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Cluster expansions of first-principles density-functional databases in multicomponent systems are now used
as a routine tool for the prediction of zero- and finite-temperature physical properties. The ability of producing
large databases of various degrees of accuracy, i.e., high-throughput calculations, makes pertinent the analysis
of error propagation during the inversion process. This is a very demanding task as both data and numerical
noise have to be treated on equal footing. We have addressed this problem by using an analysis that combines
the variational and evolutionary approaches to cluster expansions. Simulated databases were constructed ex
professo to sample the configurational space in two different and complementary ways. These databases were
in turn treated with different levels of both systematic and random numerical noise. The effects of the cross-
validation level, size of the database, type of numerical imprecisions on the forecasting power of the expan-
sions were extensively analyzed. We found that the size of the database is the most important parameter. Upon
this analysis, we have determined criteria for selecting the optimal expansions, i.e., transferable expansions
with constant forecasting power in the configurational space �a structure-property map�. As a by-product, our
study provides a detailed comparison between the variational cluster expansion and the genetic-algorithm
approaches.
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I. RATIONAL DESIGN, STRUCTURE-PROPERTY MAPS,
AND TARGETING PHYSICAL PROPERTIES

Rational design of molecular systems and solid-state ma-
terials relies on the knowledge of the effective potentials or
interactions to tailor motifs with favorable properties. In a
combinatorial high-throughput approach the task is, in prin-
ciple, simple: To solve the Schrödinger equation for all vi-
able conformations and combinations of a list of candidate
components. In practice, however, this is unfeasible due the
astronomical size of the chemical space �i.e., the set of all
spatial and chemical conformations available to the system�
that must be scanned to optimize a target property.1

Constructing maps that relate structure to physical prop-
erties is at the core of rational design strategies. This ap-
proach looks for correlations between a set of measurements
�experimental observations and/or quantum-mechanical cal-
culations� of an observable F and a potential-energy surface
V. In a practical fashion, the functional map replaces the true
V dependence of F�V� with a functional f�v� through a suit-
able transformation from V to a set of key variables v
= �v1 , . . . ,vN�. Members of the potential energy surface are
thus characterized by different v’s. The choice for the par-
ticular form and nature of v depends, of course, on the prob-
lem at hand. Data-centered methods2,3 and basis-functions
expansions4,5 are among the most popular choices in materi-
als science although neural-network approaches for inverting
intermolecular potentials also have been reported in the
literature.6

Cluster expansion �CE� �Ref. 7–9� is the method of choice
to map the configurational dependence of many physical
�scalar� properties in crystalline systems, including for-
mation enthalpies,10,11 Curie temperatures,12 and magnetic
moments.13 Recently, the CE method has been extended to

account for anisotropic properties such as the piezoelastic
tensor in semiconducting materials.14 In crystalline com-
pounds, the atoms form a periodic lattice where the potential
V does not depend on the spatial coordinates but only on
the chemical identity of the atoms sitting at every site
i�=1, . . . ,N� of the crystal. The system can be then charac-
terized by the configuration vector s= �s1 ,s2 , . . . ,sN�, where
si indicates the chemical identity of an atom at site i �e.g.,
si= �1 in a binary system�.

The CE method assumes a linear map between F and
some functions of s �Ref. 7�

F = �
�

f����s� . �1�

The expansion coefficients or effective cluster interactions
�ECIs� f� are obtained by inverting Eq. �1�

f� = �F,��� , �2�

that is, they are defined as the scalar product between the
observable F and the expansion functions ��. The �� are
the so-called cluster functions. They are associated with a
subset of sites denoted by the index �. In a compact way, Eq.
�1� states the intuitive idea of decomposing a physical quan-
tity F into its point, pair, triplet, etc., contributions.15 The
cluster-expansion method formalizes this idea, expressing
the cluster functions �� in terms of orthogonal discrete
Chebyshev polynomials.8 The cluster functions constitute a
complete and orthogonal basis in the configurational space
and their averages are the well-known �and widely used�
multisite correlation functions.16 The orthogonality is, of
course, a matter of convenience but the completeness of the
basis functions is fundamental in describing any function F
of the configuration.

PHYSICAL REVIEW B 81, 094116 �2010�

1098-0121/2010/81�9�/094116�11� ©2010 The American Physical Society094116-1

http://dx.doi.org/10.1103/PhysRevB.81.094116


Generating structure-property maps involves an inversion
problem where the Schrödinger equation is solved for a set
of training cases to determine the f�’s. Usually this is the
most expensive step in the construction of the map since, as
we shall see below, the size of training set depends on the
numerical uncertainty of F. Once constructed, a structure-
property map offers an accurate and straightforward descrip-
tion of a physical property F, without the full computational
overhead of solving the Schrödinger equation.

