
Experimental evidence of modal wavenumber relation to zeros in the wavenumber
spectrum of a simply supported plate
Olivier Robin, Alain Berry, Noureddine Atalla, et al.

Citation: The Journal of the Acoustical Society of America 137, 2978 (2015); doi: 10.1121/1.4919334
View online: https://doi.org/10.1121/1.4919334
View Table of Contents: https://asa.scitation.org/toc/jas/137/5
Published by the Acoustical Society of America

ARTICLES YOU MAY BE INTERESTED IN

Comment on plate modal wavenumber transforms in Sound and Structural Vibration [Academic Press (1987,
2007)] (L)
The Journal of the Acoustical Society of America 132, 2155 (2012); https://doi.org/10.1121/1.4747012

Analytical and experimental investigation on transmission loss of clamped double panels: Implication of
boundary effects
The Journal of the Acoustical Society of America 125, 1506 (2009); https://doi.org/10.1121/1.3075766

Experimental vibroacoustic testing of plane panels using synthesized random pressure fields
The Journal of the Acoustical Society of America 135, 3434 (2014); https://doi.org/10.1121/1.4872298

Wavenumber transform analysis for acoustic black hole design
The Journal of the Acoustical Society of America 140, 718 (2016); https://doi.org/10.1121/1.4959023

Measurement of the absorption coefficient of sound absorbing materials under a synthesized diffuse acoustic
field
The Journal of the Acoustical Society of America 136, EL13 (2014); https://doi.org/10.1121/1.4881321

Radiation Resistance of a Rectangular Panel
The Journal of the Acoustical Society of America 51, 946 (1972); https://doi.org/10.1121/1.1912943

https://images.scitation.org/redirect.spark?MID=176720&plid=1857437&setID=407059&channelID=0&CID=683628&banID=520741327&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=89271b903397cb56bf0893f678c2b2841a3cd06f&location=
https://asa.scitation.org/author/Robin%2C+Olivier
https://asa.scitation.org/author/Berry%2C+Alain
https://asa.scitation.org/author/Atalla%2C+Noureddine
/loi/jas
https://doi.org/10.1121/1.4919334
https://asa.scitation.org/toc/jas/137/5
https://asa.scitation.org/publisher/
https://asa.scitation.org/doi/10.1121/1.4747012
https://asa.scitation.org/doi/10.1121/1.4747012
https://doi.org/10.1121/1.4747012
https://asa.scitation.org/doi/10.1121/1.3075766
https://asa.scitation.org/doi/10.1121/1.3075766
https://doi.org/10.1121/1.3075766
https://asa.scitation.org/doi/10.1121/1.4872298
https://doi.org/10.1121/1.4872298
https://asa.scitation.org/doi/10.1121/1.4959023
https://doi.org/10.1121/1.4959023
https://asa.scitation.org/doi/10.1121/1.4881321
https://asa.scitation.org/doi/10.1121/1.4881321
https://doi.org/10.1121/1.4881321
https://asa.scitation.org/doi/10.1121/1.1912943
https://doi.org/10.1121/1.1912943


Experimental evidence of modal wavenumber relation to zeros
in the wavenumber spectrum of a simply supported plate (L)

Olivier Robin,a) Alain Berry, and Noureddine Atalla
Groupe d’Acoustique de l’Universit�e de Sherbrooke, Universit�e de Sherbrooke, Sherbrooke J1K 2R1, Canada

Stephen A. Hambric and Micah R. Shepherd
Applied Research Laboratory, The Pennsylvania State University, P.O. Box 30, State College,
Pennsylvania 16804, USA

(Received 25 February 2015; revised 6 April 2015; accepted 11 April 2015)

The modal wavenumber of rectangular, simply supported, isotropic thin plates was theoretically

shown to be related to the zeros in the wavenumber spectrum and not to the peaks, resulting in an

error between the actual modal wavenumber and location of the wavenumber spectrum peak for

low mode orders. This theoretical proof is confirmed by experimental results reported in this letter.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4919334]

