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Ultracold neutral plasma expansion in a strong uniform magnetic field
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In strongly magnetized neutral plasmas, electron motion is reduced perpendicular to the magnetic field
direction. This changes dynamical plasma properties such as temperature equilibration, spatial density evolution,
electron pressure, and thermal and electrical conductivity. In this paper we report measurements of free plasma
expansion in the presence of a strong magnetic field. We image laser-induced fluorescence from an ultracold
neutral Ca+ plasma to map the plasma size as a function of time for a range of magnetic field strengths.
The asymptotic expansion velocity perpendicular to the magnetic field direction falls rapidly with increasing
magnetic field strength. We observe that the initially Gaussian spatial distribution remains Gaussian throughout
the expansion in both the parallel and perpendicular directions. We compare these observations with a diffusion
model and with a self-similar expansion model and show that neither of these models reproduces the observed
behavior over the entire range of magnetic fields used in this study. Modeling the expansion of a magnetized
ultracold plasma poses a nontrivial theoretical challenge.
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I. INTRODUCTION

Ultracold neutral plasmas (UNPs) are useful tools in
understanding transport properties of strongly coupled sys-
tems. They provide an idealized platform for measuring
plasma transport properties [1–5] and can simulate high-
energy-density plasmas (HEDPs) over a limited range of
conditions [2,6–15]. The high optical opacity and short dy-
namic timescales in HEDPs pose challenges to experimentally
measuring transport properties with high fidelity. For this
reason, interpretations of HEDP measurements rely heavily
on molecular dynamics (MD) simulations [16] and plasma
models [17,18] to understand transport in these complex sys-
tems. Ultracold neutral plasmas have the advantage of low
density (107–1013 cm−3) and low temperature (0.05–2 K),
resulting in accessible real-time measurements of plasma
properties [2,3,19,20] in the strongly coupled plasma regime.
Transport properties measured in this idealized environment
can be used to verify plasma models and MD simulations
[9,21–26].

Transport properties in magnetized plasmas continues to be
a significant research area in the plasma physics community
[27–38], including studies of UNPs [39–43]. Recent work in
UNP magnetic confinement opens an exciting new avenue of
magnetized plasma transport research [44].

In this work we present UNP expansion measurements
in the presence of a strong, uniform magnetic field. Using
circularly polarized state-selective laser-induced fluorescence,
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we measure the plasma size as a function of time and deduce
the asymptotic expansion rate. This work extends previous
measurements reported in Ref. [39] to greater magnetic field
strengths. We compare our results to a diffusion model [39]
and show that it fails to reproduce our measured expansion
rates. We also consider a self-similar expansion model [45].
While this model matches the zero-field results, it fails to re-
produce the magnetized plasma measurements. Modeling the
expansion of magnetized plasmas poses a nontrivial theoret-
ical challenge. Ultracold neutral plasmas provide a platform
for measuring possible theories with high accuracy.

The degree of magnetization for species s can be
parametrized using the ratio

αs = �cs

νsi
, (1)

where �cs = eB/ms is the cyclotron frequency of species s,
mass ms, and in magnetic field B and νsi is the species-ion
collision frequency [46]. When αs > 1, the species is mag-
netized, meaning that the collision dynamics is significantly
changed by the magnetic field.

We explore Ca+ UNP expansion with the applied field
strength ranging from B = 0 to 0.12 T. The electron mag-
netization parameter spans from zero to αe = 350. The ions
are always unmagnetized. At the highest field values, the ion
cyclotron frequency is �ci = 3 × 105 s−1 and νii = 1 × 107

[47], making αi � 0.03.
In this paper we measure the transverse and parallel expan-

sion of our Ca+ UNP and compare the experimental data to an
ambipolar diffusion model [39] and a self-similar expansion
model. We show that neither of these reproduces the experi-
mental data over the entire range of magnetic field strengths.
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FIG. 1. Experimental details. (a) Partial energy level diagram
for Ca showing ionization laser wavelengths. Here I.P. denotes the
ionization potential. (b) A circularly polarized 393-nm probe laser
beam illuminates the UNP. Fluorescence photons are collected by
a 1:1 optical relay system, optically filtered, and imaged onto an
ICCD camera. (c) Frequency-integrated UNP fluorescence image
when B = 0 and t = 0. The ŷ and ẑ directions are labeled. The image
is 496 × 496 pixels, with a pixel spacing of 13.0 μm per pixel,
making the image size 6.4 × 6.4 mm2. (d) Cross-sectional view of
magnetic field coils and mounting hardware. The coils are centered
on the UNP.

II. EXPERIMENTAL DETAILS

Working at somewhat lower density, approximately 3 ×
106 neutral Ca atoms are trapped in a magnet-optical trap
(MOT) using 423-nm laser beams [9,25]. The Ca+ plasma
is formed by ionizing 80% of the Ca atoms by two-color
resonant photoionization using 5-ns laser pulses at 423 and
390 nm, as shown in Fig. 1(a). The photon energy of the
390-nm laser above the ionization limit controls the electron
temperature Te. In this work Te = 96 K to effectively eliminate
three-body recombination.