The applications of such a map are diverse, from evaluat-
ing F in a very complex �computational unaffordable� con-
figuration to calculating phase diagrams in the temperature
composition space.10,11 An appealing application of a
structure-property map is that it can be used to optimize
physical properties,17 that is, finding the configuration that
targets F directly from Eq. �1� without the evaluation of the
Schrödinger equation a prohibitive number of times. The
search procedure, however, has many technical intricacies—
the complexity of the configuration space makes it difficult
to handle the large number of local possible solutions that
grow exponentially with the size of the sampling unit cell.18

Interesting and useful as they are, all these applications
rely on a robust inversion method that is resilient to numeri-
cal noise in the data. The inversion method must provide
structure-property maps that truly represent the configura-
tional dependence of an observable F, or equivalently, an
inversion approach defining effective cluster interactions �f��
even in the face of numerical inaccuracies in the training
database. A realistic analysis of the error propagation in the
inversion process is very demanding because both data and
noise have to be treated on equal footing. Inverting a noisy
database provides, in principle, a family of maps or expan-
sions that are statistically consistent with the error distribu-
tion of the database. Previous investigations have shown that
the combined use of cross-validatory19,20 and unbiased ap-
proaches to the CE method provide expansions that effec-
tively filter moderate levels of random noise out of the train-
ing database, and a selection criterion has been developed
based on the a priori knowledge of the noise level.21,22

This paper has the threefold purpose of �i� addressing the
issue of quantifying how numerical inaccuracies in the train-
ing set propagate through the inversion process, �ii� to pro-
pose an approach to determine optimal inversions that lifts
the requirement of knowing in advance the noise level in a
given database, and �iii� to compare independent inversion
methods. To those aims, we have considered simulated nu-
merical imprecisions in the form of both systematic �round-
ing and saturation� and random �Gaussian� errors in training
databases. The structure-property maps were constructed us-
ing two different unbiased approaches, one of stochastic na-
ture �genetic algorithm�23,24 and the other following a varia-
tional principle �variational cluster expansion�.22 Our results
show that cross-validatory techniques can be used to recur-
sively and self-consistently determine the noise level in the
database. A tradeoff between the effort of filtering the noise
out of the database or enlarging the information contained
thereof is also analyzed. We close the paper with a summary
and the conclusions.

II. SIMULATED DATABASES AND TYPES OF
NUMERICAL INACCURACIES

Simulated databases were constructed ex professo for a
binary alloy with the following effective Hamiltonian

F = 4.0�̄2
1 +

3

2
�̄2

2 − 2.0�̄2
3 + 3.0�̄3

1 −
6

5
�̄4

1, �3�

where �̄m
n is the nth m-body correlation function, i.e., the

configurational average of the cluster function �m
n �defined

as the m product of occupation variables�.8,16 Thus, the first
three terms in the right-hand side of Eq. �3� correspond to
pair interactions while the last two are associated to most
compact three and four-body interactions in a bcc-based al-
loy. Our choice for the underlying lattice simply reflects the
facts that �1� bcc-based alloys have been less investigated
than fcc-based systems and �2� a variety of alloys with tech-
nological applications crystallize in a bcc environment for a
wide range of compositions, e.g., the Ti-based gum
metals,25,26 the refractory alloys from the Mo, Ta, W, Nb
quartet,27 or the magnetically relevant Fe-Co alloys.13,28

We have built several databases by evaluating F �here the
formation enthalpy in mRy/atom� for different sets of or-

dered configurations, i.e., different sets of �̄m
n . Two distinct

approaches were followed: the first and more traditional one,
was to collect the naturally appearing bcc-based structures
with unit cells of moderate size and then complement this set
with superlattices in the �001�, �110�, and �111� directions.
This approach yielded a set of 80 ordered bcc-based struc-
tures with unit-cell sizes ranging between 2 and 20 atoms.
All the elements of the 80 database have been used previ-
ously in first-principles cluster expansions of binary
alloys.13,27,28

A second set of ordered structures was produced by gen-
erating all 629 irreducible derivative superstructures with
eight or less atoms in the bcc-based unit cell.29,30 The 629
database was then partitioned into the 160 and 320 databases
containing the first 160 and 320 �sorted in increasing number
of atoms in the unit cell� structures of the 629 database.
These short-ranged structure sets allow for a systematic in-
vestigation of the impact of the configurational information
contained in a given set �see below�.

The breadth of a database, in terms of the concentration
span and the number of structures, offers a heuristic estima-
tion of the information contained therein. It is clear that the
629 database contains far more configurational information
than the 80 database �cf. Fig. 1�a��. However, the density of
ordered structures �Fig. 1�b�� shows that the 80-database set
offers a comparable sampling �in terms of sparsity although
obviously definitely far more limited in absolute terms� to
the 629 database. In other words, the 80 database offers a
good compromise between size and information and as an
alternative when building up a large database is impractical,
e.g., when the calculations are too complex or the experi-
mental data are limited.

Since these training sets have been constructed from the a
priori knowledge of the ECIs, we can use such data sets as
testing grounds for inversion algorithms. An optimal inver-
sion procedure should retrieve the true Hamiltonian �3� even
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in the case of significant imprecisions in the database. Im-
precisions or numerical noise in a database can arise from a
variety of situations and sources, from convergence of the
first-principles calculations to rounding errors in handling the
databases to instrument saturation effects in collecting ex-
perimental data. Characterizing all possible types of numeri-
cal errors falls out the scope of this paper. Instead, we are
interested in investigating how commonly appearing random
and systematic errors travel through the inversion process. To

that aim, we have chosen rounding imprecisions as an ex-
ample of latter

R�F,�� = � floor�F

�
+

1

2
	 , �4�

where floor �x� returns the integer part of x.31,32 The net
effect of R�F ,�� is to collapse the data into a discrete num-
ber of values as �→1 as seen in Fig. 2.

