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We have demonstrated several inexpensive methods that can be used to measure the deflection angles
of prisms with microradian precision. The methods are self-referenced, where various reversals are
used to achieve absolute measurements without the need of a reference prism or any expensive
precision components other than the prisms under test. These techniques are based on laser inter-
ferometry and have been used in our laboratory to characterize parallel-plate beam splitters, penta
prisms, right-angle prisms, and corner cube reflectors using only components typically available in an
optics laboratory. © 2005 Optical Society of America
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1. Introduction

Reflecting prisms are key components in a variety of
optical instruments. They can be used in place of
mirrors to alter the direction of optical beams. Unlike
mirrors, however, prisms can be used in such a way
that the angle through which the beam is deflected
does not change when the optic is rotated. For exam-
ple, after a beam reflects off of the three perpendic-
ular surfaces of a corner cube it will exit the prism
traveling in precisely the opposite direction as the
incoming beam. No careful alignment is needed to
achieve this nearly perfect 180 deg deflection. Reflect-
ing prisms are useful in situations where it is difficult
to perform the initial alignment or when it is critical
to maintain a particular beam deflection for a long
period of time. One well-known example is use of
corner reflectors for lunar ranging experiments.1 Our
interest in prisms is to generate an extremely stable
array of laser beams for use in an atom interferom-
eter.

Since the beam deflection is determined by the an-
gles between the prism surfaces rather than the
alignment of the optic, it is extremely important that

the prisms be made correctly. Several methods are
commonly used to measure deflection angles of
prisms.2–4 One class of techniques utilizes telescopes
and autocollimators to image the separation of two
beams at infinity. Our methods are based on a second
class in which the angle between the two beams is
ascertained using optical interference. Both types of
measurement are limited by the size of the beam of
light passing through the optics, in the first case by
Rayleigh’s criterion and in the second by the large
fringe spacing resulting from nearly parallel beams.
As such, both types of measurement have similar
ultimate resolution limits. Techniques based on ei-
ther type of measurement typically require a cali-
brated reference prism or other expensive optical
components.

After purchasing a set of extremely high-precision
prisms for use in an atom interferometer, we began to
have doubts as to whether the manufacturer had met
our required specifications. Not having access to an
instrument capable of measuring prism deflection
angles to the necessary accuracy, we developed a set
of techniques that allow prism deflection angles to
be measured with accuracies of a few microradians.
Our scheme is self-referencing, requiring no cali-
brated prism. In addition to the prisms under test
we needed only several standard-quality mirrors,
lenses, and attenuators, an inexpensive alignment
laser, a low-quality surveillance camera, and for
some measurements a piezoelectric transducer
(PZT). We characterized parallel-plate beam splitters
(which generate two precisely parallel beams), penta
prisms (which deflect light by 90 deg), right-angle
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prisms (which fold light by 180 deg in the plane of the
prism), and corner cubes.

Our methods utilize optical interferometry and
bear similarity to the Jamin interferometer.5 Like
several other schemes, in our methods the deflection
angles of prisms are determined from the spacing
between fringes formed by two interfering beams.
Each of our designs produces similar intensities for
the two interfering beams, resulting in high-contrast
fringes for maximum sensitivity. Lenses and mirrors
are used only before the beams are split or after the
interference pattern is formed such that alignment or
wave-front errors due to these optics have a negligi-
ble effect on the measurements.

2. Measuring the Angle between Two Beams

When two monochromatic plane waves intersect,
they form an interference pattern. Because the spac-
ing between interference fringes depends on the an-
gle between the two wave vectors, it is possible to
ascertain the angle between the two propagation di-
rections by analyzing the fringe pattern. Using Fig. 1
and simple trigonometry, it is easy to find a relation-
ship between the fringe spacing d and the angle be-
tween the k vectors of the two plane waves ��. In the

small-angle approximation, for two plane waves with
wavelength � projected onto a screen at near-normal
incidence, the angle between the two beams is given
by

�� � ��d. (1)

A. Fitting to a Piece of a Fringe

Most of the optics we tested have a clear aperture of
2.5 cm. To prevent clipping we made our measure-
ments using a helium–neon laser �� � 633 nm� col-
limated to a diameter of �1 cm, suggesting that we
would only be able to measure fringe spacings if the
fringes were less than 1 cm apart. According to Eq.
(1) this limit on d results in a minimum measurable
�� of 0.13 mrad. The optics we measured were spec-
ified to have angular tolerances of a few microradi-
ans. To make measurements with microradian
precision, we had to infer angles from images that
contained much less than one fringe.

