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Solving one-dimensional acoustic systems using the impedance
translation theorem and equivalent circuits: A graduate level
homework assignmenta)

Brian E. Andersonb) and Scott D. Sommerfeldtc)

Acoustics Research Group, Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA

ABSTRACT:
The natural frequency resonances and sound radiation from one-dimensional acoustic systems are of great interest in

the study of musical instruments, human vocal tract effects on speech, automotive exhaust pipes, duct systems for

temperature control in buildings, and more. The impedance translation theorem is an approach that may be used to

solve for the input impedance and therefore the resonance frequencies of one-dimensional systems. Equivalent cir-

cuits offer another approach to solving one-dimensional systems, though with equivalent circuits you can also solve

for the response at any location in the system, including the radiated sound pressure. At Brigham Young University,

there are two graduate level courses that teach these two techniques. One of the most challenging and memorable

homework assignments from these courses is based on using one of these techniques to analyze a particular acoustic

system and compare its response with the real thing. This paper discusses the basics of these two techniques and

applies them to an analysis of phonemes produced by altering the human vocal tract. Details about the homework

assignments are also given. VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0008932

(Received 25 May 2021; revised 18 October 2021; accepted 11 November 2021; published online 7 December 2021)

[Editor: Daniel A Russell] Pages: 4155–4165

I. INTRODUCTION

The impedance translation theorem and equivalent cir-

cuits are theoretical approaches that may be used to solve

one-dimensional acoustic systems. Impedance translation

allows for the determination of the impedance at one loca-

tion due to the impedance at some distance away from that

location. This process can be repeated several times to trans-

late the impedance of one end of a system to the other end

of the system, even if properties of the system change along

the way. Branches for this one-dimensional system can also

be modeled with the impedance translation theorem by

translating along these one-dimensional branches and then

doing a parallel impedance summation at the junction.

Equivalent circuits may be used to represent these same

types of one-dimensional systems. An equivalent circuit is

an electrical circuit that provides an equivalent model of the

physical interactions of quantities like resistances, inertan-

ces, acoustical compliances, and waveguides with some

combination of series and parallel electrical elements such

as resistors, inductors, capacitors, and generic impedance

elements. The circuit may be solved with traditional loop

and nodal analysis (i.e., Kirchhoff’s circuit laws). The major

advantage of an equivalent circuit approach is that it is

straightforward to couple electrical, mechanical, and acous-

tical domains in a single electrical circuit and quantities

such as velocity, pressure, voltage, and current may be

solved for anywhere in the circuit by hand using linear alge-

bra techniques or by using a software circuit solver.

Theoretical approaches to analyzing one-dimensional

systems by hand with the impedance translation theorem

and equivalent circuits are often taught in graduate acoustics

courses. However, both of these techniques may also be

evaluated with a computational approach, particularly for

one-dimensional systems with varying cross-sections. The

computational approach to solving these systems should

strengthen students’ ability to use this type of approach in

their future research endeavors and employment. In 2016

the American Association of Physics Teachers (AAPT) rec-

ommendations were provided for incorporating computa-

tional experience into undergraduate physics programs.1 In

addition to having a course that specifically focused on

teaching computational approaches to problems, some have

suggested that computational exercises be added to many

courses within the curriculum.2,3 Many physics (and engi-

neering) programs are now including computational exer-

cises into their undergraduate curricula and thus graduate

students in physics and engineering programs should have

the background needed to tackle graduate level computa-

tional exercises.

At Brigham Young University, two graduate level

acoustics courses are offered that cover impedance transla-

tion and equivalent circuits. In the first course, the imped-

ance translation theorem is derived for systems with

transverse waves on a string with arbitrary boundary condi-

tions or impedance changes along the string. Students are

taught how to derive a transcendental equation for a given

a)This paper is part of a special issue on Education in Acoustics.
b)Electronic mail: bea@byu.edu, ORCID: 0000-0003-0089-1715.
c)ORCID: 0000-0001-8783-5243.
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system that allows them to determine the natural frequencies

of the system as seen at the system’s input end. Later, the

impedance translation theorem is applied to longitudinal

waves in one-dimensional fluid systems (e.g., pipes/ducts).

It is at this point in the course that a computational home-

work assignment is given to analyze a particular one-

dimensional acoustic system, such as a human vocal tract.

Over one third of the second course covers equivalent circuit

analysis of one-dimensional, electro-mechano-acoustic sys-

tems. A computational homework assignment in this course

has students use the equivalent circuit modeling approach to

analyze an acoustic system, again such as the human vocal

tract, and analyze the sound radiation from this system.

Thus, one homework assignment is assigned in each of

these two courses to provide a computational experience,

using the impedance translation theorem and then equivalent

circuits, and students typically develop their programming

in MATLAB. An effort is made in the classroom to help stu-

dents get started on these assignments and typically at least

one week is given to the students to work on this homework

project. The homework assignment asks the students to start

with a simplified model of the system by assuming the cross

section is constant all along its length (like a constant cross

section pipe). Then the assignment asks the students to

incorporate a varying cross section along the length of the

system by breaking up the system into shorter pipe segments

that each have a constant cross section but each adjacent

cross section segment may have larger or smaller cross-

sections. Systems such as the human vocal tract, a vuvuzela,

and a trombone provide nice systems in which the sound is

predominately propagating in one dimension and no side

branches need to be considered. Each of these systems can

be divided up into cylindrical cross section segments with a

fixed length or of differing lengths (the majority of the

length of the trombone is a cylindrical tube of constant cross

section and could be represented with one segment for this

portion and then several short length segments to model the

curvature of the trombone’s bell). A flute could be modeled

as a cylindrical cross section system with one-dimensional

wave propagation and side branches. The side branches

introduce some additional complications, such as multiple

locations for sound radiation (introducing sound sources that

interfere with one another and introducing mutual imped-

ance effects) and parallel impedance addition when using

the impedance translation theorem. Analyzing systems with

a varying cross section requires students to develop loops in

their code to handle the cross-sectional changes along the

system’s length.