A more severe type of systematic imprecisions are satura-
tion errors. Typical saturation functions are of the type

S�F,�� =
Fmax

2
�1 +

tanh �F̃

tanh �
	 +

Fmin

2
�1 −

tanh �F̃

tanh �
	 ,

�5a�

F̃ = 2� F − Fmin

Fmax − Fmin
	 − 1, �5b�

where ���0� and Fmax�Fmin� is the maximum �minimum�
value of F in the database. Figure 3 displays the database
after being transformed according to Eq. �5� for different
values of �. Notice that large values of � erase the configu-
rational dependence by collapsing the data in two bands cor-
responding to their extremal values �i.e., −8.0 and 1.0 mRy/
atom�.

On the other hand, the more general type of random im-
precision is an additive Gaussian-distributed noise

G�F,�� = F + X��� , �6�

where X is a random �real� variable, normally distributed
with zero mean and standard deviation �, i.e., with a prob-
ability density function

P�X� =
exp�− X2/2�2�

�
2�
. �7�

Figure 4 shows the Gaussian treated vs the exact database for
several values of �. As we shall see in the next sections, the
lack of hard bounds and the random nature for this type of
errors make them difficult to handle in the inversion process.
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FIG. 1. �Color online� �a� Total number of ordered structures as
a function of the atomic concentration for several databases. The 80
database was constructed in the traditional way, i.e., collecting natu-
rally occurring ordered structures of moderate size whereas the 629
database contains all ordered structures up to eight atoms per unit
cell. The 160 and 320 databases contain the smallest 160 and 320
ordered structures of 629 database. �b� Reduced number of struc-
tures �normalized to the total number in each set� as a function of
the atomic concentration. The number of structures in a database is
symmetric around equiatomic concentration.
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FIG. 2. �Color online� �a� R�F ,�� vs F for the 629 database for �=1.0. �b� Exact �squares� and rounded �circles� values for the formation
enthalpy as a function of the atomic concentration. �c� Density of states �DOS�, i.e., normalized number of structures per enthalpy of
formation, for both the exact and noised data.
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III. CONSTRUCTING THE MAP

In its most popular incarnation, the cluster expansion ren-
ders a map where ECIs are independent of the concentration
�cf. the f� in Eq. �3��. This is a very attractive characteristic
for many applications such as phase diagram calculations or
exhaustive configurational sampling to optimize a given
physical property. An expansion in terms of concentration-
independent ECIs has, however, the disadvantage of lacking
a convergence radius, i.e., the relevant ECIs associated to
given cluster figures do not follow any preordained compact-
ness or decay criteria. This is a major issue of the method
and several approaches to determine the relevant terms in Eq.
�1� have been proposed over the years. Early truncation of
the expansion can lead to flagrant errors and several ex-
amples of this have been documented in the past.10,11,33 Hi-
erarchical routes,34,35 mostly inspired by the success of the
cluster variational method �CVM� in lattice systems,36–40

have also been advanced, although it is not clear whether
these cluster expansions à la CVM lead to converged
expansions.24

Contemporary approaches to the cluster-expansion
method rely on statistically approximating Eq. �1� in the
least unbiased way. This is achieved by selecting the expan-
sion terms from an undesigned set of cluster figures. Usually
this designerless cluster set contains as many as possible pair
and many-body cluster figures up to a given number of
vertices and a maximum average bond length �or vertex

distance�.23,24 Variational or evolutionary approaches �see be-
low� can be used to construct the configurational map by
selecting the terms appearing in the expansion and minimiz-
ing

�Fit
2 =

1

Ns
�
�=1

Ns �T�F�� − �
�

f����2
�8�

for a database with Ns entries �e.g., ordered structures� and
where the cluster figures � are selected from an undesigned
pool. Notice that Eq. �8� explicitly considers the impreci-
sions in F via the transformation function T=G, S, or R.

Equation �8� defines the goodness-of-fit, thus guarantee-
ing that the effective Hamiltonian reproduces all the infor-
mation in the training set ��=1, . . . ,Ns�. The forecasting
abilities, however, are not warranted by Eq. �8� but by the
optimized Nv-out cross-validatory estimation of the predic-
tion error20

�Pred
2 =

1

LvNv
�
i=1

Lv

�
�
�T�F�� − �

�

f�
i ���2

, �9�

where the inversion is performed using a construction set of
size Nc=Ns−Nv. The prediction power of the expansion is
then tested against the remaining structures �not used in the
fit� for all Lv possible validation sets of size Nv.
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FIG. 3. �Color online� �a� S�F ,�� vs F for the 629 database for �=1.0, 2.0, and 3.0. �b� Exact �squares� and saturated �circles� values for
the formation enthalpy as a function of the atomic concentration. The saturated data corresponds to the extreme case of �=3. �c� DOS, i.e.,
normalized number of structures per enthalpy of formation, for both the exact and noised data ��=3�.
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FIG. 4. �Color online� ��a�–�d�� G�F ,�� vs F for the 629 database with �=0.2, 0.43, 0.79, and 1.6 mRy/atom, respectively. �e� Enthalpy
of formation vs atomic concentration for the exact and noised ��=0.79 mRy /atom� databases. �f� DOS, i.e., normalized number of
structures per enthalpy of formation, for both the exact and noised data ��=0.79 mRy /atom�.
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Direct optimization of the prediction error for moderate
databases �Ns80� and cluster-pool sizes �e.g., NCP=50� in a
conservative leave-many-out regime �Nv=10� renders search
spaces of the order of Avogadro’s number. This is an astro-
nomical number that calls for smart optimization methods
and practical approximations. Before discussing a couple of
the former, we would like to draw the attention to the num-
ber of validation sets Lv=Ns ! /Nv !Nc! depicted in Fig. 5 for
Ns=80 as a function of Nv �the size of the validation set�. For
Nv=10 and Ns=80, a typical case discussed in the rest of the
paper, Lv1012.