One method commonly used in this situation is
phase shifting, in which intensity is measured at sev-
eral points as the fringe pattern is scanned across the
points by shifting the phase of one beam.6 This
method has several advantages over the spatial
fringe-fitting method used in our experiments: It is
less susceptible to wave-front distortion, it reveals
the sign of the angle between the beams (not just the
magnitude), and it can be used for other types of
measurement (such as surface profiling) that cannot
easily be done with the method we chose. But our
spatial fringe-fitting method has the advantage that
all the data are recorded in a single moment, making
it more robust in noisy environments. It also does not
require the incorporation of a phase-shifting device,
reducing cost and complexity and eliminating poten-
tial errors due to phase-shifter beam deflections,
drifts, and hysteresis. Adding a phase shifter would
have greatly complicated our scheme for the mea-
surement of plate beam splitters. In our other
schemes it could have been implemented by scanning
one prism with a PZT. As discussed in Subsection
3.B, we used a PZT in some of our schemes for other
purposes, but they lacked sufficient stability for this
purpose [see Fig. 7(a)].

To find the angle between the two beams, we sim-
ply curve fit the intensity pattern on our camera. But
to get accurate results when less than one fringe is
visible, we have to take into account the spatial pro-
files of the beams. To do this we first write down the
expression for the electric field of a laser beam as a
function of the position on the camera r and time t. To
simplify our analysis we assume that the interfering
beams have the same polarization. We also assume
that the two beams are well collimated such that the
phase of each beam’s electric field is of the form
k · r � �t � � where k is the wave vector of the beam,
� is the angular frequency of the light field, and � is
a constant phase offset. With these assumptions, the
electric field of each beam can be written as

En(r, t) � fn(r)cos(kn · r � �t � �n), (2)

Fig. 1. Fringes formed by two crossing plane waves. In (a) the
interference pattern formed when two beams from a He–Ne laser
crossed at a small angle is shown. In (b) the gray arrows represent
the propagation or k vectors of the two plane waves, and the thin
gray lines represent the wave fronts of the two traveling waves.
The angle between the propagation vectors of the two beams is
labeled as ��. The interference maxima, where the two waves are
always in phase, are denoted with the dashed lines, and the spac-
ing between the interference maxima is labeled as d.
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where fn�r� is the amplitude of the electric field at
position r and the subscript n is equal to 1 or 2 de-
pending on which of the interfering beams we are
describing.

The intensity of the interference pattern of two
intersecting beams is related to the time average of
the square of the sum of the two interfering electric
fields. When the time average is evaluated and the
equation is simplified, it can be expressed as

I12(r) � I1 � I2 � 2(I1I2)
1�2 cos(krel · r � ��), (3)

where �� � �1 � �2 and krel � k1 � k2, and where I1
and I2 are the intensity patterns that would be mea-
sured on the camera if only one of the two interfering
beams was present.

Without losing generality we can define the plane
of the camera’s detector to be the z � 0 plane (such
that r has no z component). Then we can write the dot
product krel · r as kxx � kyy where x and y are Carte-
sian coordinates describing the location of pixels on
our camera and kx and ky are the spatial frequencies
of the interference pattern imaged by the camera. If
both beams strike the camera near to normal inci-
dence, then the z component of krel will be nearly zero
and krel will be approximately equal to �kx

2 � ky
2�1�2.

These definitions result in the following expression:

I12 � I1 � I2

2(I1I2)
1�2 � cos(kxx � kyy � ��). (4)

The left-hand side of Eq. (4) can be thought of as a
normalized intensity.