[NJK] Pages: 2978–2981

I. INTRODUCTION

The squared magnitude of the spatial Fourier transform

of the mode shape function of a structure is usually called

the wavenumber sensitivity function or wavenumber filter

shape function, and is often used to calculate the coupling

between exciting pressure fields and mode shapes for rectan-

gular panels1–4 and cylinders,5,6 both under fluctuating wall

pressure excitations. It can be also used to calculate the radi-

ation efficiency of rectangular panels in the wavenumber do-

main.3 It is often stated that this function precisely peaks at

the modal wavenumber and that the highest sensitivity or

coupling with an exciting pressure field will thus be found at

this wavenumber.1–3,7

Shepherd and Hambric8 have theoretically shown that

the modal wavenumber is related to the zeros and not to the

peaks in the wavenumber spectrum in the case of a rectangu-

lar, simply supported, isotropic thin panel. To the best of the

authors’ knowledge, no exhaustive laboratory validation of

this analytical proof or confirmation of the calculated per-

centage differences between modal wavenumber and peak

wavenumber can be found in the literature. This result was

only briefly confirmed for a single vibration mode of such a

panel in Ref. 9. Using a measurement database obtained

with a similar laboratory setup,10 the main contribution of

this letter is to provide a comprehensive experimental valida-

tion of Shepherd and Hambric’s result.

II. DESCRIPTION OF TESTS AND WAVENUMBER
SPECTRUM CALCULATIONS

For a thin, simply supported and isotropic panel, the

mode shape (or eigenfunction) Wmn and eigenfrequency

xmn, solutions of the free vibration equation take simple

closed-form expressions:

Wmnðx; yÞ ¼ sinðkmxÞ sin ðknyÞ; (1)

where the modal wavenumbers are

km ¼
mp
Lx
; kn ¼

np
Ly
; (2)

and

xmn ¼
D

qh

� �1=2 mp
Lx

� �2

þ np
Ly

� �2
" #

; (3)

where D is the bending stiffness, q is the mass density, h the

panel thickness, m and n are non-zero strictly positive inte-

gers, and Lx and Ly are the panel length and width, respec-

tively. The discrete form of the 2D spatial Fourier transform

Smn (kx, ky) of the mode shape function is

Smnðkx; kyÞ ¼ DxDy

XNx

k¼1

XNy

l¼1

Wmnðxk; ylÞe�jkxxk e�jkyyl ; (4)

where Dx and Dy are the spatial samplings in the x and y direc-

tions, respectively. For m, n¼ 1, the main lobe of Smn (kx, ky)

[or of the sensitivity function jSmn (kx, ky)j2] peaks at (kx, ky)

¼ 0.1,7 For m, n> 1, it is often stated that the two main lobes

in the kx and ky directions peak at the modal wavenumbers

km ¼ 6ðmp=LxÞ and kn ¼ 6ðnp=LyÞ, respectively.

Figure 1 shows the experimental setup. A simply sup-

ported rectangular panel of dimensions 0.48 m� 0.42 m, thick-

ness h¼ 3.19 mm, made of aluminum (bending stiffness

D¼ 270.5 N m, mass density q¼ 2720 kg/m3), was placed

over a weighted base, baffled and installed in an anechoic

chamber. Representative experimental simply supported

boundary conditions, already validated in previous works,9,10

were achieved by gluing the plate edges to thin vertical sup-

ports in order to obtain a small rotational stiffness and a high

transversal stiffness (ideal simply supported boundary condi-

tions imply a null rotational stiffness and an infinite transversal

stiffness, so that any edge can rotate freely while being re-

stricted from out-of-plane displacements). A volume velocity

acoustic source (LMS mid-high frequency volume source) was

positioned at x¼ 0.36 m and y¼ 0.12 m, in front of the baffled

panel at a distance z¼ 5.1 cm in the coordinate system shown

in Fig. 1. Its termination includes a sensor which provides aa)Electronic mail: olivier.robin@usherbrooke.ca
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direct measurement of its volume velocity. The transverse ve-

locity of the panel was measured on a regular grid of 37� 27

points over the panel surface (excluding panel edges), using a

Polytec scanning laser vibrometer for a white noise input of

the acoustic source in the 170–2000 Hz range with a frequency

resolution of 0.625 Hz (the lower frequency limit is intrinsic to

low frequency limitations of the acoustic source).

