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Complex scalar fields charged under a global Uð1Þ symmetry can admit nontopological soliton
configurations called Q-balls, which are stable against decay into individual particles or smaller Q-balls.
TheseQ-balls are interesting objects within quantum field theory, but are also of phenomenological interest
in several cosmological and astrophysical contexts. The Q-ball profiles are determined by a nonlinear
differential equation, and so they generally require solution by numerical methods. In this work, we derive
analytical approximations for the Q-ball profile in a polynomial potential and obtain simple expressions
for the importantQ-ball properties of charge, energy, and radius. These results improve significantly on the
often-used thin-wall approximation and make it possible to describe Q-balls to excellent precision without
having to solve the underlying differential equation.
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I. INTRODUCTION

Under certain conditions, a scalar field theory admits the
existence of localized nontopological soliton solutions of
finite energy. These so-called Q-balls are bound configu-
rations of complex scalars ϕ that are stable against decay
into individual particles or smaller Q-balls [1,2] (for a
review, see Ref. [3]). The complex scalars must carry a
(global) Uð1Þ charge and require a special scalar potential
[4] or the inclusion of gravity as an attractive force [5]. This
simple setup can be modified in various ways. The most
obvious is to make the Uð1Þ symmetry local, which leads
to gauged Q-balls [6]. Another interesting extension is to
include more than one scalar field in the soliton [7].
However, in this work we focus on the single-field, globally
symmetric Q-ball.
Q-balls have been employed in many phenomenological

and theoretical studies. They have been analyzed as
candidates for macroscopic dark matter of various types
[8–11], including those similar to black holes and neutron

stars. Many supersymmetric theories naturally predict
Q-balls, the global Uð1Þ being identified with baryon or
lepton number [12]. These Q-balls can play a role in dark
matter [13] or baryogenesis as well as phase transitions in
the early Universe [14]. They could lead to detectable
gravitational wave signatures [15]. Furthermore, Q-ball
solutions are interesting in their own right as a rare example
of a stable nontopological soliton; their stability is ensured
by the conserved Uð1Þ charge as opposed to a topological
charge.
Global Q-balls have been analyzed in a number of

works. Their profiles are solutions to a nonlinear differ-
ential equation that can only be solved analytically for
some special potentials [16–19]. In general, the equations
need to be solved numerically, which is straightforward
but time consuming and typically difficult when the size of
the Q-ball is large. Since the Q-ball ground state is the
minimal-energy configuration for a fixed (large) charge Q,
one can also minimize the energy functional with respect to
a set of test functions in order to obtain analytic approx-
imations [20,21].
In this paper, we formulate an analytical approach for

solving the Q-ball equations and finding the profile in
arbitrary sextic scalar potentials. As stable quartic poten-
tials cannot produce Q-ball configurations, the scalar
potential must have nonrenormalizable terms. In the low-
energy effective theory, the leading such term respecting
the symmetries would be sextic, jϕj6. Consequently, by
analyzing the general sextic potential we expect to encap-
sulate the leading dynamics relevant to mostQ-ball systems
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of phenomenological interest.1 However, unlike some more
specific potentials, the sextic has no known exact Q-ball
solution. We show that while complete exact solutions
remain elusive, very accurate analytical results can be
derived near the large Q-ball limit.
When the Q-balls are large—that is, when their char-

acteristic size is much larger than the mass term in the
scalar potential—their defining equations can be dramati-
cally simplified by considering the Q-ball as being a large
object with a small surface region [22,23]. Here we show
that the profile near the surface of a large Q-ball can in fact
be solved for exactly. This allows us to find the full profile
of the Q-ball in this limit. This novel result improves
significantly, both qualitatively and quantitatively, upon the
previously used thin-wall approximation. Our analytical
profile and the derived Q-ball quantities (charge, energy,
and radius) are in excellent agreement with numerical
results in the large Q-ball limit. What is more, our results
even describe smaller stable Q-balls with Oð10%Þ accu-
racy, which can in principle be improved further.
Our results are also quite general in scope. By making a

judicious choice of parametrization, we are able to reduce
much of the Q-ball system to dependence on a single
dimensionless parameter. We also find that the character-
istics of the Q-ball are more naturally expressed as
functions of the Q-ball radius, rather than the potential
parameter. Thus, one of our primary results is determining
how the Q-ball radius and the potential parameter relate
to one another. We show explicitly how the difference
between our analytic formulas and the numerical results
can be reduced by improving the accuracy of this
relationship.
We build up to these results by first, in Sec. II, briefly

reviewing Q-balls in order to establish the necessary
notation and vocabulary. The thin-wall analysis introduced
by Coleman is also presented. The analytical review is
followed, in Sec. III, by an outline of different numerical
methods for obtaining Q-ball solutions. This includes a
novel approach in which the radial coordinate is compac-
tified. In Sec. IV, we derive new analytic approximations
for Q-balls in and beyond the thin-wall limit. Our main
results include simple formulas for the radius, charge, and
energy of the Q-balls as well as an accurate ansatz for the
scalar profile. These results are then compared to the exact
numerical results in Sec. V. We conclude in Sec. VI, and we
include some technical details on our final Q-ball profile,
that are not necessary in order to understand the main text,
in the Appendix.