If the two beams are nearly parallel, it can be
shown that krel � 2	����. To find �� we simply mea-
sure I12, I1, and I2 and numerically fit the left side of
Eq. (4) to the right side to find kx and ky, treating ��
as a free parameter. We then calculate krel and from
that ��. The three intensity patterns needed to cal-
culate the left side of Eq. (4) are measured by taking
four images: one of the two interfering beams, one of
beam 1 with beam 2 blocked, one of beam 2 with beam
1 blocked, and a dark field image with both beams
blocked. An example of a set of images is shown in
Figs. 2(a)–2(d). We then subtract the dark field image
from the other three to generate the three
background-free intensity patterns I12, I1, and I2. The
separate I1 and I2 terms in Eq. (4) make this mea-
surement technique work even if the fringes have low
contrast due to mismatched power in the two inter-
fering beams. Lower contrast does increase digitiza-
tion noise, which is of special importance when a
low-bit-depth camera is used. This technique also
works if the interfering beams do not overlap per-
fectly, although misalignments can reduce the region
of useful data [see Fig. 2(e)]. Large overlap misalign-
ments coupled with wave-front curvature in the
beams can also add errors to the measurements.

Figure 2(e) shows the result of this calculation ap-
plied to the data in Figs. 2(a)–2(d). Curve fits to find

kx and ky from this data are illustrated in Figs. 3(a)
and 3(b). Although the data in Fig. 3 are somewhat
noisy, we can still get accurate, repeatable results by
applying the constraint that the normalized interfer-
ence pattern on the left-hand side of Eq. (4) should
oscillate with unity amplitude and zero offset. This is
clearly evidenced by the consistency of the measure-
ments shown in Fig. 7 in Section 3.

B. Experimental Subtleties

When using this curve-fitting approach to measure
deflection angles of prisms, we often made small ad-
justments to the prism or beam-splitter alignment to
shift the relative phase of the two interfering beams
such that images were not centered on a light or dark
fringe. Only small adjustments that did not affect the
overlap of the interfering beams were needed. Cap-
turing data between a light and a dark fringe results
in a more precise fit to the data. Fitting data near an
extremum of the cosine requires precise measure-

Fig. 2. Calculation of the normalized interference pattern. Im-
ages (a)–(d) are an example of the four images that are needed to
evaluate Eq. (4). Frames (a) and (b) are images of the individual
beams with the other beam blocked, (c) is a dark field with both
beams blocked, and (d) is an image of the two beams interfering.
The closely spaced interference lines visible in these images are
low-contrast fringes due to reflections off of the camera window
and the focusing lens. The high-contrast fringes due to the angle
between the two beams are not apparent in the interference frame
because the spacing between fringes is larger than the size of the
beams. Plugging the data from these images into the left-hand side
of Eq. (4) results in the image shown in (e). Only the central part
of (e), where both beams are present, contains meaningful infor-
mation. The shading scale in (e) runs from �1.35 (pure black) to
0.05 (pure white).
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ment of the curvature of the data. Near a zero cross-
ing, however, simply extracting the slope of the data
is enough to get a good measurement of k.

In our treatment we have assumed a well-
collimated laser beam and have ignored effects of
wave-front curvature. To ensure good beam collima-
tion, we constructed a simple Michelson–Morley in-
terferometer with mismatched arms, one arm being
�2 cm long and the other over 1 m long. The inter-
ferometer was aligned to create a circular interfer-
ence pattern. We then adjusted the lenses used to
telescope up the size of the laser beam until no inter-
ference rings were visible. When measuring prism
deflection angles, we made sure that the two optical
paths were the same length on a millimeter scale and
that the two interfering beams hit the camera at
nearly the same place. This made any residual wave-
front curvature common to both field components
such that it did not affect our results.