Notice, however, that what mainly improves the estima-
tion of the prediction error in Eq. �9� is Nv and not Lv. The
size of the validation set accounts for the amplitude of the
fluctuations in the different fittings due to inaccuracies in the
database. Including all Lv possibilities only guarantees that
all fluctuations are accounted. Therefore, it is reasonable to
assume that a much-smaller-sized subset of Lv could render
statistically comparable estimations of the prediction error.
Our extensive and systematic inversions have shown that this
is indeed the case and reliable estimations for the leave-
many-out cross validation attained with small number of
validation sets �103–104�.41

On the other hand, selecting the relevant terms in Eq. �1�
that optimize both the fitting and prediction errors is a com-
plicated task. First, the expansion terms are highly corre-
lated, that is, unless all the relevant terms actually appear in
the expansion, a least-square fit cannot distinguish between
real and fictitious contributions. Second, many terms in Eq.
�1� have zero ECIs, turning the CE into a subset-model-
selection problem,42,43 i.e., the optimal CE have to be se-
lected from the 2NCP−1 possible expansions compatible with
a cluster pool of size NCP.22 In this paper, we have used two
methods that solve this problem by optimizing the entire
cluster pool at once in a variational way �the variational clus-
ter expansion� or by selecting the relevant terms following an
evolutionary approach �genetic algorithm�.

A. Variational approach

The variational cluster expansion �VCX� �Refs. 22 and
44� optimizes both the fitting and the prediction error in a
variational way for the entire cluster pool. This is accom-

plished by turning the discrete ECIs into functions of a con-
tinuous variable w= �w1 ,w2 , . . . ,wNc

� via the penalized
goodness-of-fit

�VCX
2 =

1

N − Nv
��

�
�T�F�� − �

�

f����2
+ �

�

�w�f��2� .

�10�

The last term in the right-hand side links the fitting with the
prediction error in Eq. �9� since now f�= f��w�. The form of
the penalty term is not unique and other functional relation-
ships can be entertained as long as they are continuous and
differentiable functions with a minimum in the weights w
domain.

The global minimum of the prediction error �Pred
2 , now a

functional of the weights, is formally achieved as

��Pred
2

�w
= 0. �11�

In the praxis, one starts with an arbitrary choice of weights
w�’s that are used to determine the corresponding set of f�’s
through Eq. �10�. This set of ECIs is then used in the evalu-
ation of the prediction error Eq. �9�. Since the ECIs, �VCX

2 ,
and �Pred

2 are continuous functions of the weights, fast nu-
merical routines can be employed. Equation �11� renders
large �small� values for weights associated with nonrelevant
�relevant� cluster figures. An optimal expansion can be de-
fined as the one containing only relevant terms �i.e., with
w0�, and therefore, satisfying the following condition:

min��VCX
2 − �Fit

2 � . �12�

This is an interesting property useful in dealing with data-
bases containing significant numerical imprecisions.

On the other hand, the irrelevant terms of an expansion
can be removed using backward-reduction techniques,42 i.e.,
the initial cluster pool of size NCP is decimated into a sub-
pool of size NCP−1 by removing a cluster figure �term� from
expansion such that the prediction error for the NCP−1 ex-
pansion increases the least, iteratively until the remainder of
the pool reaches a prescribed size. Because of its variational
nature, a VCX expansion associated with NCP produces bet-
ter or equivalent forecasts than one with NCP−1.

B. Evolutionary approach

For practical reasons, the cluster expansion must always
be truncated. The VCX above is one approach to truncation.
Other systematic truncations, based on a variational ap-
proach, have been advocated �van de Walle45,46 and
Zarkevich and Johnson34� but they converge rather slowly—
often the important terms come late in the hierarchy. The
choice of whether or not to include a particular cluster in the
expansion is a “yes-no” question so the truncation problem
has a discrete solution space. The natural correlation of the
problem, the discrete nature of the solution space, and the
astronomic size of the solution space make the problem in-
tractable by gradient-based methods and ill suited to simu-
lated annealing.
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FIG. 5. �Color online� Number of validations sets Lv as a func-
tion of the size of the set Nv for a database with Ns=80 entries
�solid line�. Using smaller subset of Lv �solid band� provides statis-
tically comparable estimations of the prediction error.
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The evolutionary approach is a favorable solution because
it is well suited to highly correlated problems and can find
near optimal solutions while exploring only a tiny fraction of
the solution space. The evolutionary approach seeks the n
most important clusters, selecting from a relatively large
pool of clusters, m, perhaps several hundred. The size of the
search space it explores then is � m

n �. For a typical pool of
several hundred clusters and an expansion with a few dozen
terms, the search space is bigger than Avagadro’s number—
far too large for a direct search �see Fig. 5�.