This paper will center its discussion of this homework

on analyzing the human vocal tract with these approaches.

First, some background information on human vocal pro-

duction will be provided that is typical of what the students

are given as part of this assignment since vocal production

is not a core topic covered in either of these classes. Then an

introduction to the impedance translation theorem will be

given along with instructions on how to use it to solve for

the input impedance to an acoustic system. An introduction

to equivalent circuits will be given along with instructions

on how to use this approach to solve the same vocal tract

system for the input impedance and for the radiated pressure

from the system. Finally, some example results will be pre-

sented and discussed using each approach. A method to

translate acoustic pressures through segments will be pre-

sented so that the impedance translation approach radiation

results may be compared to those using the equivalent cir-

cuit approach. The hope is that this paper can help instruc-

tors develop a similar assignment and potentially even give

this paper to their students to help them get started.

II. HUMAN VOCAL TRACT

Since students who take these two graduate level

courses are typically not versed in human speech produc-

tion, a simplified introduction is given in the homework

assignment description and provided below.

Figure 1 shows a drawing of the human vocal tract sys-

tem.4 When speaking, the human vocal folds (or vocal

cords) are often modeled as a closed end of a pipe and the

mouth is considered to be an open end, thus it is like a

closed-open pipe resonator. The human vocal tract we will

consider is the air-filled system between the vocal folds and

the mouth opening (when the soft palate closes off the nasal

cavity). The tract begins at the vocal folds, passes through

the pharynx at the back of the throat, and continues through

the mouth to the opening in one’s lips. The vocal tract can

include the nasal cavity when the soft palate does not close

it off, but for simplicity we will not consider this possible

portion of the tract. Humans voice many different types of

sounds (phonemes of speech) by changing the cross section

of their vocal tract at various locations along its length (only

vowels will be considered for this analysis). For example,

the cross section of the mouth is strongly affected by adjust-

ments made to the tongue’s position within the mouth and

the size of the opening between the lips. These changes,

along with additional changes (such as constricting one’s

FIG. 1. Simplified schematic drawing of a human vocal tract cross section.

Used with permission from Ref. 12.
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pharynx) allow humans to voice many different vowel

sounds, even when they are at the same pitch.

To produce voiced speech, the lungs force air up the tra-

chea into the larynx where the vocal folds are. The forced

air pushes the vocal folds apart and then rushes through the

opening between our vocal folds (this opening is called the

glottis), which according to Bernoulli’s principle, creates a

low pressure region in the glottis resulting in an inward

force on the vocal folds tending to close them. When

humans voice speech, their vocal folds are also in a state of

tension. Tension in the vocal folds also tends to close them.

Once the vocal folds are closed, the forced air builds up

pressure and pushes them back open and the cycle repeats

itself (normally at a rate of around 120 Hz for men and

200 Hz for women). Tension of the vocal folds can be con-

trolled to increase or decrease the rate of this cycle (the

applied tension also changes the mass per unit length of the

folds) and thus the pitch of the voice. This cycle of vocal

fold vibration creates a series of input pulses or a glottal air-

flow waveform presented to the vocal tract that is similar to

a modified sine wave with everything below zero missing (a

sine wave with just the positive bumps and zero in between).

Note this assumed glottal airflow only results in even har-

monic partials and a modified empirical model will be given

later that has both odd and even harmonic partials present.

The period of this cycle corresponds to the fundamental fre-

quency of the voice or the pitch of the voice. When speech

is voiced, there are many harmonic partials of the funda-

mental frequency. The vocal tract has certain natural fre-

quency resonances (so called formant frequencies) that shift

up or down with changes to the tract’s shape and thus

change which partials are emphasized. Humans can perceive

different vowel sounds based on which partials are

emphasized.

Three common vowel sounds, /K/ (as in “fun”), /i/ (as

in “feet”), and /a/ (as in “hot”) will be considered. Story

et al.5 presented measurements of vocal tract cross-sections

for various voiced phonemes based on magnetic resonance

imaging measurements. They presented several cross-

sectional views of the vocal tract of a 29 year old male sub-

ject, from which they extracted the cross-sectional area of

the tract along its length. Table III in their paper gives the

cross-sectional area as a function of length for several

voiced phonemes at 0.397 cm intervals along the length.

To improve upon the pulsed glottal airflow model, by

incorporating both odd and even harmonic partials, a

sawtooth wave is used to begin with rather than a sine wave.

Because the glottal airflow is not as abrupt as a sawtooth

wave would suggest, a modified sawtooth wave, with N
number of terms is created,

y tð Þ ¼
XN

n¼1

1

n0:7

� �
� 2

np
1

�1ð Þn sin 2pnf0tð Þ
� �

; (1)

where f0 is the fundamental frequency of the sawtooth wave

and corresponds to the rate of vocal fold vibration. The term

in the square brackets is the usual term used to create a saw-

tooth wave, but the term in curly brackets was determined

empirically to produce a waveform that more closely matches

a typical glottal airflow waveform. The negative values in the

function y tð Þ are then set equal to zero. The use of N ¼ 15

terms seems to be sufficient. Figure 2 displays a glottal air-

flow time waveform and spectrum with f0 ¼ 120 Hz obtained

using this method.