The detector on the camera used in these experi-
ments was smaller than the laser beam diameter.
Since catching only part of the interference pattern
limits sensitivity to small relative beam angles, we
used a lens to demagnify the pattern. To account for
the demagnification and to find the correct effective
size of the camera pixels, we placed a ruler in front of
the lens. The ruler’s position was adjusted until it
came into clear focus on the camera. We then took
pictures of the ruler to determine the magnification
due to the lens. We verified that this had been done
correctly by using the lens’ focal length and the dis-
tance to the camera to calculate the position at which
we would expect the ruler to come into focus and the
expected magnification.

When we evaluated the left-hand side of Eq. (4) we
had to be careful to utilize only the parts of the im-
ages where sufficient laser light was present in both
beams to avoid large errors due to division by small
numbers [see Fig. 2(e)]. We designed our software to
prompt the user to select a region of interest to avoid
regions of low intensity. The left-hand side of Eq. (4)
is then computed in this region. The software then

fits a horizontal row of data in the middle of the
selected region to the function cos�kxx � �x� and fits a
vertical column of data in the middle of the region to
the function cos�kyy � �y�. From these two one-
dimensional fits, it calculates krel and determines the
angle between the beams.

3. Measuring Prism Beam Deflections

In this section we discuss several methods that we
used to characterize the properties of parallel-plate
beam splitters, penta prisms, right-angle prisms, and
corner cubes. We tested uncoated optics. Light inten-
sity was lost because of imperfect transmission each
time a beam entered or exited a prism. Much larger
losses occurred because of missing reflective coatings
on the beam splitters and the penta prisms (right-
angle prisms and corner cubes do not require reflec-
tive coatings due to total internal reflection). But
even with these losses we could still saturate the
camera. Balancing the intensities of the two interfer-
ing beams was necessary to achieve high-contrast
fringes to get the most accuracy with the fixed bit-
depth of our camera. Our methods have symmetric
losses in each beam, resulting in well-matched beam
intensities.

A. Absolute Beam-Splitter Characterization

The beam splitters we measured were uncoated
plates of BK7 glass with parallel surfaces. As shown
in Fig. 4, when a laser beam passes through an un-
coated piece of glass, surface reflections result in mul-
tiple beams exiting the glass. We are concerned only
with the beam that passes through without reflecting
and the nearly parallel beam resulting from one re-
flection from each surface (labeled 1 and 2 in Fig. 4).
If the two beam-splitter surfaces are exactly parallel,
these two beams will emerge exactly parallel. Other-
wise there will be an angle � between the two exiting
beams (see Fig. 4). By measuring �, the prism wedge
angle � can be inferred.

The relationship between � and � can be found
using Snell’s law and the law of reflection. If beam 1

Fig. 3. Curve fits to find the angle between two beams. Strips through the center of the data from Fig. 2(e) are shown, along with
least-squared fits to the functions cos�kxx � �x� and cos�kyy � �y�. The deviation of the data from the fits is largely due to camera window
reflections. These higher-spatial-frequency, low-contrast fringes average away to a large extent in the curve fit.
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in Fig. 4 defines the z axis and the x axis is defined
such that the angle � is in the x–z plane, in the limit
of small wedge angles the x component of � is related
to the x component of � by


x �
�x

2 � 1 � sin2(�)

n2 � sin2(�)�
1�2

, (5)

where n is the index of refraction of the beam splitter.
The y component of � is given by the same relation-
ship, with 
y and �y replacing 
x and �x.

To measure the wedge angle of parallel-plate beam
splitters we used the configuration shown in Fig. 5. In
this configuration two beam splitters form a Mach–
Zehnder interferometer. Since each of the two beams
undergoes two reflections, the two interfering beams
have similar intensities, resulting in high-contrast
interference fringes. To obtain a good overlap be-
tween the interfering beams and to make the Fresnel
coefficients the same in both beam splitters, the two

beam splitters were placed at similar angles relative
to the incoming beam.

In this arrangement the interference pattern does
not reveal the wedge angle of a single beam splitter,
but gives a combination of the wedge angles of both
beam splitters. To find the wedge angle of a single
beam splitter, we make four measurements using
different combinations of three beam splitters and
use the fact that flipping a beam splitter over effec-
tively reverses the sign of its wedge angle. The first
and second measurements use beam splitters A and
B, with beam splitter B turned over between mea-
surements. The third and fourth measurements use
beam splitters A and C, with beam splitter C turned
over between them. In each of the four configurations
we measure the kx and ky of the interference pattern
to extract the magnitude of the x and y components of
the angle between the outgoing interfering beams
using the methods discussed above.