II. REVIEW OF Q-BALLS

Our starting point is the Lagrange density L for a
complex scalar ϕ with potential UðjϕjÞ,

L ¼ j∂μϕj2 − UðjϕjÞ: ð1Þ

We choose the vacuum to be at jϕj ¼ 0, and the potential to
be zero in the vacuum, so Uð0Þ ¼ 0. This Lagrange density
then exhibits a global Uð1Þ symmetry ϕ → eiθϕ associated
with conserved ϕ number. To ensure that the vacuum is a
stable minimum, we require

dU
djϕj ¼ 0; m2

ϕ ≡ d2U
dϕdϕ�

����
ϕ¼0

> 0; ð2Þ

where mϕ is the mass of ϕ. Coleman [2] showed that
nontopological solitons, which he called Q-balls, can exist
in this theory ifUðjϕjÞ=jϕj2 has a minimum at 0 < ϕ0 < ∞
such that

0 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Uðϕ0Þ

p
ϕ0

≡ ω0 < mϕ: ð3Þ

These Q-balls are spherical solutions to the resulting
equations of motion which only depend on time through
the phase of ϕ—that is,

ϕðxÞ ¼ ϕ0ffiffiffi
2

p fðrÞeiωt; ð4Þ

for some constant ω, thus evading Derrick’s theorem [24].
Here, fðrÞ is a dimensionless function of the radius r ∈
½0;∞Þ whose form is governed by the simpler Lagrangian

L ¼
Z

d3x⃗L

¼ 4πϕ2
0

Z
drr2

�
−
1

2
f02 þ 1

2
f2ω2 − UðfÞ=ϕ2

0

�
; ð5Þ

where primes denote a derivative with respect to r. The
resulting differential equation for f is

ðr2f0Þ0 ¼ r2

ϕ2
0

dU
df

− r2ω2f: ð6Þ

Localized solutions to this equation are called Q-balls and
have a conserved global charge Q and mass or energy E
given by the following integrals:

Q≡ i
Z

d4xðϕ�∂0ϕ − ϕ∂0ϕ�Þ

¼ 4πωϕ2
0

Z
drr2f2; ð7Þ

1Full models such as supersymmetic extensions unavoidably
generate additional (potentially nonpolynomial) couplings [12]
that require dedicated analyses should they be sizable. The
methodology described here should be useful for any potential,
though.
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E ¼ 4πϕ2
0

Z
drr2

�
1

2
f02 þ 1

2
f2ω2 þ UðfÞ=ϕ2

0

�

¼ ωQþ 4πϕ2
0

Z
drr2

�
1

2
f02 −

1

2
f2ω2 þ UðfÞ=ϕ2

0

�
:

ð8Þ

Without loss of generality, we choose ω > 0, which implies
Q > 0. The following relationship between E and Q holds
for all Q-balls [7]:

dE
dω

¼ ω
dQ
dω

þQ

þ 4πϕ2
0

Z
drr2

�
f0
df0

dω
−ω2f

df
dω

− f2ωþ 1

ϕ2
0

dU
dω

�

¼ ω
dQ
dω

þQ−Qþ 4πϕ2
0

Z
drr2

�
−
df
dω

�
1

ϕ2
0

dU
df

−ω2f

�

−ω2f
df
dω

þ 1

ϕ2
0

dU
dω

�

¼ ω
dQ
dω

; ð9Þ

where we have integrated one term by parts and used the
equation of motion in the second line. For dQ=dω ≠ 0, this
implies dE=dQ ¼ ω and allows us to interpret ω as a
chemical potential. That is, ω determines how the energy
changes when a particle of charge Q is added or removed
from the Q-ball. Clearly, when dQ=dω > 0, it is energeti-
cally favorable for a given Q-ball to shed particle quanta
to lower the energy, and indeed this condition is sometimes
used to determine if a givenQ-ball is stable. In the opposite
case, dQ=dω < 0, it is energetically favorable for the
Q-ball to add particles.
The energy integral [Eq. (8)] can be simplified further by

employing an identity pointed out in Ref. [6]. One may
rescale the radial coordinate r → χr [24] in the Lagrangian
[Eq. (5)] to find

L ¼ 4πϕ2
0

Z
drr2

�
−χ

1

2
f02 þ χ3

1

2
f2ω2 − χ3UðfÞ=ϕ2

0

�
:

ð10Þ

The variation of the Lagrangian with respect to χ has two
parts: first the explicit dependence on χ, and second the
variation of functions that now depend on χ, fðrÞ → fðχrÞ.
This second collection of terms, with χ then set to 1, is the
usual variation of the Lagrangian, and so it vanishes by
definition for solutions of the field equation. By requiring the
other term in the variation to also vanish when χ ¼ 1, we find

3

2

ωQ
4π

¼ ϕ2
0

Z
drr2

�
1

2
f02 þ 3UðfÞ=ϕ2

0

�
; ð11Þ

which can be used to rewrite the energy as

E ¼ ωQþ 4π

3
ϕ2
0

Z
drr2f02: ð12Þ

This expression for E is useful not only because it reduces
the number of integrals to be performed, but also because it
illustrates that E ¼ ωQ up to terms that depend on the
derivative of fðrÞ. Such terms turn out to be subleading in the
regime of large Q-balls.