III. IMPEDANCE TRANSLATION THEOREM

The impedance translation theorem can be used to

determine the impedance at x in a one-dimensional system

due to the impedance a distance, L, away from x. The

impedance translation theorem is given by Pierce6 and by

Kinsler et al.7 in their Eqs. (2.9.22), (2.9.30), (3.7.3), and

(10.2.4). The general form of the impedance translation the-

orem in the acoustical impedance domain is

ZA xð Þ ¼ Z0

ZA xþ Lð Þ þ jZ0tan kLð Þ
Z0 þ jZA xþ Lð Þtan kLð Þ

" #
; (2)

where ZA xð Þ is the acoustical impedance you wish to solve

for, ZA xþ Lð Þ is the acoustical impedance a distance, L,

away from x, Z0 ¼ q0c=S is the characteristic acoustic

impedance (where q0 is the mass density of the fluid, c is

the speed of sound in the fluid, S is the cross-sectional area

of the system between x and xþ L), and k is the lossless

acoustic wavenumber. The theorem can be used in the

mechanical impedance domain by using the characteristic

mechanical impedance, q0cS, in place of the characteristic

acoustical impedance, q0c=S, and by translating a mechani-

cal impedance, ZM xþ Lð Þ, through a distance L to determine

the mechanical impedance at x, ZM xð Þ. Similarly, it may be

used with the characteristic specific acoustic impedance,

q0c, and specific acoustic impedances at x and at xþ L.

FIG. 2. (a) Pulsed glottal airflow waveform used as a source input. (b) Spectrum of the glottal airflow waveform.
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The specific acoustic impedance form is useful when con-

sidering how normal incidence plane waves travel through

layered media, in which case the cross-sectional area is not

defined. The acoustical and mechanical impedance versions

are useful when the one-dimensional system has a defined

cross-sectional area. When translating through a fluid sys-

tem with an abrupt change in cross-sectional area between

segments, there exists a continuity of volume velocity across

such a junction, not a continuity of particle velocity. Thus,

when analyzing wave propagation through an acoustical sys-

tem, it is critical to use the acoustical impedance version of

the theorem rather than the mechanical impedance or spe-

cific acoustic impedance version of the theorem, since

acoustical impedance is defined in terms of volume velocity.

It should be noted that the impedance translation theorem

was developed for systems operating in the steady state,

assuming a time harmonic dependence, ejxt. Additionally,

the translation through a one-dimensional segment does not

assume a lumped element approach, and instead Eq. (2) can

handle resonances in the length of the segment (but not reso-

nances in the cross section of the segment). Neither the

length of each segment nor the overall length of the system

must be small compared to a wavelength, but the cross-

sectional dimensions must always be small compared to a

wavelength.

Consider the acoustic system depicted in Fig. 3. The

acoustical impedance at several locations will be discussed

and determined using the impedance translation theorem to

illustrate the impedance translation theorem modeling pro-

cess. There is a piston at location x0, a Helmholtz resonator

side branch at location x1, a constriction between locations

x2 and x3, and an opening to the surrounding air at location

x4. We will determine the input acoustical impedance seen

by the piston at x0 due to the radiation impedance at x4,

according to how the system modifies it between x0 and x4.

The radiation impedance, ZAR, at x4 can be assumed to be

the same radiation impedance that would be experienced as

sound is radiated from the end of a long circular pipe of

radius a,8 or by a piston at the end of a long tube (an

unflanged piston),

ZA x4ð Þ ¼ ZAR ¼
0:247q0c kað Þ2

S
þ j

0:613q0c kað Þ
S

: (3)

Translating ZAR from x4 to x3 to determine the acoustical

impedance experienced at x3 looking towards the open end

requires the use of Eq. (2),

ZA x3ð Þ ¼ Z4

ZAR þ jZ4tan kL4ð Þ
Z4 þ jZARtan kL4ð Þ

� �
; (4)

where Z4 is the characteristic impedance q0c=S4: ZA x3ð Þ
may then be translated through the constriction using a simi-

lar process to obtain ZA x2ð Þ. The impedance at x1 due to the

upper branch of the system, ZAU x1ð Þ, can be determined by

translating ZA x2ð Þ to x1.

If we assume the lower branch of the system is simply

the acoustical impedance of a Helmholtz resonator, ZAL x1ð Þ,
then we can determine the total impedance at x1, ZA x1ð Þ,
from the parallel summation of ZAU x1ð Þ and ZAL x1ð Þ

ZA x1ð Þ ¼
1

1

ZAU x1ð Þ
þ 1

ZAL x1ð Þ

¼
ZAU x1ð ÞZAL x1ð Þ

ZAU x1ð Þ þ ZAL x1ð Þ
: (5)

Finally, the input acoustical impedance, ZA x0ð Þ, presented to

the piston may be determined by translating ZA x1ð Þ to x0. It

is worth noting that technically, q0, c, and k (the wave speed

within the definition of k) can vary from segment to seg-

ment, for example, if there is a different fluid medium in

each segment, or changes to the medium due to things like a

varying temperature.