If �Ax, �Bx, and �Cx represent the x components of the
relative deflection errors of beam splitters A, B, and
C, and the magnitudes of the x components of the
angle between the interfering beams in the four mea-
surements are represented by M1x, M2x, M3x, and M4x,
the four measurements yield the following results:

M1x � �Ax � �Bx, (6)

�M2x � �Ax � �Bx, (7)

�M3x � �Ax � �Cx, (8)

�M4x � �Ax � �Cx. (9)

A similar set of equations can be written for the y
components. Fitting our data with Eq. (4) does not
reveal the sign of the angle between the two interfer-
ing beams. But we can assume a convention in which
the angle between the two interfering beams is de-
fined to be positive for our first measurement. For the
following measurements we must stick to the same
convention. The � sign in the lower three relations
therefore results from the uncertainty in the sign of
the angle between the interfering beams when they
are measured interferometrically.

The equations can be solved for the x component of
the relative deflection angle of each beam splitter as
a function of the four measured angles. But without
knowledge of the sign of the angle between the inter-
fering beams, these expressions cannot be evaluated.
Fortunately, the above system of four equations
yields two independent expressions for �Ax, one in
terms of M1x and M2x and the other in terms of M3x

and M4x. In most cases the requirement that �Ax be
the same as determined by both equations unambig-
uously determines the sign of each measurement
term. Once the signs are determined, the wedge angle
for each of the three beam splitters can be deter-
mined. Using this technique we characterized several
high-precision beam splitters, measuring wedge an-
gles from 1 to 6 rad.

Fig. 4. Generation of two nearly parallel beams with a plate beam
splitter. The gray lines represent laser light. Light enters the beam
splitter in the lower left-hand corner. At each interface the beam is
split into a reflected and a transmitted beam. For most of our
studies we are interested only in the two beams exiting the beam
splitter that are labeled 1 and 2. The angle between the incoming
beam and the normal of the first surface is labeled as �, the angle
between beams 1 and 2 is labeled as �, and the wedge angle of the
glass plate is labeled �.

Fig. 5. Optical setup to measure the wedge angles of parallel-
plate beam splitters.
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B. Relative Penta Prism Characterization

Our application does not place tight requirements on
the absolute angular deflection produced by our
penta prisms. It does, however, require that pairs of
penta prisms be precisely matched. As such we mea-
sured the relative deflection of each matched pair
rather than the absolute deflection of individual
prisms. We did this using the optical configuration
shown in Fig. 6. In this configuration one of the plate
beam splitters, characterized using the methods de-
scribed above, was used to generate two parallel
beams. These beams were then folded at right angles
using a pair of penta prisms. The two beams were
then recombined using a second plate beam splitter.

In this layout the two beam paths are symmetric,
allowing us to make the two path lengths nearly the
same and making for equal intensity losses in each
beam as they reflect off of our uncoated prisms. We
used the same angle of incidence for both beam split-
ters to make the Fresnel coefficients equal. To get the
two interfering beams to overlap, we adjusted the
separation of the penta prisms to make the spacing
between the two beams entering the second beam
splitter equal to the spacing of the two beams exiting
the first beam splitter.

Penta prisms ensure deflection of a beam by a pre-
cise angle in the plane of the prism. If, however, one
prism is tilted out of the plane defined by the other
prism, the two interfering beams would be at an an-
gle to one another determined not by the accuracy of
the prisms but by their relative alignment. For small
misalignments we can think of the light deflection by
the second prism as a fixed deflection in the plane
defined by the first prism plus an out-of-plane deflec-
tion due to misalignment. As such, the magnitude of
the wave vector describing the sinusoidal interfer-
ence pattern measured at the output would equal the
quadrature sum of two orthogonal components: a
component due to errors in the manufacture of the
prisms and a component due to the relative align-

ment of the prisms, as shown in Eq. (10):

krel � (kp
2 � ka

2)1�2. (10)

Here kp represents the component due to the error in
the prism, and ka represents the component due to
the alignment error.