The Ca+ plasma is observed using laser-induced fluo-
rescence. The entire plasma is illuminated by a 393-nm
circularly polarized probe laser beam driving the Ca+ 393-nm
4s 2S1/2 → 4p 2P3/2 transition. The rms width of the probe
laser beam is 1620 ± 90 μm. The fluorescence from the
plasma is optically filtered and imaged onto an image-
intensified CCD (ICCD) camera using a 1:1 imaging system
[see Fig. 1(b)]. Plasma fluorescence is measured with the
probe laser frequency set to 11 different offset frequencies
relative to the atomic resonance, ranging from ±200 MHz in
40-MHz steps. The sum of these images provides a side-on
view of the plasma, as shown in Fig. 1(c).

The plasma density is calculated by combining measure-
ments of both the neutral atoms and the plasma ions. We
use resonant absorption imaging of the neutral atom cloud
to determine the density, rms width, and number of atoms in
the MOT. We determine the ionization fraction by measuring
MOT fluorescence before and after the ionizing laser pulses.
We allow the neutral atom cloud to expand before ionization
to reduce the density relative to the MOT and to smooth
out any local density variations. Using the MOT density,
the ionization fraction, the rms MOT width, and the initial
plasma rms width, we calculate the plasma density. The initial
plasma spatial density distribution is Gaussian and spheri-

FIG. 2. Timing schematic and partial energy level diagram.
(a) Timing sequence for the experiment. The MOT fields turn off
and the neutral atom cloud begins expanding slightly 500 μs before
the ionizing laser pulses form the plasma. During this time interval,
a uniform field with B ranging up to 0.12 T turns on. (b) Zeeman
splitting of the 4s 2S1/2–4p 2P3/2 transition. Because the laser
beam propagates in the magnetic field direction, only �m = ±1
transitions are allowed. The mlower = ±1/2 → mupper = ±3/2 transi-
tions shift at � f /B = 13.99 GHz/T. The mlower = ±1/2 → mupper =
∓1/2 transitions shift at � f /B = 23.35 GHz/T.

cally symmetric, n(r) = n0 exp(−r2/2σ 2
0 ), with σ0 = 400 ±

20 μm and n0 = 3.4 ± 0.2 × 1015 m−3. The ion tempera-
ture is set by disorder-induced heating to be approximately
2 K [9].

A constant uniform magnetic field is made using electrical
coils separated by 11 mm inside the vacuum chamber in a
near-Helmholtz configuration. The magnetic field strengths
used in this paper are B = 0, 0.005, 0.011, 0.020, 0.051, and
0.123 T. The magnetic field direction defines the ẑ direction
in Fig. 1(c). The coils are wrapped onto a stainless steel spool
mounted to the optical imaging system, as shown in Fig. 1(d).
The spool is cut to eliminate eddy currents when the mag-
netic field changes. The stainless steel housing is grounded to
suppress electric fields arising from the potential difference
between the coils. Currents ranging up to 150 A are supplied
to the coils to produce magnetic field strengths up to 0.12 T.

The current in the coils turns on 500 μs prior to ionization
to allow the magnetic field to approach a steady-state value.
During this time the MOT laser beams and MOT magnetic
field are turned off and the neutral atom cloud freely expands.
The neutral atom cloud expansion is not influenced by the ap-
plied magnetic field. Once the atoms are ionized the magnetic
field remains on for approximately 50 μs before turning off.
This is repeated at a rate of 10 Hz. Timing details are shown
in Fig. 2(a).

III. ZEEMAN SHIFTS

The magnetic field splits the 4s 2S1/2 → 4p 2P3/2 transition
into several Zeeman components, as shown in Fig. 2(b). The
linear Zeeman shift is calculated as

�E = μBgLmjB, (2)

where μB is the Bohr magneton, gL = 1.333 861(25) and
gL = 2.002 256 64(9) are the Landé g factors for the 2P3/2

and 2S1/2 levels, respectively [48–50], and mj is the magnetic
angular momentum quantum number.

Zeeman splitting of the excited and ground states of Ca+

opens pathways to several optically dark states. To elimi-
nate the dark ground state, the probe laser beam propagates
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along the magnetic field direction. It is circularly polarized
and selections rules only allow �m = ±1 transitions. This
prevents optical pumping into the 2S1/2(m = −1/2) state.
There is a small probability after excitation that ions in the
2P3/2(mj = 3/2) state will decay into optically dark D states.
In our previous work, these dark states were optically pumped
back into the excited states to allow for long measurement
times [2,9]. With a magnetic field, repumping is less practical
because there are five optically allowed transitions into the
2D5/2 and 2D3/2 Zeeman states. Rather than optically pumping
out these dark states, the probe laser is turned on at some time
�t after plasma formation and observed by the ICCD camera
for only 100–200 ns, as shown in Fig. 2(a). The finite pulse
width contributes approximately 1.5 MHz to the observed
linewidth of the 393-nm transition. Because we integrate over
frequency to determine the areal density, this additional width
is negligible.