The resonance frequencies of the system, as seen by the

source, are dependent on whether the acoustic source is mod-

eled as a pressure source or as a volume velocity source. For

the vocal tract system, it is assumed that resonance occurs

when the acoustic volume velocity is maximal at the opening

of the mouth for sound radiation. A higher volume velocity at

the mouth leads to a higher far field pressure. Students are

asked what type of source should be assumed for the acoustic

system they are asked to study. The source type then deter-

mines how to find the resonance frequencies of the system

from the input impedance as discussed in Sec. V.

For the application of the impedance translation theorem

to the vocal tracts used to produce the phonemes /K/, /i/, and

/a/, typically the students are asked to start with a simplified

model for /K/, instead of using the varying cross-sectional

data given by Story et al.5 The /K/ vocal tract can be

roughly modeled as a constant cross-sectional area pipe4

using the average cross-sectional area of the tract informa-

tion given by Story et al., 1.87 cm2, and the overall length

of 16.67 cm. The radiation impedance can thus be translated

from the mouth up to the location of the vocal folds and the

resonances of the tract may be determined from the input

impedance. For a so called neutral vocal tract of constant

cross-sectional area along the length, this should result in

odd harmonic multiples of the fundamental resonance of

the tract.

Students are then be asked to compute the input imped-

ance of a varying cross-sectional area vocal tract. Figure 4

displays the cross-sectional data from Story et al. for the
FIG. 3. Example acoustic system analyzed with impedance translation theo-

rem and equivalent circuit techniques.
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vocal tracts configured to generate the /K/, /i/, and /a/ pho-

nemes. A similar process to that described earlier in this

section using Eqs. (2), (4), and (5) may then be attempted.

The vocal tract should be divided up into cylindrical seg-

ments. With each translation, A and L of the segment may

be varied. Students are free to use whatever computational

tool they prefer to solve for the frequency-dependent input

impedance but it may be wise to suggest that they use a

technical programming language such as MATLAB. One issue

with allowing students to use various different technical

programming languages is that it becomes harder for the

students to work together on their programming and diffi-

cult for a grader to attempt to locate where a student may

have gone wrong in their submitted code. The suggestion

can be given to compute the frequency-dependent radiation

impedance at the mouth and then write a “for” loop to step

through the impedance translations through each segment

of the vocal tract. The advantage of a programming lan-

guage like MATLAB is that the complex, frequency-

dependent impedance becomes an array of numbers.

Multiple arrays of numbers may be multiplied or divided,

frequency value by frequency value, within a single line of

code representing Eq. (2). Alternatively, two “for” loops

may be needed (if matrix operations cannot be handled in a

single operation like they can in MATLAB) with the inner

loop computing the translated impedance for one segment

at each frequency, and the outer loop stepping through each

segment.

IV. EQUIVALENT CIRCUITS

Another approach to model one-dimensional wave

propagation through a complicated acoustical system is to

use equivalent electrical circuits to represent the interac-

tions of electrical, mechanical, and acoustical components

in the system. It should be noted that the equivalent circuit

approach and the impedance translation theorem yield the

same solutions but differ in the way that the problem is

approached. The significant advantage of equivalent cir-

cuits is that there is a straightforward approach to obtain

the pressure or the volume velocity at any location within

the system, whereas obtaining these quantities with the

impedance translation theorem approach at any location in

the system is not typically taught. Additionally, the equiva-

lent circuit approach more easily allows coupling of acous-

tical systems with mechanical and electrical system

components. Here, we will only consider acoustical sys-

tems for brevity.

Segments of an acoustical system may be modeled as

lumped elements in the equivalent circuit or as a waveguide

to include the modeling of resonances within a given seg-

ment, by using a so-called T-network circuit. When acousti-

cal systems are to be modeled, the acoustical-impedance

equivalent circuit may often be drawn by inspection.

Atmospheric pressure is represented by an electrical ground

in an acoustical impedance domain circuit. Pipes of a short

length L with respect to a wavelength may be represented by

an inductor of inductance q0L=S, while cavities of volume V
and of dimensions that are each small with respect to a

wavelength may be represented by a grounded capacitor of

capacitance V= q0c2
� �

. Locations in the acoustical system

where fluid can flow into two or more different branches of

the system are modeled as nodes in the electrical circuit.

The acoustic pressure is represented as an equivalent electri-

cal voltage in the circuit, or potential quantity, while the vol-

ume velocity is represented as an equivalent electrical

current in the circuit, or flow quantity. Constant-amplitude

pressure sources are modeled as voltage sources and

constant-amplitude volume velocity sources are modeled as

current sources. An electrical resistor can model resistance

to fluid flow, such as a thermoviscous acoustic resistance.

Sometimes a frequency-dependent resistor or generic

impedance box is needed, such as when any frequency

dependence of the acoustic resistance or a complex radiation

impedance needs to be modeled.

Equivalent circuits may be used to model the system

depicted in Fig. 3. Figure 5(a) shows an equivalent circuit

for this acoustic system modeled in the acoustical domain

entirely using lumped acoustic elements. The assumed con-

stant pressure input provided by the piston is represented as

a constant voltage source. The segment of length L1 is repre-

sented by a series inductor of acoustic mass, MA1. A node is

then introduced with one leg of the circuit representing the

series combination of the acoustic mass, MA5, and acoustic

compliance, CA, of the Helmholtz resonator (here we

assume the resonator has zero internal resistance). Recall

that capacitors need to be grounded. The other leg of the cir-

cuit follows the upper branch of the system. This upper

branch can be modeled as three series inductors to represent

the three acoustic mass segments, MA2, MA3, and MA4.