An average structural loss factor g¼ 0.004 was experi-

mentally determined using the �3 dB bandwidth method on

the few first resonances of the plate. For such a small loss fac-

tor, it is assumed that the resonant response of the panel under

acoustical excitation will only include the corresponding vibra-

tion mode. The operational mode shapes identified at each res-

onance frequency were also considered identical to plate mode

shapes, and the data used for calculations were finally the plate

displacement response to a unitary volume velocity of the

source at each experimental resonance frequency. The opera-

tional mode shapes were then normalized to have a maximum

equal to unity [as for theoretical mode shapes, see Eq. (1)].

To obtain these operational mode shapes and calculate

corresponding 2D spatial Fourier transforms, the measured

velocity response was first converted to displacement through

division by jx for each studied frequency. Additional zero dis-

placement points were then imposed along panel edges finally

leading to a regular Nx¼ 39�Ny¼ 29 grid, with correspond-

ing spatial samplings of Dx¼ 1.26 cm in the x direction, and

Dy¼ 1.5 cm in the y direction. The measured displacement

response was zero-padded in both x and y directions in order

to increase wavenumber resolution. The total number of points

WxNx and WyNy in x and y directions were chosen so as to pro-

vide imposed wavenumber resolutions Dkx¼ 2p/WxNxDx and

Dky¼ 2p/WyNyDy. The results presented were obtained using

padding factors of Wx¼ 100 in the x direction and Wy¼ 114 in

the y direction (the aspect ratio of the panel is 1.14), so that a

wavenumber resolution of 0.131 rad/m was obtained in both

directions. The highest wavenumbers that are resolved without

aliasing effects are kxmax
¼ 6p=Dx ¼ 6249:3 rad/m and

kymax
¼ 6p=Dy ¼ 6209:4 rad/m. The discrete wavenumbers

are thus defined in the range ½�kxmax
;þkxmax

� � ½�kymax
;þkymax

�
with a uniform 0.131 rad/m wavenumber resolution.

III. EXPERIMENTAL RESULTS

Figure 2 shows the theoretical eigenfrequencies [see Eq.

(3)] versus the measured resonance frequencies for mode

orders up to m¼ 7 and n¼ 6 along the panel’s length and

width, respectively. The agreement between theoretical

eigenfrequencies and measured resonance frequencies is

very satisfactory, with the highest percentage difference of

3.4% obtained for mode (2,1) and lower or equal to 2% for

all the other modes (similar results were reported in Refs. 9

and 10). Excluding the modes that were not located within

the measurement bandwidth [such as the fundamental (1, 1)

mode at a frequency of 77 Hz], and those that were not prop-

erly identified, a set of 29 modes was finally used to calcu-

late experimental 2D wavenumber transforms using Eq. (4).

Figures 3(a)–3(c) show experimental and theoretical

results in the wavenumber domain for the resonance frequency

corresponding to the (5, 2) mode. Figure 3(a) shows the calcu-

lated sensitivity function jSmn (kx, ky)j2 from measurements for

this mode in the (kx, ky) plane. Figures 3(b) and 3(c) show

results for the same mode obtained from operational and

FIG. 1. (Color online) Experimental set-up showing the baffled panel in an

anechoic chamber and co-ordinate axes. (a) Laser Doppler velocimetry mea-

surement, (b) volume source excitation.

FIG. 2. Theoretical eigenfrequencies versus measured resonance frequen-

cies of the tested aluminum panel with the corresponding modal index m
(only this index is indicated for clarity).

J. Acoust. Soc. Am., Vol. 137, No. 5, May 2015 Robin et al.: Letters to the Editor 2979



theoretical mode shapes [Eq. (1)], but plotted as cuts in the kx

and ky directions, respectively. The sensitivity functions

obtained with operational and theoretical mode shapes are in

good agreement. In Figs. 3(b) and 3(c), the theoretical modal

wavenumbers and experimental peak wavenumbers are also

indicated by vertical dashed lines and boxes, respectively. The

deviation between modal wavenumber and peak wavenumber

for both experimental and theoretical calculations is clearly

visible on Fig. 3(c). Since the sensitivity function approaches

zero rapidly, the wavenumber transform does not exactly

FIG. 3. (Color online) Experimental and theoretical results for the (5, 2) mode: (a) measured sensitivity function jSmn (kx, ky)j2 in the (kx, ky) plane; (b) plot in

the kx direction of log10 jSmn(kx, ky¼ ky peak)j2 for operational (thick continuous gray line) and theoretical mode shapes (thin dashed black line); (c) plot in the

ky direction of log10 jSmn(kx¼ kx peak, ky)j2 for operational (thick continuous gray line) and theoretical mode shapes (thin dashed black line). Boxes indicate

peak wavenumbers, while vertical dashed lines indicate theoretical modal wavenumbers.