IV. IMAGE DATA REDUCTION AND ANALYSIS

The ICCD camera records a spatially resolved fluorescence
image at a specific time after the plasma is formed. For a
specific frequency of the probe laser, the fluorescence in-
tensity in the camera is proportional to the number of ions
Doppler and Zeeman shifted into resonance with the probe
laser beam at a particular point in space and time. The Doppler
shift arises from both the ion thermal velocity and the plasma
hydrodynamic expansion velocity.

Camera images are recorded at 11 laser frequencies at
times t = 0.1, 1, 2, 5, 10, and 20 μs for each magnetic field
strength. We process these images to extract the rms size of
the plasma transverse and parallel to the magnetic field. From
these data the asymptotic expansion velocity is calculated in
both the parallel and perpendicular directions.

A. Analysis of σ‖

Summing the 11 camera images at a particular time and
magnetic field strength creates a projection of the spatial
density distribution onto the yz plane, as shown in Fig. 1(c).
At late times, as the hydrodynamic velocity increases, the
Doppler shift at large ±z exceeds the probe laser detuning
frequency. Therefore, the late-time images only explore the
central regions of the plasma in the magnetic field direction ẑ.

The analysis for plasma expansion in the z direction for σ‖
is illustrated in Fig. 3 for B = 0 and in Fig. 4 for B = 0.020 T.
In a plasma image recorded with the probe laser frequency
fixed at a particular value, the z axis in the image can be
mapped onto the plasma hydrodynamic expansion velocity.
For a self-similar expansion, applicable when B = 0, the
mapping is 1:1. The z axis is directly proportional to hydrody-
namic velocity through the Doppler shift. In Figs. 3(a)–3(c)
the fluorescence images for three different probe laser de-
tunings are shown at a delay time of �t = 10 μs after the
plasma is formed when B = 0. As the probe laser frequency
changes, the location of the fluorescence also changes. Ions
that are Doppler shifted into resonance with the probe laser
frequency scatter photons most strongly. Voigt profile fits to
the integrated fluorescence signal are plotted in black, blue,
and red in Fig. 3(d). We fit the corresponding peak locations

FIG. 3. Fluorescence images and σ‖ analysis for B = 0 at a delay
time of 10 μs. Fluorescence images are shown for three different
values of the probe laser frequency detuning: (a) � f = −200 MHz,
(b) � f = 0 MHz, and (c) � f = 200 MHz. The images are integrated
in the y direction and plotted (d). Circles show the measured data.
The black, blue, and red solid lines show Voigt fits to the data. The
fitted peak amplitude and pixel locations are used to fit the Gaussian
envelope (shown as a gray solid line). Eight additional measurements
are not shown, for clarity.

and amplitudes to a Gaussian envelope profile to determine
the rms width of the plasma in the z direction.

When the magnetic field is present, the fluorescence mea-
surements are consistent with a self-similar plasma expansion

FIG. 4. Fluorescence images and σ‖ analysis for B = 0.020 T
at a delay time of 10 μs. Fluorescence images are shown for
three different values of the probe laser frequency detuning:
(a) � f = −200 MHz, (b) � f = 0 MHz, and (c) � f = 200 MHz.
The horizontal and vertical axes are the pixel numbers in the images.
The images are integrated in the y direction and plotted in (d). The
four Zeeman transitions indicated in Fig. 1(c) are clearly visible.
Also shown in (d) are line-shape fits as described in the text. The
vertical dashed lines show the locations of the 1/2 → 3/2 transitions
used to fit the Gaussian envelope. The rms width of this envelope
is σ‖ and it is plotted in Fig. 5. The gray solid line is the expected
Gaussian envelope from the hydrodynamic model at 10 μs. Eight
additional measurements are not shown, for clarity.

045201-3



R. TUCKER SPRENKLE et al. PHYSICAL REVIEW E 105, 045201 (2022)

FIG. 5. Time evolution of the plasma envelope in the z direction.
The points show the measured Gaussian envelope rms width σ‖ as
described in the text. The values of the magnetic field strength in
tesla are indicated in the legend. The black solid line shows the
expected rms width using the measured initial plasma parameters
σ0 = 0.4 mm and Te0 = 96 K. The values at 5, 10, and 20 μs are
slightly offset in time to better show the data. These data suggest that
the plasma expansion in the z direction, parallel to the magnetic field,
is Gaussian and self-similar because it agrees with a hydrodynamic
model near the plasma center.