Because krel is at a minimum when there is no
alignment error (i.e., when ka � 0), it is possible to
measure kp by making measurements while adjust-
ing the out-of-plane alignment of one prism. Rather
than searching for a minimum value, we took several
measurements at different alignments and fit our
measurements to the form of equation Eq. (10) to
extract an accurate value for kp. To do this we
mounted one of our prisms on a PZT mount that
enabled fine alignment adjustments. We would man-
ually adjust the alignment such that the minimum of
krel occurred near the middle of the range of our PZT.
We then took images as we scanned the PZT.

Because our fringe analysis method utilizes data
taken at a single moment in time, we were able to
make precise measurements of kp even though our
PZT was unstable. Assuming that ka will be propor-
tional to the voltage V applied to the piezoelectric
element, we can take the measured krel as a function
of V and perform a curve fit to find kp. This curve fit
requires two free parameters (in addition to kp): the
voltage at which ka � 0 and the constant of propor-
tionality between V and ka. As shown in Fig. 7(a),
however, because of the nonlinearity and drift in our
piezoelectric mount, the data do not fit the hyperbolic
form of Eq. (10) well. But since the kp component was
approximately in the horizontal plane of our camera
and ka was in the vertical, we could perform much
better fits when we plotted the total krel versus ky, the
vertical component of krel extracted by our image
analysis software. These fits had no free parameters.
Typical curve fits are shown in Figs. 7(b) and 7(c).

The fit in Fig. 7(b) yields a kp of 64.4 rad�m corre-
sponding to a relative deflection angle of 6.5 rad for
the two prisms with a rms fit error corresponding to
0.38 rad. Scanning the PZT had the side effect of
moving the location of bright and dark fringes such
that some images contained an extremum. But com-
paring the data points in Fig. 7(b) that contain an
extremum to those that did not, it is clear that this
did not significantly reduce the accuracy of the fits. A
fit in which we use just the data for which the image
did not contain an interference minimum or maxi-
mum gives a relative deflection of 7.5 rad. Although
most of the information in the plots is contained in
the lowest points where the hyperbola is dominated
by kp, simply fitting to the two points at the extremes
of the scan gives a reasonable relative deflection of
6.8 rad, implying that only a small number of im-
ages are needed to get accurate results. Similar re-
sults were seen for our other prism pairs, suggesting
a repeatability of this method at the microradian
level. Because of the known deflection error of the
beam splitters used in these measurements, the ab-

Fig. 6. Optical setup to measure relative deflection angles of
penta prisms.
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solute accuracy of our measurements was limited to
�2 rad.

The consistency of the data in Fig. 7 gives a good
idea of the overall accuracy of our fringe measure-
ment technique. One sign of self-consistency is the

fact that the asymptotes of the hyperbola in Fig. 7(b)
cross at a value of krel that is very close to zero. In all
our measurements of precision prism pairs we mea-
sured offsets corresponding to angle measurement
errors ranging from nearly zero to 1.02 rad. Another
indication of the accuracy of our fringe analysis is the
low rms error of the curve fits to Eq. (10). These ran
from 0.40 to 1.24 rad.

C. Right-Angle Prism and Corner Cube Characterization

We characterized the relative deflection of pairs of
right-angle prisms using a scheme similar to the one
we used for penta prisms. Because these prisms de-
flect light back toward the beam splitter, an optical
layout analogous with the one we used to measure
penta prisms cannot be used—a beam reflected off of
one prism would be occluded by the second prism.
One approach would be to use a design in which the
beams were deflected vertically back to a second
beam splitter placed above the first beam splitter. To
avoid the complications of multitiered optics, we in-
stead used the layout shown in Fig. 8. In this design
a single beam splitter is used to split and recombine
the two beams. Unlike the schemes described earlier
in this paper, the intensities of the two interfering
beams are not precisely balanced in this setup;
whereas both paths involve one beam-splitter reflec-
tion, the path through the upper prism undergoes two
more transmissions through beam-splitter surfaces
than the path through the lower prism. Because of
the low reflectivity of the uncoated beam splitters, we
still achieved nearly 100% fringe contrast. This same
setup could also be used to characterize corner cubes.