Finally, the radiation impedance is what connects the system

to the atmospheric pressure so this impedance is represented

by a frequency-dependent generic impedance box, con-

nected in series to the inductors, and grounded on the other

side.

FIG. 4. Cross-sections of the human vocal tracts for the vowel phonemes /

K/, /i/, and /a/ as given by Story et al. (Ref. 13).
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Figure 5(b) depicts an equivalent circuit for the acous-

tic system in Fig. 3, except in this case waveguide

T-network circuits are used to model each of the pipe seg-

ments in the top branch of the system, replacing the induc-

tors MA1, MA2, MA3, and MA4. The two impedance boxes on

the horizontal arms of a T-network are identical and have

the form

ZATH1 ¼ j
q0c

S1

tan
kL1

2

� 	
; (6)

while the impedance box on the vertical arm of the T-

network has the form9,10

ZATV1 ¼ �j
q0c

S1

csc kL1ð Þ: (7)

The equivalent circuit in Fig. 5(a) may be used to solve for a

valid, low-frequency solution where the segments of the sys-

tem are still considered small in length compared to an

acoustic wavelength. The equivalent circuit in Fig. 5(b) may

be used to solve for valid solutions at any frequency, so long

as the cross-sectional dimensions remain small compared to

a wavelength and allow for one-dimensional wave propaga-

tion to be assumed.

In order to solve for the input impedance of this acous-

tic system, using either equivalent circuit, the impedance of

the entire circuit downstream of the source may be deter-

mined using series and parallel impedance addition rules.

The input impedance obtained in this manner using the cir-

cuit in Fig. 5(b) yields an identical input impedance to the

one obtained if an impedance translation theorem approach

was used instead. The same guidelines apply for determin-

ing the resonance frequencies seen by the source as those

described in Sec. V. for constant pressure and constant vol-

ume velocity sources. For the vocal tract depicted in Fig. 4,

a “for” loop can again be constructed to perform the neces-

sary series and parallel impedance summations to determine

the input impedance.

As previously mentioned, the advantage of using the

equivalent circuit approach is that one can use a familiar

Kirchhoff loop analysis approach to solve for the voltage at

any location in the circuit and thus determine the pressure at

that location. For every circuit loop, the direction of a cur-

rent flowing throughout that loop is assigned (typically the

clockwise direction). Then one sums up all of the voltages

and voltage drops as you move around that loop. Each volt-

age summation equation can be arranged such that voltages

produced by voltage sources (pressure sources) can be

placed on the right side of the equation and the voltage

drops at impedances around the loop can be lumped together

multiplied by the appropriate current (volume velocity) in

that loop. For each element that is included in two loops, the

impedance of that element is also multiplied by the current

(volume velocity) in the adjacent loop and this product is

added to the voltage summation equation. These summation

equations can then be translated to a matrix form. As an

example, the voltage-drop summation equations for the cir-

cuit in Fig. 5(a) would be

jxMA1 þ jxMA5 þ
1

jxCA

� 	
U1

� jxMA5 þ
1

jxCA

� 	
U2 ¼ p;

� jxMA5 þ
1

jxCA

� 	
U1 þ

1

jxCA
þ jxMA5

�

þjxMA2 þ jxMA3 þ jxMA4 þ ZAR

	
U2 ¼ 0: (8)

Equation (8) can be written in matrix form as

jxMA1 þ jxMA5 þ
1

jxCA

� 	
� jxMA5 þ

1

jxCA

� 	

� jxMA5 þ
1

jxCA

� 	 1

jxCA
þ jxMA5 þ jxMA2 þ � � �

…þ jxMA3 þ jxMA4 þ ZAR

0
B@

1
CA

2
66666664

3
77777775

U1

U2

( )
¼

p

0

 !
: (9)

The voltage-drop summation equations for the circuit in Fig. 5(b) would be

FIG. 5. Equivalent circuit models for the system depicted in Fig. 3 using (a) a purely lumped-element approach and (b) a T-network, waveguide approach.
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ZATH1 þ ZATV1ð ÞU1 � ZATV1ð ÞU2 ¼ p;

� ZATV1ð ÞU1 þ ZATV1 þ ZATH1 þ jxMA5 þ
1

jxCA

� 	
U2 � jxMA5 þ

1

jxCA

� 	
U3 ¼ 0;

� jxMA5 þ
1

jxCA

� 	
U2 þ

1

jxCA
þ jxMA5 þ ZATH2 þ ZATV2

� 	
U3 � ZATV2ð ÞU4 ¼ 0;

� ZATV2ð ÞU3 þ ZATV2 þ ZATH2 þ ZATH3 þ ZATV3ð ÞU4 � ZATV3ð ÞU5 ¼ 0;

� ZATV3ð ÞU4 þ ZATV3 þ ZATH3 þ ZATH4 þ ZATV4ð ÞU5 � ZATV4ð ÞU6 ¼ 0;

� ZATV4ð ÞU5 þ ZATV4 þ ZATH4 þ ZARð ÞU6 ¼ 0: (10)

The matrix form of Eq. (10) will not be given here for

brevity.