along the magnetic field direction, just as in the B = 0 case. In
Fig. 4 fluorescence images for three different probe laser de-
tunings are shown at a delay time of 10 μs after the plasma is
formed when B = 0.020 T. Four transitions are clearly visible,
indicating that our probe laser polarization is not purely σ+
polarized. These correspond to the mlower − mupper transitions
1/2 → 3/2, −1/2 → 1/2, 1/2 → −1/2, and −1/2 → −3/2
shown in Fig. 2(b). Correspondingly, we fit these images to
the sum of four Voigt profiles with the amplitudes, center
frequencies, and widths as fit parameters. We constrain the
relative separation between peaks to be consistent with Eq. (2)
and the known Landé g factors, assuming a linear mapping of
the hydrodynamic velocity onto the z axis. We also constrain
the Lorentzian and Gaussian widths to be the same for all
peaks in the fit. As shown in Fig. 4(d), the fits are in excellent
agreement with the data. The number of Zeeman components
used in the fits and the number visible in the line shapes
depend on both the value of the magnetic field strength and the
delay time. We note that this analysis only probes the central
region of the plasma. It seems likely that near the edges of the
plasma, as the density falls, the plasma description becomes
kinetic.

Finally, in Fig. 5 we show the rms width of the plasma as a
function of time for several different magnetic field strengths.
The data at 5, 10, and 20 μs are slightly offset in the plot to
better illustrate the data and associated estimated error bars.
Although there is some scatter in the measurements, these data
suggest that the expansion in the magnetic field direction is
self-similar. This is perhaps expected, as the magnetic field
does not exert any forces in the z direction.

B. Analysis of σ⊥

The rms width of the plasma in the y direction, σ⊥(t ),
is determined by summing the fluorescence images over all
laser detunings and then integrating in the z direction. The
fluorescence signals are corrected slightly for the Gaussian
profile of the probe laser beam in the y direction by dividing

FIG. 6. Model selection for σ⊥(t ). Plots of the projections of the
fluorescence signals along the y axis for different delay times and
magnetic field strengths. The black dots show the data. The magenta
line shows a Gaussian fit. The blue line shows a Lorentzian fit. The
yellow line shows a Voigt fit. The red line shows a super-Gaussian fit
of order 4. The Gaussian and Voigt fits are indistinguishable in nearly
all cases.

the integrated fluorescence profiles by a Gaussian with an rms
width of 1.62 ± 0.09 mm.

To model the data, we consider four different line shapes:
Lorentzian, Voigt, Gaussian, and super-Gaussian of order 4.
These data and model fits are shown in Fig. 6. The super-
Gaussian (red line) and Lorentzian (blue line) models are poor
representations of the data. When considering the entire data
set, the Voigt (green line) and Gaussian (magenta line) pro-
files are nearly indistinguishable. Based on this analysis, the
Gaussian appears to be the best model for all cases. This sug-
gests a self-similar Gaussian expansion in the perpendicular
direction, consistent with the Gaussian transverse expansion
data reported in Ref. [39]. This observation suggests that
we use a hydrodynamic model to interpret the perpendicular
expansion data.

The measured rms widths of the plasmas as a function
of time for different magnetic field strengths is shown in
Fig. 7(a). The expansion data are fit to a hydrodynamic model,

σ 2
⊥(t, B) = σ0

[
1 +

(
t

τ (B)

)2]1/2

, (3)

with σ0 and τ (B) as fit parameters. In an unmagnetized B =
0 hydrodynamic UNP model, the expansion time is τ 2 =
miσ

2
0 /kBTe0 [51]. However, in our model when B �= 0, τ is

only phenomenological. It merely parametrizes the plasma ex-
pansion in the perpendicular direction. The expansion curves
derived from Eq. (3) are shown as solid lines in Fig. 7(a) and
reproduce the data well. The fitted values of σ0 and τ are given
in Table I. At late times, when t � τ , σ (t ) ≈ (σ0/τ )t and the
asymptotic expansion velocity is

vexp ≡ σ0/τ (B). (4)

In the opposite limit, when t 
 τ , σ (t ) ≈ σ0(1 + t2/2τ 2).
We next explore the functional dependence of vexp on B.

To do this, we fit vexp to three different models, each of which
has two parameters. The best model is selected visually by
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FIG. 7. Analysis of σ⊥. (a) Plot of σ 2
⊥(t ) for different values of

the magnetic field. The magnetic field strengths in tesla are indicated
in the legend. The points are the fitted rms widths σ⊥(t, B) using
Eq. (3). The vertical lines indicate the estimated systematic uncer-
tainty associated with the finite Gaussian width of the probe laser
beam. If the expansions were diffusive, the squared widths would
increase linearly in time. (b) Plot of vexp = σ0/τ (B) vs B (black
points). Also plotted are model fits to the data as described in the text.
The inset shows a semilogarithmic plot of power-law fits [Eq. (6)] to
subsets of the data, as explained in the text. The exponential fit is the
best representation of the entire data set. The power laws fit well in
different limits.

evaluating its representation of the data. The three models are
an exponential form

vexp = a exp(−B/b) (5)

and a power-law form

vexp = a(b + B)−p. (6)

The values of a and b are least-squares-fit parameters. The
power laws we explore are p = 1/2 and 1. The p = 1/2 model
was suggested in Ref. [39]. In Eq. (6) we have added an offset
parameter b relative to Ref. [39] to allow the model to cover
the entire range of B, including the B = 0 data.