The evolutionary approach searches for the optimal clus-
ter expansion via a genetic algorithm. Candidate solutions
�individuals� are generated randomly at first and evaluated
for their predictive power �fitness score�. The best solutions
are combined �mating� in subsequent iterations �generations�
to yield improved solutions �offspring�. For our tests with
noise-added data in this paper, the evolutionary approach
used a cluster pool of the smallest 27 pair clusters, 58 trip-
lets, and 15 four-vertex clusters �100 clusters total�. The
population size was 54 individuals and ran for 100 genera-
tions. In each generation, 40 children solutions were created,
the top four replacing the four least-best parent solutions.

IV. SIMULATED INVERSION

We have used the databases generated in Sec. II aiming to
develop systematics that can be applied later on in real-alloy
scenarios where the level or type of numerical imprecision is
unknown. Along this line, the first question to be addressed
is the one of the inversion performance using databases free
from numerical errors. In all cases, as long as the true cluster
figures were contained in the cluster pool, the true configu-
rational Hamiltonian �i.e., Eq. �3�� was always retrieved, ir-
respective of the �i� database size, �ii� approach followed to
build the map �VCX or GA�, or �iii� the cross-validatory
estimation for the prediction error, i.e., leave-one-out cross
validations turned to be good enough. The issue of multiple
solutions was not found in our inversions with the exact
�noise-free� data.

A. Systematic errors

1. Rounding

Rounding off is, perhaps, the simplest and most fre-
quently encountered numerical inaccuracy in databases. In-
creasing the � value in the error transformation R�F ,�� �Eq.
�4�� erases the configurational dependence in the database by
collapsing neighboring data points to a common value. For
example, �=0.1 will fold data up to the first decimal point
while �=1.0 will bring all points to the nearest integer value
�see the formation enthalpy of Fig. 2�b� or the density of
states in Fig. 2�c��. Figure 6 shows the leave-one-out predic-
tion error as a function of the number of terms in the expan-
sion for the 80 database and �=1. The optimal expansion
�see Eq. �12�� satisfies the condition

�Pred
2 � �R���2, �13�

where �R��� is the standard deviation of R�x ,�� with x uni-
formly distributed in �−� /2,� /2�, that is,

�R��� =
�

2
3
. �14�

A good way to think about �R is as the extent of the noise
introduced in the database through rounding. Criterion in Eq.
�13� states that an optimal expansion has a prediction power
not better than the noise in the database. In other words, an
expansion that can discriminate features in the database that
are smaller than the noise level, is certainly “fitting” the
noise as a configurational degree of freedom.

Applying criterion in Eq. �13� to the data in Fig. 6, i.e.,
R�F ,�=1�, retrieved an expansion with the five correct clus-
ter figures and a cross-validation score of 0.31 mRy/atom for
both the VCX and GA. The retrieved ECIs have a mean-
squared error �MSE� of 0.01 mRy/atom and 0.05 mRy/atom
for the VCX and GA, respectively. The retrieved ECIs can be
brought down to virtually the exact ones by increasing the
size of the database Ns. For instance, using the VCX on the
629 database together with a leave-one-out cross validation
renders an ECI-MSE of 0.004 mRy/atom. On the other hand,
improving the estimation of the prediction error by increas-
ing the size of the validation set Nv, seemed to have almost
no effect on the quality ECI-MSE. Inverting the rounded
��=1� 160 database using the VCX rendered ECI-MSE’s
equal to 0.0123, 0.0123, 0.0123, 0.0123, and 0.0125 for Nv
=1, 5, 10, 20, and 40, respectively. The ECI-MSE was also
independent of the number of validation sets Lv��5000� for
both the VCX and GA. For databases with rounding impre-
cisions characterized by �	1, the retrieved ECIs and cluster
figures were virtually indistinguishable from the exact ones
irrespective of the method used �VCX or GA�.

This behavior can be understood as follows: rounding im-
precisions erase the configurational fine structure by closing
together neighboring F into a common value R�F ,��, for
example, the integer part when �=1. This type of noise is
“sharp” �very well bounded� and therefore a validation set of
size Nv=1 will capture the same fluctuations of the ECIs as,
say, Nv=5 or 10. In other words, asking more questions on a
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rounded database does not bring different answers since it is
always the same R�F ,��. In any case, it is remarkable that
one can recover the true Hamiltonian from a relative small
database with such strong rounding off imprecisions �i.e.,
�=1 in R�.

2. Saturation

A drastic decrease in performance is expected when data-
bases are saturated using Eq. �5�. For large values of �, the
data collapses into lower and upper bands corresponding to
the lowest and highest values of F �see Fig. 3�, thus compro-
mising the selectivity power of any map-learning algorithm.
It is important to emphasize that a database saturated with
S�F ,�=3� is already a very noisy training set.

For low levels of saturation �i.e., 0	�
2� both the GA
and VCX retrieve the true Hamiltonian when inverting the
80 database using leave-one-out cross-validatory estimation
for the prediction error. In particular, for �=2, the ECI-MSE
is 0.147 and 0.370 mRy/atom for the VCX and GA, respec-
tively. Both the GA and VCX predicted optimal expansions
having the same cross-validation score of 0.64 mRy/atom.
The behavior of the prediction error vs the number of terms
in the expansion is the same for long expansions. The pre-
dicted expansions of the VCX and GA branch out at the true
expansion �five terms� as seen in Fig. 7, similarly to what
happens in the case of rounding imprecisions �cf. Fig. 6�.