A. The potential

An explicit scalar potential which has a stable vacuum
and which admits Q-ball solutions is

UðϕÞ ¼ m2
ϕjϕj2 − βjϕj4 þ ξ

m2
ϕ

jϕj6; ð13Þ

where β and ξ are positive dimensionless constants. Note
that by keeping only the renormalizable terms, one can
never achieve Q-balls in a single-field stable potential.
Therefore, some nonrenormalizable terms must be included
in the effective scalar potential. The usual effective field
theory expectation is that the jϕj6 term, which could be
generated by introducing additional heavy scalar particles,
accounts for the largest of these effects. Higher-order terms
would then be suppressed by additional powers of the
heavy scalar mass scale. Therefore, this specific polyno-
mial potential is expected to encapsulate the essential
properties of many high-energy scenarios that lead to
Q-balls, making it of general interest. Along with this
generality, however, comes the fact that to date, no exact
solutions to this potential have been found, making
accurate approximations particularly valuable.
Qualitatively, the negative jϕj4 term leads to an attractive

interaction between ϕ particles that is crucial for forming
Q-balls, while the jϕj6 term stabilizes the potential for large
ϕ values. For this potential, we find from Eq. (3)

ϕ0 ¼ mϕ

ffiffiffi
β

ξ

s
; ω0 ¼ mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

β2

4ξ

s
: ð14Þ

The condition on ω0 given in Eq. (3) for the existence of
global Q-balls translates into 0 < β2 ≤ 4ξ. It is convenient
to rewrite the potential in terms of ϕ0 and ω0, rather than β
and ξ, as

UðfÞ=ϕ2
0 ¼

1

2
ðm2

ϕ − ω2
0Þf2ð1 − f2Þ2 þ ω2

0

2
f2: ð15Þ

The form of the Lagrangian in Eq. (5) suggests that the
more useful quantity is VðfÞ:
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1

2
ω2f2 − UðfÞ=ϕ2

0 ¼ ðm2
ϕ − ω2

0Þ
1

2
f2½κ2 − ð1 − f2Þ2�

≡ ðm2
ϕ − ω2

0Þ · VðfÞ: ð16Þ

We have here defined the dimensionless quantity

κ2 ≡ ω2 − ω2
0

m2
ϕ − ω2

0

; ð17Þ

which uniquely parametrizes the scalar profiles, as shown
below. Finally, we focus on the universal aspects of the Q-
ball system by switching to the dimensionless radial
coordinate ρ [21],

ρ≡ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q
; ð18Þ

with ρ ∈ ½0;∞Þ. This leads to the equations and expres-
sions used in the remainder of this article. The Lagrangian
L, charge Q, and energy E can be expressed in terms of
dimensionless integrals via

L ¼ 4πϕ2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ϕ − ω2

0

q Z
dρρ2

�
−
1

2
f02 þ VðfÞ

�
; ð19Þ

Q ¼ 4πωϕ2
0

ðm2
ϕ − ω2

0Þ3=2
Z

dρρ2f2; ð20Þ

E ¼ ωQþ 4πϕ2
0

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q Z
dρρ2f02; ð21Þ

where primes here and hereafter denote derivatives with
respect to ρ. From the Lagrangian in Eq. (19), we obtain the
differential equation that determines the dimensionless
profile fðρÞ as

f00 þ 2

ρ
f0 þ dV

df
¼ 0; with VðfÞ ¼ 1

2
f2½κ2 − ð1 − f2Þ2�;

ð22Þ

where the boundary condition fðρ → ∞Þ ¼ 0 produces a
localized solution. Note that this equation is singular at
ρ ¼ 0 unless we also impose the boundary condition
f0ð0Þ ¼ 0. It remains for us to solve Eq. (22), which
depends exclusively on the dimensionless parameter κ.
As we shortly show, 0 < κ < 1 (ω0 < ω < mϕ) in order to
obtain Q-ball solutions. Note that we restrict ourselves
to finding ground-state solutions, for which fðρÞ is
monotonic.

B. Energy considerations for Q-balls

In order to solve Eq. (22), it is useful to study the
potential VðfÞ, illustrated in the left panel of Fig. 1. The
extrema of VðfÞ are at f ¼ 0 and

f2� ¼ 1

3

�
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3κ2

p 	
: ð23Þ

One finds that fþ is always a maximum, while f− is a
minimum for κ < 1 (or ω < mϕ). The center of the
potential, f ¼ 0, is a maximum for κ < 1. When κ ¼ 1,
we find that f− ¼ 0, and the potential becomes nearly flat
at f ¼ 0.
We further our understanding of the dynamics by noting

that were it not for the friction term, 2f0=ρ, we could write
the equation of motion in Eq. (22) as

f00 þ dV
df

¼ 1

f0
d
dρ

�
1

2
f02 þ VðfÞ

�
¼ 0; ð24Þ

and we identify

FIG. 1. Plot of the effectiveQ-ball potential (left) and correspondingQ-ball profiles (right) for several values of κ. The solid curves of
the potential denote the trajectory of the scalar field as it rolls from rest at the point fð0Þ. The vertical dashed line on the left plot denotes
the location of the maximum when κ ¼ 0.
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E ¼ 1