The model that best represents the entire data set is the
exponential fit

vexp = (12.1 mm/μs) exp[−B/(0.013 T)]. (7)

The coefficient 12.1 mm/μs is equal to σ0/τ (0). The charac-
teristic field in the exponential, 0.013 T, is close to the value
obtained when setting αe = 1 in Eq. (1).

TABLE I. Values of the fit parameters σ0 and τ (B) obtained by
fitting the data in Fig. 7(a) to Eq. (3). The numbers in parentheses
are the estimated statistical uncertainties in the last digits. For the
B = 0.123 T data, the least-squares-fitting routine cannot estimate
the uncertainty in τ .

B σ0 (mm) τ (B) μs

0.000 0.42(3) 3.5(3)
0.005 0.45(4) 5.5(6)
0.011 0.45(2) 9.1(8)
0.020 0.44(2) 17(2)
0.050 0.40(1) 74(60)
0.123 0.40(1) 6E4

Fits of subsets of the data can reveal asymptotic and
transitional dependences on the magnetic field. The inset of
Fig. 7(b) shows a p = 1/2 power-law fit to the data between
B = 0.005 and B = 0.050 T (red line). Also shown is a p = 1
power-law fit to the data from B = 0.011 to B = 0.123 T
(green line).

In this experiment we measure the evolution of the ion
density distribution. Information regarding the electron tem-
perature and density evolution can only be inferred. Similarly,
we can calculate the ion kinetic energy, but not the electron
energy or the overall electrical potential energy. The hydrody-
namic expansion model used for both σ‖ and σ⊥ suggests an
anisotropic adiabatic plasma expansion. This model assumes
quasineutrality, with ni ≈ ne and a uniform temperature for
electrons throughout the plasma. The magnetic field could
influence the evolution of the electron temperature and den-
sity. Even in the presence of a magnetic field, at time t = 0
the electrons begin with an isotropic velocity distribution
with an average kinetic energy of Ee/(3kB/2) = 96 K. As the
plasma expands, a temperature anisotropy could develop due
to adiabatic cooling of the electrons in the parallel direction.
The ion expansion, which is what we observe in the experi-
ments, occurs over several microseconds (see Table I), which
corresponds to thousands of electron-ion collision times and
tens of thousands of electron-electron collision times. Any
temperature anisotropy for the weakly coupled electrons, if
it exists, will be small [31,52].

V. COMPARISON TO THEORETICAL MODELS

In this section we compare the observed self-similar
Gaussian density evolution to two popular models. We will
show that a diffusion model fails to reproduce the observed
time-evolving transverse density profile. We also show that
a straightforward implementation of an explicitly self-similar
expansion model predicts expansion dynamics at odds from
the experimental data.

A. Ambipolar diffusion model

Ambipolar diffusion is often invoked to model cross-field
electron and ion motion in magnetized plasmas [39]. The
diffusion equation in the presence of a uniform magnetic field
in one-dimensional cylindrical coordinates is given by

∂n

∂t
= 1

r

∂

∂r
rD⊥

∂n

∂r
− Floss(n, t ), (8)

where n(r, t ) is the radial density distribution of the plasma
and Floss represents expansion of the plasma in the magnetic
field direction. In Ref. [39] expansion along the magnetic
field lines was assumed to follow a self-similar (Gaussian)
hydrodynamic model. The loss term assumed the form

Floss(n, t ) = n
t

τ 2(1 + t2/τ 2)
, (9)

where τ = (miσ
2
0 /kBTe)1/2 is the characteristic expansion

time for the plasma.
We solve Eq. (8) numerically. The equation is discretized in

space using a second-order centered finite-difference method,
which is numerically integrated using the method of lines [53]
with the implicit Runge-Kutta (Radau) method.
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FIG. 8. Numerical solutions for the diffusion equation, Eq. (8),
for B = 0.005 T, n0 = 3 × 1015 cm−3, and σ0 = 0.4 mm. (a) Scaled
plots of the density profile n(y, t ). The values of t in microseconds
are indicated in the legend. (b) The rms width of the distribution as
a function of time. For higher values of B, the expansion proceeds
more slowly. However, the fast initial rise followed by a slower rise
with a gradually decreasing slope is true for all values of B. This is
in opposition to the measured behavior in Fig. 7(a) and Eq. (3).

The diffusion coefficient appropriate for a wide range of
magnetic field strengths is [54]

D⊥ = D0
ν2

ei

ν2
ei + �2

ce

, (10)

where D0 = kBTe/meνei is the diffusion coefficient with no
magnetic field and νei is the electron-ion collision frequency
[46]. In the limit �ce � νei, this diffusion coefficient matches
the expression used in [39]. We expect numerical solutions of
Eq. (8) to be most appropriate when the plasma is magnetized.