One may then use Cramer’s rule to solve for any one

of the volume velocities in the circuit loops.11,12 Cramer’s

rule is a linear algebra technique to solve for an indepen-

dent variable from the ratio of the determinants of two

matrices and can be used to solve for the current in a

particular loop. If the volume velocity in the second loop of

the circuit in Fig. 5(a) is desired, then the column vector of

pressures replaces the second column of the impedance

matrix of Eq. (9), and the determinant of this modified

matrix divided by the determinant of the unmodified

impedance matrix of Eq. (9) is equal to the volume velocity

in the second loop

U2 ¼

jxMA1 þ jxMA5 þ
1

jxCA

� 	
p

� jxMA5 þ
1

jxCA

� 	
0






















jxMA1 þ jxMA5 þ

1

jxCA

� 	
� jxMA5 þ

1

jxCA

� 	

� jxMA5 þ
1

jxCA

� 	 1

jxCA
þ jxMA5 þ jxMA2 þ � � �

…þ jxMA3 þ jxMA4 þ ZAR

0
B@

1
CA





























: (11)

Once the volume velocity in the loop containing ZAR is

known, the voltage drop (representing pressure) across ZAR

may be solved for and is equal to the pressure at x4. Note

that this pressure is a near-field radiated pressure, and is nei-

ther equivalent to nor directly proportional to, the far-field

radiated sound pressure. When the far-field pressure from a

loudspeaker in a half space is desired, it can be estimated

after knowing the velocity of the loudspeaker’s dia-

phragm.13 The velocity of the loudspeaker’s diaphragm

multiplied by the area of the diaphragm is its volume veloc-

ity. Typically, one uses the diaphragm volume velocity, UD,

to estimate the radiated sound power in the near field

WNF ¼
1

2
UDj j2Re ZARf g; (12)

where Re ZARf g means taking the real part of ZAR, which is

the radiation resistance. The assumption can be made that

the propagation of sound from the near field to the far field

is lossless, meaning no loss in sound power between the

near field and the far field and thus WNF ¼ WFF, the far field

radiated sound power. Then assuming spherical wave radia-

tion, the far-field radiated sound pressure, pFF, at some dis-

tance, r, away from the loudspeaker can be related to the

time averaged sound power, WFFh iT ,

pFF rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WFFh iTq0c

2pr2

r
: (13)

The far-field radiated sound power from a directional source

radiating into a half space, W1=2

� 
T
, can be related to the

sound power from an omnidirectional source through the

directivity factor, c, of the directional source. A half space

may be assumed if the vibrating diaphragm of a loudspeaker

is assumed to radiate sound like a baffled circular piston.

Thus, the on-axis, far-field radiated sound pressure from a

directional source, pFF r; 0; 0ð Þ, is then

pFF r; 0; 0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1=2

� 
T
cq0c

2pr2

s
: (14)
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The volume velocity through ZAR of a system, like the

one depicted in Fig. 5(b), can be used in an analogous man-

ner to estimate the radiated sound pressure from an acoustic

system, such as from the human mouth,

pFF r; 0; 0ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UDj j2Re ZARf gcq0c

4pr2

s
: (15)

Finally, for a baffled circular piston, the directivity factor is

c ¼ kað Þ2

1� J1 2kað Þ
ka

; (16)

where J1 2kað Þ is a Bessel function of order 1 with an argu-

ment 2ka. The opening to the human mouth is, thankfully,

not in an infinite baffle but this provides an assumption that

can be used for a homework assignment.

In order to model vocal tract systems with equivalent

circuits, such as those depicted in Fig. 4, one can construct

an impedance matrix such as that shown in the square brack-

ets of Eq. (9) and use Cramer’s rule. This method requires a

similarly complex computational code to be developed as

was done with the impedance translation theorem approach.

In some ways, the code required is more difficult to structure

and there are more chances for error using Cramer’s rule

and equivalent circuits, partly because Cramer’s rule

requires the construction of two matrices (often tri-diagonal)

to solve for the radiated volume velocity needed for Eq.

(15). The suggestion of having students use the same pro-

gramming language and many other general suggestions

given in Sec. III also applies for a computational homework

assignment using equivalent circuits.

V. EXAMPLE RESULTS

For the /K/ phoneme vocal tract, using the data pro-

vided by Story et al.,5 the magnitude of the input impedance

is plotted in Fig. 6(a) and the imaginary part of the input

impedance (input reactance) is plotted in Fig. 6(b). The

authors verified that both the impedance translation

approach and the equivalent circuit approach yield the exact

same results.

A. Determining resonance frequencies from
input impedance

If students are asked to determine the resonance fre-

quencies of the vocal tract by only using the input imped-

ance information; for example, if they only use the

FIG. 6. (Color online) (a) Input impedance magnitude as a function of frequency for the phoneme /K/. (b) Reactance of the input impedance for the phoneme

/K/. (c) Far field pressure radiation as a function of frequency for the phoneme /K/. (d) Transfer impedance magnitude as a function of frequency for the pho-

neme /K/. The blue dotted lines denote the peak frequencies of the input impedance and the red dashed lines correspond to positive-slope, zero crossings of

the input reactance.
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impedance translation approach discussed in Sec. III, what

criteria should they use? Let us consider sources generating

sound in a pipe-like system that has a source at one end and

is open at the other end to radiate sound. Resonance will be

defined here as the frequencies for which the far field radi-

ated pressure is increased [the radiated sound power is also

increased, see Eq. (14)] due to the system’s response. This

also corresponds to when the volume velocity of the open

end of the system is maximum [see Eq. (15)].