2
f02 þ VðfÞ ð25Þ

as the conserved energy of the system [22]; evaluated at
ρ ¼ 0, we see that E ¼ 0. This quantity is not conserved
when the friction term 2f0=ρ is included; instead we find

dE
dρ

¼ f0
�
f00 þ dV

df

�
¼ −

2

ρ
f02: ð26Þ

We can integrate this over the Q-ball trajectory: this starts
at f ¼ fð0Þ with f0 ¼ 0, and ends at f ¼ 0 with f0 ¼ 0.
As we have taken Vð0Þ ¼ 0, we find [25]

Vðfð0ÞÞ ¼ 2

Z
∞

0

dρ
f02

ρ
: ð27Þ

Thus, we see that the difference in height of the two
potential peaks (see the left panel of Fig. 1) must be equal to
the energy lost due to friction.
This immediately leads to a qualitative understanding

of the Q-ball trajectories. Particle trajectories that begin
near fþ ≈ 0 must transition to the true vacuum without
much friction. Consequently, the transition must begin
when the friction term is suppressed by large ρ, after
which it proceeds quickly. On the other hand, as the energy
difference between VðfþÞ and Vð0Þ ¼ 0 increases, the
friction cannot completely compensate for the change.
Therefore, these trajectories start further and further below
fþ, and so begin their transitions earlier and earlier, leading
to smaller-radius Q-balls with softer edges. For large
enough κ, the trajectory must start so far down the first
maximum that there is very little rapid motion. The particle
takes a long time rolling to smaller values, so the soft edge
of the Q-ball extends out further and further until at κ ¼ 1
the trajectory begins and ends at rest at f ¼ 0. This picture
is confirmed in the next section using numerical solutions,
shown in the right panel of Fig. 1.

C. Coleman’s thin wall

One special trajectory is the thin-wall limit, which is
defined by κ → 0 and implies Vð0Þ ¼ VðfþÞ ¼ 0. Because
the maxima have equal heights, no energy can be lost to
friction along the particle’s path. Since the friction is
suppressed by 1=ρ, the particle trajectory starts at f ¼ fþ
and remains at this value for infinite radius, after which it
can roll from one maximum to the other without loss of
energy. The final motion from near the top of the maximum
near f ¼ 0 to the maximum also takes infinite radius,
but most of the transition takes place over a short range.
Such solutions are called “thin wall” because the transition
region (or wall) is small compared to the radius of the
Q-ball. From the above, it is clear that κ → 0 also implies
R → ∞. This relationship is quantified in Sec. IV.

In this thin-wall limit (i.e., κ → 0, ω → ω0, R → ∞),
Q-balls are often studied using Coleman’s thin-wall
ansatz [2]:

fðρÞ ¼


1; ρ < R�;

0; ρ > R�;
ð28Þ

where R� denotes the radius of the Q-ball. For this profile
we can evaluate the integral in Eq. (20) to find the Q-ball
charge

Q ¼ 4π

3

0
B@ R�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ϕ − ω2

0

q
1
CA

3

ϕ2
0ω0: ð29Þ

The Q-ball charge is hence ϕ2
0ω0 times the volume of the

Q-ball, at least for ω0 > 0. The case ω0 ¼ 0 is discussed
in Sec. IV.
We could evaluate the Q-ball energy [Eq. (21)] using

f0ðρÞ ¼ 0 to obtain E ¼ ω0Q, but neglecting the singular
point at f0ðR�Þ is only correct as R� → ∞. We can do better
by writing the relevant integral in Eq. (21) as

Z
∞

0

dρρ2f02 ¼ R�2
Z

1

0

dff0 ¼
Z

1

0

df
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2VðfÞ

p ����
κ¼0

;

ð30Þ

where in the first equality we have used the fact that f0 is
only nonzero at ρ ¼ R�, and in the last equality we have
taken the thin-wall “energy" E in Eq. (25) as conserved and
zero. This leads to the following thin-wall expression for
the energy:

E ¼ ω0Qþ πϕ2
0

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q R�2; ð31Þ

where the first term is interpreted as the volume contribu-
tion to the energy and the second as the surface
contribution.2

The simple profile in Eq. (28) characterizes Q-balls in
the thin-wall limit κ ¼ 0, but says nothing about finite κ. As
the numerical solutions in the next section make clear, it is a
rather poor estimate of the features of the profile away from
the infinite-radius limit. Unsurprisingly, the numerical
values of Q and E also diverge drastically from the thin-
wall prediction as κ is increased.