FIG. 4. (a) Percentage difference between modal and peak wavenumbers versus modal index m for various n indices. (b) Percentage difference between modal

and peak wavenumbers versus modal index n for various m indices. (c) Mean experimental percentage difference for each index m mode compared to theoreti-

cal results of Ref. 8. (d) Mean experimental percentage difference for each index n compared to theoretical results of Ref. 8.
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capture the location of the zero due to it is finite resolution. If

insufficient zero padding is performed, the zero may not be

resolved and the modal wavenumber estimate will be biased.

The (kx, ky) coordinates of the peak of the sensitivity

function were then extracted in the [0< kx; 0< ky] domain

and compared to the theoretical modal wavenumbers in terms

of an algebraic percentage difference, 100 (kxy peak � kmn)/kmn

(so that a negative value indicates that the measured

peak wavenumber is smaller than the theoretical modal

wavenumber).

With the previously defined wavenumber resolution

(0.131 rad/m), the smallest percentage difference that can be

estimated equals 613.1/kmn%. Note that for the m, n¼ 1

case, the measured wavenumber values are very small and

rounded to zero so that the percentage difference is always

100% (not shown).

Figures 4(a)–4(d) summarize the results obtained.

Figure 4(a) presents the measured percentage differences

versus modal index m for various modal indices n, while

Fig. 4(b) presents results versus modal index n for various

modal indices m. Despite some divergence [as for the mode

(4, 3) in Fig. 4(a) with a large deviation of 8.5%], all the

individual percentage differences for each modal index m or

n are in the same range. Figures 4(c) and 4(d) then compare

the mean percentage differences for each modal index m or n
to the theoretical results obtained by Shepherd and

Hambric.8 The agreement between experimental mean per-

centage differences and theoretical predictions is very satis-

factory. It is also confirmed that the percent difference

between the peak wavenumber and the modal wavenumber

decreases when the mode order increases, with a difference

lower that 3% for (m, n) modes orders higher than 5 (note

that slightly larger errors were generally found for n indices,

but no explanation was found).

As suggested in Shepherd and Hambric,8 the actual

modal wavenumber for lower-order modes should be deter-

mined by adding 2p/Lx (or 2p/Ly depending on the consid-

ered dimension) to the wavenumber at the first zero

preceding the maximum wavenumber or subtracting the

same quantity from the wavenumber at the first zero after

the peak [as illustrated in Figs. 3(b) and 3(c)]. This espe-

cially stands for unitary mode orders (m, n¼ 1), for which

the wavenumber spectrum peaks at (kx, ky)¼ 0. For mode

(1, 3), as an example, the first zero following the peak cen-

tered on zero along the kx axis (for m¼ 1) is found at

19.9 rad/m. Applying the suggested computation leads to a

value of 6.81 rad/m for the actual modal wavenumber, with

a percentage difference between theoretical modal

wavenumber and experimentally determined modal wave-

number of 4.1%.

IV. CONCLUSION

Following a previous theoretical analysis8 of the wave-

number spectrum of simply supported, isotropic rectangular

thin plate flexural modes that revealed an error concerning

the location of the modal wavenumber, an experimental

validation of this result was conducted. Using 2D laser

Doppler velocimetry measurements on a simply supported

rectangular panel excited by a distributed acoustic excita-

tion, 29 flexural modes were identified and corresponding

mode shapes were spatial Fourier transformed. The results

obtained confirm that (1) the modal wavenumber is related

to the zeros in the wavenumber spectrum, (2) the percent

difference between the peak wavenumber and the modal

wavenumber is non-negligible at low wavenumbers (m,
n� 5) but becomes small for higher wavenumbers, and (3)

the measured differences are in good agreement with those

of Shepherd and Hambric.
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