The numerical solutions of n(r, t ) are shown in Fig. 8 for
B = 0.005 T. In Fig. 8(a) the radial density profile is plotted.
Although the profile begins as a Gaussian profile, diffusion
flattens the center of the distribution where the density is
higher. In the wings of the distribution, where the density
drops, diffusion effectively turns off. For higher values of B,
the expansion proceeds more slowly.

In Fig. 8(b) we plot the rms width of the distribution

wrms =
√√√√(∑

i

y2
i ni

)/(∑
i

ni

)
, (11)

where the index i runs over the grid points in the calculation,
yi is the spatial grid point, and ni is the density at that grid
point. The rms width increases rapidly at first, followed by
a slower rise with gradually decreasing slope. This behavior
is qualitatively the same for all values of the magnetic field
strength. It contradicts the ansatz and conclusion of Ref. [39],
the measured behavior in Fig. 7(a), and the hydrodynamic
model in Eq. (3). If the magnetized UNP expansion were
diffusive, plots of σ 2

⊥(t ) would be linear in time [see Fig. 7(a)].
The failure of the diffusion model for UNPs is not entirely

surprising. Ambipolar diffusion is most appropriate in weakly
ionized plasmas in which the neutral atoms provide a signifi-
cant drag force [54]. Furthermore, Eq. (8) does not include ion
inertia, which is a dominant feature in UNP expansion. Ultra-
cold neutral plasmas are essentially fully ionized electron-ion
plasmas. The neutral atoms that remain are at such a

low density that they have no influence on the expansion
dynamics [55].

B. Self-similar unmagnetized plasma expansion model

A self-similar plasma expansion model [45,56] works well
for unmagnetized UNPs. The fluid equations of motion for
species s can be written

∂us(r, t )

∂t
= −us(r, t ) · ∇us(r, t )

− kB

msns(r, t )
[Ts(r, t )∇ns(r, t )]

+ qs

ms
[E(r, t ) + us(r, t ) × B(r, t )], (12)

where us is the hydrodynamic flow velocity and E and B are
the electric and magnetic fields, respectively. This equation in-
cludes advection, pressure, and the Lorentz force.

We first consider a spherically symmetric two-component
plasma, consisting of only ions (Z = 1) and electrons in the
absence of a magnetic field. Neglecting the ion pressure term,
the equations of motion for the ions and electrons are written

∂ui

∂t
+ ui

∂ui

∂r
= − e

mi

∂	

∂r
, (13)

∂ue

∂t
+ ue

∂ue

∂r
= e

me

∂	

∂r
− kB

mene

∂

∂r
(neTe), (14)

where we have rewritten E = −∇	 in terms of the potential
	. In the usual way, multiplying Eq. (14) by me and recogniz-
ing that the left-hand side of the equation is negligibly small
gives an expression for ∂	/∂r, reducing Eq. (13) to

∂ui

∂t
+ ui

∂ui

∂r
= − kB

mine

∂

∂r
(neTe). (15)

The electron density on the right-hand side of Eq. (15) is not
known exactly. We use the ion density as an approximation
of the electron density profile (the so-called quasineutral ap-
proximation). Further assuming that Te has a uniform spatial
profile, a Gaussian density profile of the form

n(r, t ) = n0

(
σ0

σ (t )

)3

exp

[ −r2

2σ (t )2

]
(16)

is a solution to Eq. (15) [51,57–59]. In this density profile,
σ (t ) is defined for B = 0 in Eq. (3) and n0 is the plasma den-
sity at r = 0 and t = 0. The self-similar expansion model is
plotted against our data in Figs. 5 and 7(a) and is a reasonable
representation of the unmagnetized data.

C. Self-similar magnetized plasma expansion model

In this section we apply the self-similar model to the case
of nonzero magnetic field. The system of equations, in cylin-
drical coordinates, is composed of the continuity equation of
each species s = i, e,

∂ns

∂t
+ 1

r

∂

∂r
(rnsur,s) + ∂

∂z
(nsuz,s) = 0, (17)
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the electron equations of motion,

∂ur,e

∂t
+ur,e

∂ur,e

∂r
− u2

θ,e

r
= −kBTe

me

1

ne

∂ne

∂r
+ e

me

∂	

∂r
− �ceuθ,e,

(18)

∂uθ,e

∂t
+ ur,e

∂uθ,e

∂r
+ uθ,eur,e

r
= �ceur,e, (19)

∂uz,e

∂t
+ uz,e

∂uz,e

∂z
= −kBTe

me

1

ne

∂ne

∂z
+ e

me

∂	

∂z
, (20)

and the ion equations of motion,

∂ur,i

∂t
+ ur,i

∂ur,i

∂r
− u2

θ,i

r
= − e

mi

∂	

∂r
, (21)