2Coleman’s derivation [2] leads to a surface term which is 3
times greater. This results from assuming the integral over the
potential, and not just the kinetic term, is dominated at ρ ¼ R�,
which is not correct.
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III. NUMERICAL SOLUTIONS

As suggested in the previous section, it is useful to make
an analogy between the field profiles and one-dimensional
particle motion [2]. Consider a particle satisfying the
equation

ẍþ 2

t
_xþ dV

dx
¼ 0; ð32Þ

where dots denote time derivatives. This is a particle
moving in a potential VðxÞ experiencing time-dependent
friction. The condition that f0ð0Þ ¼ 0 is analogous to
_xð0Þ ¼ 0, meaning that the particle starts at rest, while
the condition fð∞Þ ¼ 0 corresponds to xð∞Þ ¼ 0, which
means the particle must end up at the local maximum at
x ¼ 0. Thus, the profiles for f correspond to the trajectories
of a particle whose friction decreases with time, rolling
down a potential and ending up at the top of a local peak. It
is often convenient to use this language, familiar from
mechanics, to describe the f profiles.
For instance, this language makes clear the range of κ.

For κ ≥ 1, f ¼ 0 is not a maximum, so the particle can only
stop there if it begins there at rest, which is a trivial solution,
or if it oscillates about the minimum at f ¼ 0, which would
imply periods with f < 0. On the other hand, for κ < 0,
f ¼ 0 is higher than any other maxima, and so nothing can
roll onto it. If κ ¼ 0, then the only point on the other
hill which is not lower than f ¼ 0 is exactly at the
maximum f ¼ fþ, and the particle never rolls from this
equilibrium point. Hence, we must have 0 < κ < 1, or,
equivalently, ω0 < ω < mϕ.
Notice, however, that while the true thin-wall limit is

singular, the profile for κ ¼ 0.1 already demonstrates
qualitatively similar behavior to Coleman’s profile,
Eq. (28), in Fig. 1. The trajectory begins near fþ and
remains there for a large radius. Then it rolls very quickly,
and without much friction, to the top of the other
maximum.
The rolling particle language also suggests the shooting

method for solving the f equation numerically [2]. To
employ this technique, one specifies an initial value for f at
ρ ¼ 0 and numerically integrates the equation out to ρ ≫ 1
to determine whether f makes it up to f ¼ 0 or rolls too far.
The initial value of f is then adjusted until the field comes
to a stop on the f ¼ 0 point of the effective potential. This
shooting method is easy to implement numerically and can
be used to generate Q-ball solutions.
One can also interpret the differential equation [Eq. (22)]

as a vacuum tunneling process. Several computer codes
have been written specifically to solve these equations
efficiently, and can also be used forQ-balls. One example is
AnyBubble [26], which we have used to check our results.
An alternative method we have used is to solve the

boundary value problem directly. In order to enforce the
boundary condition at ρ ¼ ∞, we change variables to

y ¼ ρ

1þ ρ=a
; ð33Þ

where a is some positive number. This maps the range
ρ ∈ ½0;∞Þ to y ∈ ½0; a�. The differential equation (22)
becomes

�
1 −

y
a

�
4
�
d2f
dy2

þ 2

y
df
dy

�
þ dV

df
¼ 0; ð34Þ

with the boundary conditions df
dy ð0Þ ¼ 0 and fðaÞ ¼ 0.

Given a sufficiently accurate guess for the profile fðyÞ,
standard finite-element methods quickly converge to the
exact solution without resorting to the shooting method’s
tedious fine-tuning of initial values. In the sections that
follow, we obtain analytical results that act as good guides
to this numerical method.
In Fig. 1, we plot both the potentials and profiles for

several values of 0 < κ < 1. In the left plot, the actual
single-particle trajectories that lead to the Q-ball solutions
are plotted as solid lines, while the remainder of the
potential is dashed. The initial position of the particle,
corresponding to the value of fð0Þ at the center of the
Q-ball, is marked by a solid point. The corresponding fðρÞ
profiles are shown in the right plot, and are analogous to the
position of the particle as a function of time. The right plot
in Fig. 1 shows that Q-balls become bigger and sharper
edged for smaller κ, with a profile that strongly resembles a
step function. These are appropriately denoted as thin-wall
profiles. Conversely, when κ → 1, the Q-balls become more
fuzzy and approach the trivial vacuum solution f ¼ 0. As
shown below, these thick-wall Q-balls are unstable.
Figure 1 also makes clear that one can define a radius for

the Q-balls because they are localized solutions. There is
some ambiguity in defining the radius; here we choose the
point ρ ¼ R� where f00ðR�Þ ¼ 0. The dimensionless quan-
tity R� is related to the true dimensionful radius by

R ¼ R�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q : ð35Þ

Since the profile f is fully determined by the parameter κ,
there must be a relation between R� and κ. Indeed, we find
below that the profile is defined more naturally in terms
of R�. Consequently, finding the relation between R� and κ
to better accuracy than previous results in the literature is
essential to an accurate characterization of the Q-balls.

IV. AN IMPROVED THIN-WALL PROFILE

This section outlines our new analytic results. First,
we take Coleman’s thin-wall ansatz and extend it away
from the κ ¼ 0 limit. We find that this already reveals the
leading relation between κ and R�. This gives this simple
approximation much more predictive power and begins to
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approximate the numerical results. We then focus on
accurately describing the true Q-ball profile analytically.
To obtain a better profile, we divide up the space into

three qualitatively distinct regions. These are the Q-ball
interior and exterior, which correspond to ρ ≪ R� and
ρ ≫ R�, respectively, and the surface or edge of the Q-ball
at ρ ∼ R�, which describes the transition between the
interior and exterior. Of these, the surface profile has
historically been the most difficult to analyze. We find
an exact result for the surface profile in the large-R� limit,
which is a strikingly accurate fit to the entire Q-ball profile
near the thin-wall limit. The profiles for the regions are then
joined together, and R�, Q, and E are determined.