Interestingly enough, the leave-one out ECI-MSE in-
creased from 0.147 to 0.170 to 0.184 to 0.201 mRy/atom as
the database size increased from Ns=80 to 160 to 320 to 629,
respectively. For a high saturation level ��=3�, the inversion
process by the VCX did not yield the true expansion for the
80 database. In this case, the true expansion was retrieved by
the VCX only when using larger �i.e., the 160 database or a
bigger� databases.

It is important to note that the GA approach identified a
five-term expansion with the true cluster figures for all satu-
rated databases investigated in this paper. In this sense, the
GA approach is superior to the VCX for extremely saturated
databases. However, due its native stochastic nature, the GA
approach renders almost a continuously evolving family of
solutions, i.e., there are no sharp jumps in the prediction
error vs the number of terms in the expansion �see Fig. 7�.

This fact complicates the selection of the optimal expansion.
We shall discuss this point further in Sec. V C.

Saturation errors can be considered as an extreme case of
rounding, i.e., where the data is rounded up and down to the
extremal values of the database. This explains why increas-
ing Nv in the cross-validatory estimation of the prediction
error has no effect on the quality of the expansions for either
the VCX or GA approaches. The fact that the upper and
lower saturation bands depend on the system at hand, i.e., on
the distribution of F as a function of the configuration �,
makes further analytical treatment difficult to achieve �func-
tion S is, in general, unknown for real databases�. Databases
with a higher �lower� density of structures in the middle of
the upper and lower saturation bands will saturate less
�more� as function of �. One can envisage alternative ap-
proaches to handle saturated databases where the data is par-
titioned into bins and analyzed independently.

B. Random errors

The working databases have been transformed using Eq.
�6� thus producing representative random imprecisions by
adding Gaussian-distributed noise �see Fig. 4�. The additive
Gaussian noise is characterized by standard deviation �.
However, it is illustrative to compare such � value with
physical quantities. A straightforward comparison can be
drawn by considering that our databases are produced from
the effective Hamiltonian �3� that shows the lowest-energy
value of −8.0 mRy /atom for the B2 CsCl-type structure.
Therefore, adding Gaussian noise characterized by �=0.20,
0.43, 0.79, and 1.66 mRy/atom represents fluctuations on the
order of 5% �2.5%�, 11% �5.5%�, 20% �10%�, and 42%
�21%� for the highest ECI �lowest-energy value�, respec-
tively.

The true Hamiltonian �i.e., cluster figures and ECIs� was
recovered for 0	�
0.43 using the relative small 80 data-
base together with a leave-one-out cross-validatory estima-
tion of the prediction error �see Fig. 8�. In particular, for �
=0.43 mRy /atom the prediction error of the optimal expan-
sion selected by the VCX �GA� is 0.45 mRy/atom �0.45
mRy/atom� with an ECI-MSE of 0.024 mRy/atom �0.078
mRy/atom�. This is a very satisfactory result, considering
that typical first-principles formation enthalpies are expected
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to be accurate within few tenths of mRy/atom.
Our results for the VCX and GA showed that small data-

bases with larger imprecisions �i.e., �=0.79 or 1.66 Ry/
atom� do not contain enough information to resolve the true
Hamiltonian. For example, the smallest database that ren-
dered the true expansion for �=0.79 contained 160 struc-
tures and for �=1.66 it was necessary to contemplate invert-
ing a database as large as 629 structures.

Contrary to our initial expectation and widespread com-
mon assumption, the inversion process appears to be insen-
sitive to the level of cross validation, i.e., the improvement is
only quantitative and within few percent when increasing Nv
from 1 to 40 �with Lv’s as large as 5�105�. However, all the
figures of merit, i.e., ECIs-MSE and residual of the expan-
sion, converged steadily as we systematically increased the
database size from 80 to 160 to 320 to 629 structures. In
particular, the residual of the expansion �that is, the fitting
error of the optimal expansion� converged smoothly to the
noise level in every case, thus providing a selection criterion
for the optimal expansion.

V. DISCUSSION

A. How large should the database be?

An important question when producing cluster expansions
from first-principles is “how large should the database be?”
The conventional answer to this question is to cluster expand
a small trial database and to use the cluster-expansion Hamil-
tonian to search for the ground-state line. Whenever new
structures are predicted, they are directly calculated and in-
corporated into the original database. A new expansion is
then performed followed by a second prediction for the
ground-state line. This process is to be continued until no
new ground-state structures are found. This iterative proce-
dure has been successfully applied to the determination of
ground and near-ground-state structures and to the prediction
of finite-temperature properties. However, it has been noted
that such a process cannot be fully applied for physical ob-
servables other than the energy. For instance, there is not a
direct �simple� correlation between extrema in the magneti-
zation or semiconductor band gap and the ground states in
the system.22 This notion has been recently reinforced by
Seko et al.,47 who have pointed out that converging a cluster
expansion using the conventional iterative procedure does
not necessarily produce an optimal expansion since the pre-
diction error is minimized only for the ground- and near-
ground-state parts of the configurational space. The proposal
of Seko et al. is to choose a database that samples the con-
figurational space as much as possible. Although, in prin-
ciple, this is the correct answer, the question still persists,
now in the form of “how dense does this sampling of the
configurational space need to be?”