The definition of resonance seems to vary among com-

monly used textbooks in acoustics. The various definitions

state that resonance frequencies occur when the reactance of

the input impedance goes to zero,7 when the pressure ampli-

tude becomes unbounded,14 and that it always occurs at

impedance minima.15 Garrett16 initially defines resonance as

when the reactance goes to zero, but then later explores the

case of a finite string with either a displacement-driven or a

force-driven excitation. Importantly, Garrett makes it clear

that in the displacement-driven case, in order to obtain large

string velocities, i.e., resonance, the force required must go

to infinity, meaning that the input impedance of a

displacement-driven driver must be very large at resonance.

Dudley and Strong17 questioned why resonance frequencies

are often generalized in textbooks to be defined in terms of

zero reactance. They indicated that sometimes resonance

frequencies are those for which the input impedance is max-

imum. It makes the most sense to define resonance frequen-

cies as those in which a quantity of interest is largest, hence

why here we will define resonance as when the radiated

pressure is emphasized by the system.

For the vocal tract, mechanical-reed instruments, and

lip-reed instruments, resonance occurs at frequencies corre-

sponding to the peaks of the input impedance magnitude,

rather than when the reactance goes to zero.4 These instru-

ments have sources whose motion is not as greatly impacted

by the ways in which waves transit the instrument, meaning

these sources have a high internal impedance and can be

modeled as constant velocity sources (or constant volume

velocity sources). At resonance, for such a system the source

must “work very hard” (exert a lot of force) to get a large

velocity response from the system at the open end, but

because the source has a large internal impedance, it has an

infinite ability to do so (infinite internal impedance). At res-

onance at the source input, the velocity is a fixed value but

the pressure can be very large, thus the input impedance

should be very large at resonance. For a constant pressure

source, such as found in air-jet instruments, resonance fre-

quencies for which the radiated sound pressure is empha-

sized by the system correspond to when the reactance of the

input impedance is zero with a positive slope (and overall

impedance minima). Note that these conditions hold for sys-

tems with little to no internal losses, such as the vocal tract

system modeled here (no damping is included in the vocal

tract).

The equivalent circuit approach may be used to deter-

mine the far field pressure as described in Sec. IV and in Eq.

(15). The pressure spectrum for the phoneme /K/ is depicted

in Fig. 6(c). It is instructive to compare the spectrum of the

glottal air flow shown in Fig. 2(b) to that in Fig. 6(c). The

amplitudes of the various harmonics of the fundamental fre-

quency (harmonic partials) are modified (filtered) by the

individual vocal tract. Often, partials corresponding to

higher harmonics are the loudest in the resulting spectra.

One may then observe that the harmonic partials that have

the largest amplitudes, or at least the largest rise in ampli-

tude relative to the partial amplitudes in Fig. 2(b), are the

ones closest to the formant frequencies, which are identified

as the peaks in the input impedance magnitude in Fig. 6(a);

hence why we define resonance the way we do. Dividing the

far field pressure by the input volume velocity yields a trans-

fer impedance that shows more clearly how some partials

are amplified (resonance) relative to other partials due to

their proximity to the peaks of the transfer impedance,

which correspond to the formant frequencies of the vocal

tracts. The transfer impedance spectrum for the phoneme/K/

is depicted in Fig. 6(d).

B. Pressure translation and volume velocity
translation

The impedance translation theorem allows one to trans-

late an impedance from one end of a pipe segment to

another and include resonance effects within that segment.

The authors are unaware of an extension of this approach to

translating a pressure from one end of a segment to another

or a volume velocity from one end to another. The spatial

dependence of the pressure, p xð Þ, in a one-dimensional pipe

segment may be described by

p xð Þ ¼ Acos kxð Þ þ Bsin kxð Þ; (17)

where A and B are constants determined by the boundary

conditions. The particle velocity, u xð Þ, in the segment may

be obtained via the one-dimensional, linearized Euler’s

equation q0ð@u=@tÞ ¼ �@p=dx, and by assuming time har-

monicity [p x; tð Þ ¼ p xð Þejxt],

u xð Þ ¼ j

q0c
�Asin kxð Þ þ Bcos kxð Þ½ �: (18)

Thus, the spatial dependence of the acoustical impedance,

ZA xð Þ, is

p xð Þ
u xð ÞS

¼ p xð Þ
U xð Þ

¼ ZA xð Þ ¼ �j
q0c

S

Acos kxð Þ þ Bsin kxð Þ
�Asin kxð Þ þ Bcos kxð Þ

" #
;

(19)

where U xð Þ is the volume velocity. Consider a pipe that is

of length, L, that spans from x ¼ 0 to x ¼ L. At x ¼ 0, Eq.

(17) yields p xð Þjx¼0 ¼ p 0ð Þ ¼ A. At x ¼ L, Eq. (19) can be

solved for B in terms of p 0ð Þ and ZA Lð Þ,

B ¼ p 0ð Þ
�j

q0c

S
þ ZA Lð Þtan kLð Þ

ZA Lð Þ þ j
q0c

S
tan kLð Þ

2
64

3
75: (20)
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Substitution back into Eq. (17) yields an expression for p Lð Þ
in terms of p 0ð Þ and ZA Lð Þ

p Lð Þ ¼ p 0ð Þ cos kLð Þ þ
�j

q0c

S
þ ZA Lð Þtan kLð Þ

ZA Lð Þ þ j
q0c

S
tan kLð Þ

sin kLð Þ

2
64

3
75

¼ p 0ð Þ ZA Lð Þ
ZA Lð Þcos kLð Þ þ j

q0c

S
sin kLð Þ

2
4

3
5: (21)