A. Advancing beyond the thin-wall limit

While the thin-wall Q and E derived in Sec. II C were
obtained for ω ¼ ω0, one could hope that they are approx-
imately true away from that limit. We generalize Eqs. (29)
and (31) to ω≳ ω0 via

Q ¼ 4π

3

0
B@ R�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ϕ − ω2

0

q
1
CA

3

ϕ2
0ω;

E ¼ ωQþ πϕ2
0

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q R�2; ð36Þ

but we cannot compare them to the numerical results
without knowing how R� depends on ω (or equivalently
on κ). However, by combining these results with the exact
relation derived from Eq. (9),

dE
dR� ¼ ωðR�Þ dQ

dR� ; ð37Þ

we can determine how R� and κ are related as we move
away from the thin-wall limit. We evaluate the left-hand
side of Eq. (37) to find

dE
dR� ¼ ω

dQ
dR� þQ

dω
dR� þ

2πϕ2
0

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q R�

¼ ω
dQ
dR� þ

4π

3

0
B@ R�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ϕ − ω2

0

q
1
CA

3

ϕ2
0ω

dω
dR�

þ 2πϕ2
0

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q R�: ð38Þ

This implies the following differential equation for ω:

ω
dω
dR� ¼ −

m2
ϕ − ω2

0

2R�2 ; ð39Þ

which can be integrated from the thin-wall limit, with
ω ¼ ω0 and R� ¼ ∞, to general ω and R� to find

R� ¼ m2
ϕ − ω2

0

ω2 − ω2
0

¼ 1

κ2
: ð40Þ

This result gives the leading relation between κ2, which
determines the potential, and R�, which characterizes the
Q-ball size. Equation (40) is exactly satisfied for large R� or
small κ but remains an excellent approximation away from
the thin-wall limit; even for κ up to the limit of Q-ball
stability, the deviations between this analytical estimate and
the true numerical relation are only about 10%. However,
these differences compound when applied to predicting Q
and E as functions of ω by inserting Eq. (40) into Eq. (36).
The resulting deviations from the numerical results can be
as large as 50% for stable Q-balls. Consequently, an
improved prediction of Q-ball properties relies on a better
understanding of how κ and R� are related. In general, we
would have an expansion

κ2ðR�Þ ¼ 1

R� þ
δ

R�2 þ � � � ; ð41Þ

where successive coefficients in the expansion can be
obtained by more accurately describing the Q-ball profile.
For ω0 > 0, the above expressions for Q, E, and R in the

thin-wall limit imply the scaling Q ∝ E ∝ R3 one expects
for a lump of Q-matter [2]. For ω0 ¼ 0, on the other hand,
ω ∝ 1=

ffiffiffiffi
R

p
, and thus Q ∝ R5=2 and E ∝ R2 [22]. This

illustrates that even though the scalar profile f only
depends on the parameter κ, the physical Q-ball properties
must be discussed in terms of the original Lagrangian
parameters and, in particular, depend on ω0.

B. Exterior

We now begin to more carefully determine the Q-ball
profile by considering the exterior. In this case, we do not
assume the thin-wall limit κ → 0, but we keep κ general.
For all Q-balls, f is near the true vacuum f ∼ 0 when
ρ ≫ R�. We can then approximate the potential as a
quadratic and find the differential equation for the exterior:

0 ¼ f00 þ 2

ρ
f0 þ dV

df

����
f¼0

þ f
d2V
df2

����
f¼0

þ � � �

≃ f00 þ 2

ρ
f0 − ð1 − κ2Þf: ð42Þ

In the last equation, we have dropped terms of order f3 and
higher because f ≪ 1. Enforcing the boundary condition
fð∞Þ ¼ 0, one finds (as obtained in Ref. [6]) the exterior
solution f> is
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f> ¼ c>
ρ
e−

ffiffiffiffiffiffiffi
1−κ2

p
ρ; ð43Þ

with c> an integration constant. This exponential dropoff
behavior applies to all Q-balls, but in the thin-wall regime,
one can further set κ → 0 in f>.

C. Interior

Near the thin-wall limit, the value of f within the Q-ball
is close to the maximum of the potential, f ∼ fþ. This
again allows us to approximate the potential as a quadratic,
leading to the f equation for the interior:

0¼ f00 þ 2

ρ
f0 þ dV

df

����
f¼fþ

þ ðf − fþÞ
d2V
df2

����
f¼fþ

þ � � � ð44Þ

≃ f00 þ 2

ρ
f0 − α2ðf − fþÞ; ð45Þ

where the neglected terms are of higher order in ðf − fþÞ,
and we have defined

α2 ≡ 4

3

�
1þ 3κ2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3κ2

p 	
¼ 4þ 8κ2 − 3κ4 þOðκ6Þ:

ð46Þ

After enforcing the boundary condition f0ð0Þ ¼ 0, one
finds (as obtained in Ref. [22]) the solution f< in theQ-ball
interior

f< ¼ fþ þ c<
sinhðαρÞ

ρ
; ð47Þ

where c< is an integration constant. In the thin-wall regime,
where κ is small, we can take α ¼ 2 in f<.