∂uθ,i

∂t
+ ur,i

∂uθ,i

∂r
+ uθ,iur,i

r
= 0, (22)

∂uz,i

∂t
+ uz,i

∂uz,i

∂z
= − e

mi

∂	

∂z
. (23)

The right-hand side of Eq. (19) represents the E × B drift. In
writing these equations, we assume that there is no angular
dependence in each component of the flow velocities, i.e.,
uα,s(r, θ, z, t ) = uα,s(r, z, t ), where α = r, θ, z, no z depen-
dence for the perpendicular components, i.e., uθ,s(r, z, t ) =
uθ,s(r, t ) and ur,s(r, z, t ) = ur,s(r, t ), and no radial dependence
of the ẑ velocity component, i.e., uz,s(r, z, t ) = uz,s(z, t ), as in-
dicated by the cylindrical symmetry of the problem. We have
also neglected the collision terms because the self-similar
model assumes ue = ui. Furthermore, in the ion equation of
motion we neglect the cyclotron frequency terms and the ion
pressure term.

As with the unmagnetized case, we assume that plasma
expansion in the ẑ direction is driven by electron pressure
alone. This leads to a so-called collisionless model in the ẑ
direction, consistent with previous work [51,58]. For a self-
similar expansion model, this means that the collisions do not
modify the distribution functions.

We assume a self-similar ion density expression

ni(r, z, t ) = n0,i

σ 2
⊥(t )σ‖(t )

exp

[
− r2

σ 2
⊥(t )

− z2

σ 2
‖ (t )

]
, (24)

with σ⊥(t ) = σ0(1 + t2/τ 2
⊥)1/2 and σ‖(t ) = σ0(1 + t2/τ 2

‖ )1/2,
where τ⊥ and τ‖ are characteristic expansion times in the
perpendicular and parallel directions, respectively. They can
depend on B, but not on t or r. Substituting the above expres-
sion in the continuity equation of the ions, we obtain

2ni

[(
z2

σ 2
‖

− 1

2

)
1

σ‖

dσ‖
dt

+
(

r2

σ 2
⊥

− 1

)
1

σ⊥

dσ⊥
dt

]

+ 1

r

∂rniur

∂r
+ ∂niuz

∂z
= 0. (25)

Separating the perpendicular and parallel equations, we find

2

(
z2

σ 2
‖

− 1

2

)
1

σ‖

dσ‖
dt

− 2
z

σ 2
‖

uz,i + ∂uz,i

∂z
= 0, (26)

2

(
r2

σ 2
⊥

− 1

)
1

σ⊥

dσ⊥
dt

+ ur,i

r
− 2

r

σ 2
⊥

ur,i + ∂ur,i

∂r
= 0, (27)

whose solutions are

uz,i(z, t ) = z

σ‖

dσ‖
dt

, ur,i(r, t ) = r

σ⊥

dσ⊥
dt

. (28)

The electric field in Eq. (21) is obtained from the electron
equations of motion. The steady-state solution of Eq. (19),
valid when t � �−1

ce , leads to

uθ,e(r) = �cer

2
. (29)

Substituting this into Eq. (18) and neglecting the Burgers term
ur,e∂ur,e/∂r ≈ 0 leads to an expression for the electric field

∂	

∂r
= me

e

�2
ce

4
r + kBTe

e

1

ne

∂ne

∂r
. (30)

For typical experimental conditions, when B > 0.005 T,
n−1

e ∂ni/∂r ≈ −r/σ 2
0 , and Te = 96 K, the two terms on the

right-hand side of Eq. (30) are of the same order of magni-
tude. When B = 0, ∂	/∂r is negative; for B > 0.005 T, it is
positive and scales as B2. Substituting Eq. (30) into Eq. (21),
we have

∂ur,i

∂t
+ ur,i

∂ur,i

∂r
= −me

mi

(
�2

ce

4

)
r − c2

ni

∂ni

∂r
(31)

= −
(

1

4

e2B2

memi

)
r + 2

c2

σ 2
⊥

r, (32)

∂ur,i

∂t
+ ur,i

∂ur,i

∂r
= −

[
�ce�ci

4
− 2

c2

σ 2
⊥

]
r, (33)

where c = √
kBTe/mi and we have used the density distribu-

tion from Eq. (24). Finally, by using ur,i = r
σ⊥

∂σ⊥
∂t from the

continuity equation we arrive at

∂2σ⊥
∂t2

= −�ce�ci

4
σ⊥(t ) + 2

kBTe

mi

1

σ⊥(t )
. (34)

In the above equation, Te = Te(t ) and is dominated by adi-
abatic expansion in the parallel direction. The temperature
equation is

∂Te

∂t
+ ue · ∇Te = −2Te∇ · ue

= 2
Te

ne

[
∂ne

∂t
+ ue · ∇ne

]
. (35)

Using the self-similar density from Eq. (24) and invoking an
isothermal approximation (∇Te = 0) gives

1

Te

dTe

dt
= 2

1

ne

[
∂ne

∂t
+ ue · ∇ne

]

=
(

4z2

σ 2
‖

− 2

)
1

σ‖

dσ‖
dt

− 4
z

σ 2
‖

uz

= −2
1

σ‖

dσ‖
dt

. (36)
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TABLE II. Assumptions made in each model. For both the self-similar and ambipolar diffusion models, we list the physical quantities
represented in the plasma equations, the assumptions made, and the mathematical consequences.

