ~A11!

FIG. 8. Slab geometry for induced charge estimates. The Penning trap is
approximated by a Cartesian complex plane representation for purposes of
estimating the effect on the mode frequencies of induced charge in the ring
and endcaps.
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The factor of two multiplying the integral approximately
takes into account the presence of two endcaps on which
there is induced charge, with the plasma midway between
them ~see Fig. 1!. In the small aspect ratio limit where
zp!r p and in the plasma atw5x1 izw where the field of the
induced charge is to be evaluated we obtain for the
y-component of the field

dEy~x!'2
2qnozp

peo
ReE

2r p

r p j~x8!dx8

~x2x812izw!2
, ~A12!

whereRe denotes the real part.
Just as was done with the ring electrode, the equation of

motion is used to obtain an approximate form for the fre-
quency shift:

d~v2!

vp
2 5

2zp
p*

2r p

r p j~x!2dx
E

2r p

r p
dxE

2r p

r p
dx8

j~x8!j~x!

~x2x812izw!2
.

~A13!

~Note that the imaginary part of this double integral is zero,
so it is no longer necessary to take the real part.! As in the
ring electrode case, the frequency shifts for the~3,0! and
higher modes are about an order of magnitude smaller than
the shift for the center of mass mode. Since the center of
mass mode has a constant displacement function, we obtain
for the frequency shift of this mode due to the endcaps,

d~v2!

vp
2 52

a

p
lnS 11

r p
2

zw
2 D . ~A14!

In this case the effect of making the angleb non-zero is also
to reduce the frequency shifts, approximately by the factor
g.

Equations~A8! and~A14! have been tested with the par-
ticle simulation for a few choices of plasma sizes and wall
positions, and appear to be low by about a factor of two for
the center-of-mass mode. The simulations also confirm that
the shifts in the higher modes are negligible. Adding an em-
pirical correction factor of two and combining the effects
from ring electrode and endcaps gives the following approxi-
mate formula for the frequency shift of the center-of-mass
mode:

dv

vp
'2

a

p H 1

g ring
2 lnF ~2r w2r p!r w

~2r w1r p!~r w2r p!
G

1
1

gend
lnF11

r p
2

zw
2 G J , ~A15!

whereg ring andgend are the values ofg appropriate for the
ring electrode and the endcaps and where the empirical fac-
tor of two has disappeared because this formula gives
dv/vp instead ofd(v2)/vp

2 . The corresponding simple ap-
proximation for the frequency shift of the higher modes is
that these shifts are zero.

Hence, the effect of induced charge on nearby conduc-
tors is to decrease the frequency of the center-of-mass mode
while leaving the other frequencies mostly unchanged. The
effect of this shift on the values ofa inferred from the spher-
oid formulas @Eqs. ~2!–~5!# is to decrease all of the
a-values, but to decreasea (3,0) the most,a (5,0) by less,
a (7,0) by even less, and so on. This causes the spheroid for-
mulas to underestimate the true value ofa and also to cause
spreading of the predicteda-values, with higher modes giv-
ing higher values ofa, opposite to the spreading observed in
the experiments of Weimeret al. This means that if the ef-
fects of image charge are removed from the experimental
data, the spreading ina would be even larger than it already
is.

As an example of this effect, consider the frequency data
for guard-ring voltagesVg52.9 V in Table I. We can ap-
proximately correct this data for the effect of image charge
by raising the frequency of the center-of-mass mode by the
amount given by the approximate formula Eq.~A15!. In do-
ing so we use density values for the actual equilibria ob-
tained from Table III, r w55 mm, zw53.5 mm,
b ring50.36, and bend50.15, giving g ring51.2 and
gend51.1. The values of the anglesbend andb ring are taken
from Fig. 2. For each of the three cases considered, we take
the actual values ofa and r p from Tables II and III. The
result of doing this correction is to decrease the discrepancy
between the actual value ofa and the value inferred from the
~3,0! mode by about 50% and to roughly double the spread
between thea-values inferred from the~3,0! and ~7,0!
modes. For example, forVg52.9 V and in the medium case
(a50.014) we finda (3,0)50.011 anda (7,0)50.00856. Since
the experimental data of Weimeret al. were affected by
nearby conductors in the same way as the simulation, their
computed values ofa (3,0) would also be closer to the true
values, and the spread in their data would be larger if their
frequencies were corrected for the effects of induced charge.
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