D. Transition region

We now turn to the region which joins the interior and
exterior. Rather than expanding the potential around an
extremum, we find a limit in which the dynamics can be
solved exactly. In the surface region of theQ-ball, ρ ∼ R�, it
is useful to use the coordinate z ¼ ρ − R� and focus on the
region around z ¼ 0. As the surface profile fs describes
the transition from one potential maximum to the other, we
must consider the full potential. We can write the differ-
ential equation (22) as

d2fs
dz2

þ 2

R� þ z
dfs
dz

þfs½κ2− ð1−f2sÞð1−3f2sÞ� ¼ 0: ð48Þ

The second term is suppressed by ðR�Þ−1 and can be
neglected when −z ≪ R�. More precisely, one can expand
the profile as a power series in ðR�Þ−1:

fsðzÞ ¼ fð0Þs ðzÞ þ ðR�Þ−1fð1Þs ðzÞ þ � � � ð49Þ

and find that the leading-order profile satisfies the equation

d2fð0Þs

dz2
¼ fð0Þs ½1 − ðfð0Þs Þ2�½1 − 3ðfð0Þs Þ2�: ð50Þ

Here we have used the leading-order relation κ2 ¼ ðR�Þ−1
from Eq. (41).
Because the friction term is absent from this leading

equation (50), the quantity E of Eq. (25) is conserved.
Furthermore, as f0ð0Þ ¼ Vð0Þ ¼ 0 for Q-ball solutions, we
see that E ¼ 0. This leads to the first-order differential
equation

dfð0Þs

dz
¼ �fð0Þs

�
1 − fð0Þ2s

	
; ð51Þ

which is equivalent to the second-order equation given in
Eq. (50) but can be directly integrated to find

fð0Þs ðzÞ ¼ ½1þ cse�2z�−1=2; ð52Þ

where cs is an integration constant. Because fs is a
monotonically decreasing function, we must take the
positive sign in the exponent.
The constant cs is determined by requiring f00ðR�Þ ¼ 0,

thus properly identifying R� with the Q-ball radius. This
yields the final form of the transition function at leading
order in 1=R�:

fð0Þs ðρÞ ¼ ½1þ 2e2ðρ−R�Þ�−1=2: ð53Þ

This profile was considered in Ref. [27] in relation to
Q-balls from a sixth-order potential, but with a different
interpretation. Despite being derived in the limit of ρ close
to R�, we show below that this profile is remarkably close
to the exact profile for all ρ as long as R� is large. Its main
shortcoming is its failure to satisfy the boundary condition
f0ð0Þ ¼ 0 away from the limit R� → ∞. Still, this transition
profile by itself turns out to be an excellent approximation
to the exact profile over most of the range of ρ, far beyond
its expected region of validity.
Further corrections in ðR�Þ−1 beyond the profile found

above can, in principle, be obtained by solving the higher-
order equations resulting from inserting the profile expan-
sion given in Eq. (49) into Eq. (48). In practice, it is difficult
to obtain simple analytical results in this way.

E. Full profile

Having derived approximate expressions for the profile f
in the interior, exterior, and surface region, we can join
them together to obtain the full profile. The coefficients c<
and c> of the interior and exterior solutions are determined
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by enforcing continuity of f and f0 at the matching points.
Since the surface solution was explicitly derived in the
large-R� limit, the expected validity of the full profile is
also restricted to κ ≪ 1.
We modify our ansatz slightly3 in order to improve our

profile away from κ ∼ 0. In the thin-wall limit, the field
starts at fð0Þ ¼ fþ ¼ 1 and transitions to f ¼ 0 at large ρ.
Away from this limit, we postulate that the field transitions
from near the new maximum fþ to zero. A natural ansatz
for the field profile is obtained by simply rescaling the
transition profile by fþ ¼ 1

3
ð2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3κ2

p
Þ. We therefore

assume that the profile takes the form

fðρÞ ¼ fþ

8>>><
>>>:

1 − c<
sinhðαρÞ

ρ for ρ < ρ<;

½1þ 2e2ðρ−R�Þ�−1=2 for ρ< < ρ < ρ>;
c>
ρ e−ρ

ffiffiffiffiffiffiffi
1−κ2

p
for ρ> < ρ;

ð54Þ

where c<;> and ρ<;> are determined by requiring f and f0

to be continuous at ρ<;>. The details of this process and
the resulting formulas for c<;> and ρ<;> are given in the
Appendix.
Before comparing this profile [Eq. (54)] to the numerical

solutions, let us use it to refine the relationship between R�

and κ2 by using the energy requirement given in Eq. (27):

Vðfð0ÞÞ ¼ 2

Z
∞

0

dρ
ρ
ðf0Þ2: ð55Þ

This integral is evaluated in each region separately, but one
quickly finds that the interior and exterior regions give
contributions suppressed by at least e−R