In addition to the two beams we are interested in,
a third beam traveling through the upper prism in
the opposite direction can have an effect on the in-
terference pattern. This beam undergoes two addi-
tional beam-splitter reflections and is therefore much
less intense. When measuring right-angle prisms, the
prisms can be tilted vertically to walk this stray beam
out of the interference pattern. With the vertical
alignment walked off, the distance between the beam
splitter and the prisms will have to be adjusted to

Fig. 7. Finding the relative deflection error of two penta prisms.
The magnitude of the wave vector describing the interference pat-
tern at different prism alignments is plotted versus (a) the PZT
voltage and (b) the y component of the wave vector. The crosses and
the asterisks represent the actual data extracted from the inter-
ference patterns. The asterisks represent the data points that
should be the most accurate since the image happened to fall
between a light and a dark fringe. The crosses represent data
points for which the image contained a light or dark extremum.
The curves represent equally weighted least-squares fits of the
entire data set to Eq. (10). Data from a different set of prisms that
did not meet our specifications are shown in (c).

Fig. 8. Optical setup used to measure the relative deflection of
two right-angle prisms or corner cubes.
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achieve good overlap of the interfering beams. As
with the penta prism measurements, to measure the
difference in the intrinsic deflection angles of two
right-angle prisms, we scanned the vertical angle of
one of the prisms and then fit the measured relative
beam angles to Eq. (10). Using this method we mea-
sured the relative deflection angle of pairs of high-
quality right-angle prisms. The repeatability of these
measurements was similar to what we achieved with
our penta prism measurements.

To measure the absolute deflection angle of a single
right-angle prism or corner cube we used the scheme
illustrated in Fig. 9. Unlike the other schemes pre-
sented in this paper, this scheme requires that the
beam-splitter angles be chosen carefully. Simpler de-
signs in which one or two beam splitters were used
had problems with stray reflections that resulted in
interference of more than two paths and unequal
intensities of interfering beams. The three-beam-
splitter design allows us to control stray reflections
but requires a different angle of incidence at each
beam splitter. This results in different Fresnel reflec-
tion coefficients at each beam splitter. Also, like our
scheme for relative measurements of right-angle
prisms, in this setup one of the beams undergoes two
more transmissions through a beam-splitter surface

than the other beam. By carefully choosing the beam-
splitter angles, one can make the two pathways over-
lap and be equal in intensity at the camera. This is
easily done with knowledge of the beam-splitter
thickness and index of refraction.

We used this method to measure the absolute de-
flection angles of several high-quality right-angle
prisms as well as a low-quality right-angle prism and
a high-quality corner cube. The high-quality prisms
and the corner cube deflection angles were typically
found to deviate from 180 deg by a few microradians.
The deflection angle of the inexpensive right-angle
prism was found to be much less accurate. Once again
we found repeatability at the microradian level.

4. Components Used

For our measurements we used only the prisms un-
der test and parts available in our laboratory. The
laser was an inexpensive �1 mW helium–neon align-
ment laser (JDS Uniphase, Model 1507P). Because
the prisms and beam splitters did not have reflective
coatings, only �0.01–1% of the laser light reached the
camera depending on the type of prisms being mea-
sured. Even so we still needed significant attenuation
to avoid saturating the camera. The laser had a good
spatial mode and a coherence length long enough to
produce good interference fringes on the asymmetric
Michelson–Morley interferometer mentioned above.
A laser with poorer spatial and temporal qualities
could also have been used. The required spatial mode
can easily be achieved by spatial filtering, especially
considering the low power needed. If the two optical
paths are made equal within �1 mm when measur-
ing the prisms, a short-term linewidth of tens of gi-
gahertz would be sufficient to produce high-contrast
fringes. Although a short coherence length would not
allow collimation to be tested with an asymmetric
interferometer, there are many other ways to ensure
good collimation.