In this paper, we have approached this question using two
different methods of sampling the configurational space. The
first one collected the naturally appearing structures with unit
cells of moderate size �the largest unit cell considered in this
approach contained 20 atoms� and it was complemented with
low-Miller-index superlattice structures. Our rationale was
that nature somehow already sampled the configurational

space and rendered the most relevant cases. Of course, this
approach is limited by the experimental success in character-
izing binary compounds. Nevertheless, the first approach
yielded a database with 80 entries that nicely spanned all the
concentration range of bcc-based alloys. The second way of
sampling the configurational space was a mathematical one,
generating all irreducible derivative structures consistent
with a given size of the unit cell �629 for a bcc-based binary
alloy with unit cells containing up to eight atoms�. Our un-
derlying idea was that, contrary to the former case, the data-
bases produced in this way were completely unbiased, lim-
ited only by the maximum number of atoms in unit cell that
defines the mesh size in configurational space.

We found that the answer to the question posed here de-
pends on how accurate, numerically speaking, the database
is. In other words, optimal expansions can be easily attained
with rather small accurate databases. However, we also
found that applying modern cluster expansion techniques
could recover the true Hamiltonian underlying a database
even when such database contains large numerical impreci-
sions.

By introducing controlled systematic and random numeri-
cal noise in the working databases generated from a known
Hamiltonian, we were able to gauge the performance of the
inversion process and error propagation thereof. In particular,
we found that databases treated with systematic rounding
and saturation noise can be successfully inverted using the
VCX or GA approaches even when using a least-square fit
�LSF� to estimate the goodness-of-fit and prediction errors.
This is a remarkable result because LSFs should work, in
principle, only for a Gaussian distribution of errors. Data-
bases containing errors as large as 10% of the largest value
of the formation enthalpy were inverted successfully, yield-
ing the true Hamiltonian, that is, the correct cluster figures
and effective cluster interactions.

An interesting and quite unexpected finding was the in-
sensitivity of the inversion process and quality thereof to the
number of outs Nv. Contrary to the widespread assumption,
we found that increasing Nv only translates into quantitative
changes, that is, it reduces the mean-square error of the ECIs
and converges the fitting error toward the noise level but it
does not change the qualitative behavior of the inversion
process. In other words, during our extensive analysis with
the VCX and GA, whenever the true Hamiltonian was not
retrieved for small Nv, increasing Nv �up to half of the data-
base size� did not improve the inversion process. However,
we found that increasing the database size in a systematic
way did improve both qualitatively and quantitatively the
cluster expansion.

B. Prediction error, noise level, and truncating the expansion

There is a second question that relates to the selection of
the optimal expansion once a proper database has been in-
verted: is the optimal expansion one with the lowest possible
prediction error? The conventional wisdom will point to an
affirmative answer; after all whichever computational tool
used to produce the database will be used for a posteriori
validation of the model. The justification for this “cross
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validation-selection” �cv� is that an expansion that minimizes
the prediction error even below the noise level, will only
reproduce further fluctuations making this a suitable expan-
sion to explore the full configurational space either by ex-
haustive enumeration or temperature effects.

The results obtained in this paper show the contrary, i.e.,
that an expansion with an error below the noise level has, in
the long run, lower prediction power than an optimal expan-
sion selected just above the noise level �with higher error�.
Figure 9 shows two possible expansions for a database
treated with random noise. The cv-selection picks an expan-
sion with the lowest cross-validation score �square� whereas
the optimal pick �circle� corresponds to an expansion with
the lowest prediction error above the noise level �i.e., 0.79
mRy/atom�. The evolution of these two expansions is fol-
lowed as we increase the size of a validation database
�treated with the same noise level�. Notice that after a few
hundred structures the prediction error of the cv-selection
surpasses that of the optimal selection. In fact, an important
characteristic of the optimal selection is its constant perfor-
mance, i.e., it is a transferable expansion, truly following the
real noise in the validation databases.

It is important to point out that the behavior of the pre-
diction error for both the cv and optimal selections for small
databases is incidental, i.e., corresponds to a particular
choice of structures. The relevant message, indicated in the
inset, is the following: the performance of a cv-selected ex-
pansion will change as the number of sampled configurations
increases thus compromising the prediction power to de-
scribe alloy thermodynamics. On the other hand, the optimal
expansion, that is, an expansion that explicitly acknowledges
and accounts for numerical noise in the database, has a con-
stant performance. The practical consequences of our work
are similar of those of Seko et al.47 but for different reasons.
While the work of Seko et al., analyzed the consequences of
having an expansion with an error higher than the optimal,
we have analyzed the impact of using an expansion with an
error below the noise level.

On the other hand, the problem of truncating of the ex-
pansion �that is, selecting the figures� has generated debate

and several proposed solutions. The two main competing
methods are hierarchical approaches �van de Walle,45,46 and
Zarkevich and Johnson34� and the variational cluster expan-
sion. In principle, the hierarchal approach of Zarkevich and
Johnson provides a formally complete and systematic trun-
cation, much like Fourier Transform, that is variational �in
the Rayleigh-Ritz sense�, but because the important clusters
are often late in the series, and this method requires that all
subclusters of smaller size be included, achieving an accurate
expansion typically requires hundreds of terms. The evolu-
tionary approach explores all smaller subclusters but is not
required to include them if they do not improve the predic-
tive capabilities of the expansion. One reason that this ques-
tion does not have consensus is the community yet is that the
community does not have a common metric for determining
the robustness of a fit. In our opinion, the most robust way to
measure the goodness of a fit, and the method that seems to
be most accepted for testing predictive models �e.g., see
Refs. 48 and 49�, is leave-many-out cross validation. We
have tested the hierarchical approach against our approach
and found that under this metric our evolutionary approach is
more robust.