This means that p Lð Þ may be determined once p 0ð Þ is known

and ZA Lð Þ is known. ZA Lð Þ is the impedance seen at x ¼ L
when looking in the direction of x > L. Recognizing that

ZA Lð Þ ¼ p Lð Þ=U Lð Þ allows U Lð Þ to be determined if p 0ð Þ
and ZA Lð Þ are known,

U Lð Þ ¼ p 0ð Þ 1

ZA Lð Þcos kLð Þ þ j
q0c

S
sin kLð Þ

2
4

3
5: (22)

Expressions for U Lð Þ in terms of U 0ð Þ or for p Lð Þ in terms

of U 0ð Þ may be determined by using the relation

ZA 0ð Þ ¼ p 0ð Þ=U 0ð Þ.
Thus, once the impedance translation theorem has

determined the input impedances at each segment junction,

then p 0ð Þ or U 0ð Þ on one end of a segment may be used to

translate to p Lð Þ or U Lð Þ on the other end of the segment.

This process can be repeated for each segment from the

vocal folds through to the pressure or volume velocity at the

mouth. Then Eq. (15) may be used to compute the far field

pressure. Carrying out this process for the /K/ phoneme

vocal tract yields the exact same far field pressure spectrum

shown in Fig. 6(c) and yields the same transfer impedance

shown in Fig. 6(d).

C. Auralization of phonemes

The complex, far field pressure spectrum that results

from Eq. (15) using either the pressure translation approach

or the equivalent circuit approach may be used to create

time waveforms that auralize the phonemes modeled. An

inverse fast Fourier transform may be used to compute these

time waveforms. Programs such as MATLAB can create a sym-

metric spectrum to use in the inverse fast Fourier transform.

The computed frequency spectrum from 0 Hz up to the high-

est frequency computed is reversed in frequency space and

then the complex conjugates of these frequencies are added

on as the frequencies in the spectrum from the highest fre-

quency computed, which is now effectively the Nyquist fre-

quency, up to twice the highest frequency computed, which

is now effectively the sampling frequency. The resulting

time waveforms are steady state simulated sounds of the

phonemes. The linked multimedia files provide examples of

the sound of three simulated phonemes:

Mm. 1. Auralization of the phoneme /K/ produced from the

far field pressure computed using either the pressure

translation approach or the equivalent circuit approach

with a fundamental frequency of 120 Hz. This is a file

of type “wav” (172 KB).

Mm. 2. Auralization of the phoneme /i/ produced from the

far field pressure computed using either the pressure

translation approach or the equivalent circuit approach

with a fundamental frequency of 120 Hz. This is a file

of type “wav” (172 KB).

Mm. 3. Auralization of the phoneme /a/ produced from the

far field pressure computed using either the pressure

translation approach or the equivalent circuit approach

with a fundamental frequency of 120 Hz. This is a file

of type “wav” (172 KB).

D. Assignment assessment

The impedance translation assignment has been given in

the first course, as mentioned in the introduction, a total of three

different semesters to 18 students. A formal pedagogical study

of student learning has not been conducted. However, these 18

students were recently asked for feedback on this specific

assignment. None of them are current students in the course

and it has been at least a year since each of these students has

worked on the assignment. Thus, the students should not feel

any pressure to rate the assignment higher because they are still

enrolled in the course. The former students were asked “on a

scale of 1–10, how much did this assignment help you develop

computational skills?” (10 meaning it helped them tremen-

dously). The average numerical response was 6.9, with two of

the students giving a 3 and a 5 score because they felt they

already had very strong computational skills. The students who

responded with a higher number of responses indicated that the

assignment forced them to develop their programming skills

and ask for help. Then they were asked “on a scale of 1–10,

how much did you enjoy the idea of the assignment, to model a

realistic system?” (10 meaning they enjoyed it a lot). The aver-

age response was 9.1 and several students commented that they

really enjoyed the opportunity to study a realistic system and

apply what they had learned. Finally, they were asked “On a

scale of 1–10, how successful do you think you were in this

assignment?” (10 meaning they felt very successful). They

responded with an average score of 7.6. Some of them com-

mented that they feel that they could probably be more success-

ful if they tried the assignment over again now that they have

developed more programming skills in their research. Many of

them commented on how hard the assignment was and some

commented that the assumptions they made probably impacted

their success with the assignment. Thus, the assignment was

challenging, the students enjoyed it, and many said it helped

them develop programming skills.

The equivalent circuit assignment has been given in the

second course a total of two different semesters to 11 stu-

dents, though it has been four years since the last time this

assignment was given. Author B.E.A. will be regularly
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teaching this course again and plans to regularly give this

assignment moving forward. No assessment of this assign-

ment has been done.

VI. CONCLUSION

This paper has described the basics of the impedance

translation theorem and the equivalent circuits modeling

techniques. A computational exercise has been described

for each of two graduate level courses that each utilize

one of these techniques. The human vocal tract was given

as an example system that could be solved with either

approach. With either technique, the input impedance may

be solved for and it was determined that, for this system,

the peaks of the input impedance magnitude correspond to

the resonances of the vocal tract. These resonances

amplify the radiated pressure near the vocal tract reso-

nance (formant) frequencies. A brief discussion has been

given of how the definition of resonance can depend on

the type of source that is assumed. A technique was pre-

sented in which the pressure or volume velocity may be

translated through various segments of a system using an

impedance translation type approach. Suggestions were

given for how one could auralize the phonemes of a par-

ticular vocal tract.
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