The camera was a $156 closed circuit surveillance
camera connected to a computer frame grabber card.
The low-quality camera resulted in three significant
difficulties. First was the camera’s nonlinear re-
sponse. Our camera was not designed for scientific
work and its response function was not well cali-
brated. As a result, in our first measurements the
cosine function in Eq. (4) did not oscillate between �1
and 1. We attempted to characterize the camera’s
response (surveillance cameras usually have a re-
sponse in which the value of each pixel is proportional
to the intensity of light on the pixel raised to some
power �). But we found that, even with a fixed iris
setting, at high intensities the signal reported on one
pixel depended on the intensity present on other
parts of the chip! But for sufficiently low intensities
the camera response was fairly linear. So our solution
was to reduce light intensities by adding attenuators
in front of the camera until the highest value reported
at any pixel was 80 counts (out of a maximum of 255
counts for the 8-bit camera).

The other two problems with the camera were re-
lated to its low signal-to-noise ratio and to an un-

Fig. 9. Optical setup for absolute measurement of right-angle
prism and corner cube deflection angles.
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coated window on the front of the camera. The signal-
to-noise ratio problem was overcome by averaging 50
frames to produce each image. This took less than 2 s
on our 30 frames�s video camera. The uncoated win-
dow affixed to the camera produced low-contrast in-
terference fringes in our data (see Figs. 2 and 3). We
were unable to remove this window. But by tilting the
camera we were able to make the spatial frequency of
these fringes high enough that they did not confuse
the fitting routines when fitting the much broader
fringes due to the relative angle of the two interfering
beams. Note that Eq. (4) was derived under the as-
sumption that the beams strike the camera near to
normal incidence. Equation (4) is still approximately
correct when we tilt the camera, especially when the
camera is tilted around an axis that is nearly perpen-
dicular to the fringes. Tilting our camera, therefore,
did not change the way that we analyzed our images,
and the residual error due to the camera tilt was
negligible.

The lenses and mirrors we used were standard
research-quality optics that were already available in
the laboratory. Two lenses were used to telescope and
collimate the laser beam before entering the inter-
ferometer. These had to be of reasonable quality to
prevent significant wave-front distortion of the laser.
Any distortion due to these lenses is common to both
of the interfering beams and should have a reduced
effect on the measured fringes. A third lens was used
to demagnify the interference pattern to fit onto the
camera. This lens simply images the interference pat-
tern. Small wave-front errors at this lens do not have
an effect on the measurement, and only its imaging
characteristics need to be considered. Like the lenses,
the mirrors were employed only before the optical
beam was split or after the two paths had been re-
combined such that wave-front distortions were com-
mon to both paths.

After verifying the quality of our parallel-plate
beam splitters, these optics were used in the evalua-
tion of the other prisms. Therefore our measurements
were limited to the accuracy of the beam splitters. It
should be possible to remove this offset by careful
characterization of the beam splitters used and by

making two sets of measurements with the beam
splitters flipped over between them. But given the
��10 surface quality of the beam splitters, it is pos-
sible that the deflection angles for two different 1 cm
sized spots on a beam splitter will differ at the mi-
croradian level even if the optic has no overall deflec-
tion error. Lowering this systematic error therefore
would require either beam splitters with better sur-
face flatness or calibration at the precise locations at
which beams enter and leave the beam splitters.

5. Conclusions

We have demonstrated several relatively simple and
inexpensive techniques to characterize the deflection
angles of parallel-plate beam splitters, penta prisms,
right-angle prisms, and corner cubes. We have
achieved accuracies at the level of 2 rad (0.4 arcsec),
approaching what is possible in high-end commercial
devices. Better results are likely to be possible by
calibrating and removing effects due to imperfect
beam splitters and by using a higher-quality detector.

We acknowledge the contributions of Rebecca Mer-
rill and Elizabeth Cummings. This research was sup-
ported by the Research Corporation and the National
Science Foundation.
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