C. Synergy between the GA and VCX approaches

The concept of an undesigned cluster pool �UCP� is cen-
tral to unbiased statistical approaches to cluster expansions.
Such a cluster pool should contain as many as possible clus-
ter figures. Different approaches to the cluster expansions,
e.g., the GA and VCX, differentiate �among other technical
details� in the way the UCP is sampled in search of the best
expansion. In our paper, we have identified this as a subset-
model-selection problem where the 2NCP−1 possible expan-
sions �compatible with a cluster pool of size NCP� are tested
among themselves using the prediction error as the figure of
merit.

The VCX samples the UCP in a “canonical” way, that is,
optimizing the entire UCP and then decimating it in order to
discriminate the irrelevant cluster figures that otherwise
might contaminate the expansion with spurious terms arising
from the numerical noise in the database. Once a cluster
figure is removed, it will never appear in a shorter expansion.
The GA, on the other hand, samples the UCP in a “grand
canonical” way, i.e., even when a cluster has been discarded
for an N-term expansion, it might appear again in an M-term
expansion �M 	N� as long as it helps to reduce the predic-
tion error.

Whenever the UCP is large enough as to contain all the
terms of the true configurational Hamiltonian, both the GA
and VCX will produce similar results for expansions contain-
ing additional terms to the solution �see the Figs. 6–8 above�.
The GA and VCX will provide different expansions when the
terms in the expansion are less than in the true Hamiltonian.
The reason for this behavior is the following: the VCX ap-
proach search among the N possible solutions to a N−1 ex-
pansion based on a reduced CP corresponding to the true
cluster figures. The GA, on the other hand, will look on the
full UCP and provide an expansion with N−1 terms that
minimizes the prediction error. If the UCP is large enough,
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the VCX and GA will provide different solutions for the N
−1 expansion. Therefore, the point at which their prediction
error vs number of terms in the expansion plots split, singles
out the true �best� configurational Hamiltonian.

The different ways of sampling the UCP between the
VCX and GA is in fact a positive aspect since it can be used
to select the optimal configurational Hamiltonian when the
family of possibly expansions �consistent with the noise
level in the database� precludes a selection by inspection.
The systematic analyses in the previous sections indicate that
for a given database, the step-by-step recipe is as follows:

Step �1� Run the GA on a undesigned cluster pool of
thousands of cluster figures to decimate the pool to manage-
able size of several decades �say 20 or 30 cluster figures�.

Step �2� Using the GA-decimated cluster pool submit the
database to the VCX.

Step �3� Plot the prediction error vs the number of terms
in the expansion for both the GA and VCX. The true con-
figurational Hamiltonian corresponds to the most economical
expansion where the GA and VCX prediction errors split up.
If there is not such a forking point then the noise level in the
database is such that the configurational Hamiltonian cannot
be unambiguously resolved.

Step �4� Increase the size of the database.
Step �5� Repeat steps 1–4 until a forking point between

the GA and VCX prediction errors is found.
It is worth to emphasize that the “forking criterion” can be

applied only when the database has reached the critical size
for a given configurational noise level. For instance, the 80
database is large enough as to contain sufficient information
allowing both the GA and VCX to resolve the true configu-
rational �five term� Hamiltonian. However, upon the increase
in the noise level up to �=0.79, the 80 database proves to be
too small to be optimally inverted by either the VCX or GA
methods. The fact that Fig. 8 shows no strict forking point
for �=0.79 signals a database below the critical size. This
issue is solved by increasing the database size to Ns=160 for
which the GA and VCX prediction error curves show a well-
defined forking point. In a sense, the iterative application of
the above step-by-step recipe, particularly steps 3 and 4, al-
lows for the self-consistent determination of the configura-
tional numerical imprecisions in a given database. In general,
we expect such synergy between different approaches to

cluster expansions not only for the VCX and GA methods, as
long as such approaches provide statistically unbiased expan-
sions.

VI. CONCLUSIONS

In order to retrieve an optimal and transferable expansion
from a numerical database it is critical to analyze the error
propagation. The optimal expansion is always an expansion
that has a prediction error above the numerical error. The
noise level can be determined self-consistently by the sys-
tematic increase in the validation set in a cross-validatory
scheme, provided that database contains enough information
as to resolve the relevant terms. This latter step can only be
accomplished by increasing the size of the database. A trade-
off between accuracy and size of the database is achieved by
sampling all irreducible derivative structures consistent with
a given size of the unit cell. Selecting an expansion with a
prediction error below the noise level renders an expansion
in which prediction power deteriorates as the number of vali-
dation structures increases.

Analyses of error propagation and trade-offs between the
accuracy of a database and the information contained thereof
are pertinent now that packages to perform high-throughput
first principles of multicomponent alloys are readily
available50 thus making possible the calculations of data-
bases containing hundreds or even thousands ordered struc-
tures in a reasonable amount of time.2,51,52 In this light, our
results underscore the importance of having a large database
with moderate or even modest precision over a limited yet
highly accurate database in producing optimal �i.e., transfer-
able� expansions from first-principles data.
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