Physics B = 0 Self-similar Ambipolar diffusion

quasineutrality ne ≈ ni ne ≈ ni

e momentum equation ∂ue/∂t = 0, ue · ∇ue ≈ 0, ue ≈ ui ∂ue/∂t = 0 ue · ∇ue ≈ 0, ue �= ui

→ ∇Pe = eneE → ∇Pe = eneE + neνei(ue − ui )
ion momentum equation Pi = 0, ue ≈ ui ∂ui/∂t = 0 ue · ∇ui ≈ 0, ue �= ui

→ ∂ui/∂t + ui · ∇ui = qniE → ∇Pi = qniE + neνie(ui − ue)
e pressure adiabatic Pe(r, t ) = ne(r, t )kBTe(t ) not adiabatic

isothermal Pe(r, t ) = ne(r, t )kBTe isothermal Pe(r) = ne(r, t )kBTe

ion pressure Pi = 0 isothermal Pi = nikBTi

The solution to this equation is

Te = Te0

(
σ0

σ‖

)2

. (37)

Substituting this into Eq. (34) gives

d2σ‖
dt2

= 2c2
0σ

2
0

σ 3
‖

, (38)

d2σ⊥
dt2

= −�ce�ciσ⊥
4

+ 2c2
0

σ⊥

σ 2
0

σ 2
‖
, (39)

where c0 = √
kBTe0/mi. As the magnetic field strength in-

creases, the left-hand side of Eq. (39) tends toward zero. In
this limit

σ⊥(t ) = c0σ0

σ‖(t )eB

√
8mime. (40)

Making the time dependence explicit [Eq. (3)] and taking the
late-time limit, we find

σ⊥(t ) = c2
0

eBσ0

√
8memit (41)

≡ vexpt . (42)

In the inset to Fig. 7(b), the power-law fit with p = 1 gives

vexp = 0.04 ± 0.01 T (m/s)

B − (0.003 ± 0.002 T)
, (43)

where the uncertainties indicate the estimated statistical error
bars in the fit parameters. The prediction of Eq. (42) is

vexp ∼ 0.2 T (m/s)

B
, (44)

about a factor of 5 faster than the model prediction. Also of
concern is that the small-B solution of Eq. (39) is unphysical
because it predicts that σ⊥ oscillates in time.

VI. CONCLUSION

In this paper we have presented measurements of UNP
expansion in a strong magnetic field. We have shown that the
cross-field expansion σ⊥ is self-similar and Gaussian. This
agrees with results reported in Ref. [39]. The present work
extended that of Ref. [39] by probing much stronger fields,
specifically 17 times stronger.

We showed that plasma expansion along the magnetic field
lines is Gaussian and self-similar. The present results are
limited to measurements near the center of the plasma in the
parallel direction.

Our experimental results were compared to two theoretical
models. Both models predict behavior that does not match
the experimental results. We showed that ambipolar diffu-
sion does not produce a self-similar expansion. Although this
model was invoked in Ref. [39], it is inappropriate for UNPs.
The diffusion model assumes that electron and ion motion is
strongly damped by collisions with neutral atoms, a condition
that is not met for UNPs.

We extended an explicitly self-similar expansion model
to include a uniform magnetic field. We explicitly retained
the time-dependent momentum equation, something that is
missing in the diffusion equation (see Table II). The ion
equations of motion are therefore second order in time, mak-
ing wavelike solutions possible. In the large-B limit, this
model predicts that the asymptotic expansion velocity scales
as B−1, although with a larger prefactor than the experiment
suggests. At smaller values of B this model predicts that σ⊥(t )
is an oscillating function of time.

These UNP results demonstrate that simple self-similar
models can only predict limited aspects of the plasma ex-
pansion physics. The disagreement between the models and
the experimental results call the approximations and essen-
tial physics of the models into question. Future theoretical
and computational work is clearly needed in this area. The
present work suggests that the lowest-order simple models
fail to capture the essential physics of magnetized plasma
expansion. The next simplest approach requires a numeri-
cal magnetohydrodynamic or kinetic theory solution. Future
experimental work could measure spatially resolved ion tem-
perature and density. The present work used a large diameter
probe laser beam, averaging the plasma density in the x direc-
tion. It may be that spatially resolved temperature and density
measurements could provide more insight into the plasma ex-
pansion dynamics, hydrodynamic velocity field, and collision
energetics. Future work could also probe a wider range of
density and initial electron temperature to more fully map the
parameter space.
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