�
, so we neglect

them in the large-R� limit of interest here. In the Appendix,
we find the leading-order results

fð0Þ ≈ fþ; ρ< ≈
R�

2
; ρ> ≈ 2R�; ð56Þ

so we can rewrite the energy-lost-to-friction relation as

VðfþÞ ¼ 8f2þ

Z
2R�

R�=2

dρ
ρ

e4ðρ−R�Þ

½1þ 2e2ðρ−R�Þ�3

¼ 8f2þ

Z
R�

−R�=2

dz
zþ R�

e4z

½1þ 2e2z�3 ; ð57Þ

where we have changed variables to z ¼ ρ − R� in the last
equality. Because the integrand is sharply peaked at z ¼ 0,
we can consistently expand ðzþ R�Þ−1 in powers of z=R�
and extend the limits of integration out to infinity, up to
exponentially suppressed terms. This leads to the relation

R�ðκÞ ¼ f2þ
2VðfþÞ

¼ 1

κ2
þ 1

4
−
5κ2

16
þOðκ4Þ; ð58Þ

which agrees with Eq. (40) to lowest order in κ2 but
contains subleading corrections that improve the agreement
with the numerical solutions.
In Fig. 2, we compare our full profile (54) [containing the

improved R�ðκÞ from Eq. (58)] to the full numerical
solution. As expected, the agreement when κ ≪ 1 is
superb, save for a small mismatch of the radii. In fact,
replacing our R�ðκÞwith the true numerical radius results in
a permil-level agreement in the large-R� limit (e.g.,
κ ¼ 0.1), which illustrates how accurately our result
captures the shape of the true profile and how important
it is to determine R�ðκÞ more precisely. Remarkably, there
is still good agreement between the two profiles even for
rather large κ. While the simple steplike thin-wall ansatz
from Eq. (28) would describe the profile of κ ¼ 0.1
moderately well, it is a bad fit for κ ¼ 0.8, highlighting
the need for a better analytical description. Our profile fares
exceptionally well even for such large κ, despite being
formally derived in the large-R� limit.
It is also striking that the transition profile fs itself

provides a surprisingly good approximation to the full
profile. In Fig. 2, we show fþ½1þ 2e2ðρ−R�Þ�−1=2 (red dotted
lines), with ρ now running over the entire region 0 ≤ ρ < ∞.
For κ ≪ 1, this simplified profile is indistinguishable from
the full profile [Eq. (54)], while the differences are rather
small even for large κ. The full profile provides a better
description, of course, but at the price of a more complicated
analytical expression. The main shortcoming of the pure
transition profile is its behavior at ρ ¼ 0, where
f0ð0Þ ¼ −2 expð−2R�Þ½1þOð1=R�Þ�. The boundary con-
dition f0ð0Þ ¼ 0 is thus only satisfied asymptotically as
R� → ∞. Still, for many practical purposes it suffices to use
the simple transition profile together with Eq. (58).

F. Charge and energy

Using the improved profile from Eq. (54), we can
calculate the charge Q and energy E from Eqs. (20) and
(21), respectively. The integrals of interest are

R
dρρ2f2 andR

dρρ2ðf0Þ2, which can be performed analytically, although
the expressions are long and largely unenlightening. For
large R�, they read

Z
dρρ2f2 ≃

f2þR�3

3

�
1−

3 ln2
2R� þ π2 þ 3ln22

4R�2

−
ðπ2 þ ln22Þ ln2

8R�3

�
;

Z
dρρ2f02 ≃

f2þR�2

4

�
1þ 1− ln2

R� þ π2 þ ðln2− 2Þ3 ln2
12R�2

�
:

ð59Þ
3We can find additional improvements by introducing more

parameters into the profile and minimizing the resulting E for a
fixed Q, although this is not attempted here.
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Together with Eq. (58), we can also obtain an expansion
in small κ. Notice that the first integral is directly
proportional to the dimensionful Q-ball volume
4πðm2

ϕ − ω2
0Þ−3=2

R
dρρ2f2; in the large-R limit we then

find the volume is ≃4πR3=3, which shows that our
definition of the radius via f00ðR�Þ ¼ 0 is particularly
sensible in the thin-wall limit.
Using Eqs. (20) and (21), we can then obtain our final

expressions for Q and E, expanded again in large R�,
because this is the expected regime of validity of our
underlying scalar profile:

Q ≃
4π

3

0
B@ R�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ϕ − ω2

0

q
1
CA

3

ωϕ2
0f

2þ

�
1 −

3 ln 2
2R� þ π2 þ 3ln22

4R�2

−
ðπ2 þ ln22Þ ln 2

8R�3

�
;

E ≃ ωQþ πϕ2
0f

2þ

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q R�2
�
1þ 1 − ln 2

R�

þ π2 þ ðln 2 − 2Þ3 ln 2
12R�2

�
: ð60Þ

Together with Eq. (58), we now have an analytical approxi-
mation forQ and E as a function of the potential parameters.
Other quantities, such as pressure, can be calculated
straightforwardly [25]. These expressions become exact in
the limit ω → ω0 (κ → 0, R� → ∞), where they agree with

Coleman’s thin-wall result. However, our expressions are
also approximately valid for smaller R�, as shown in the next
section where they are compared to numerical results,
courtesy of the subleading 1=R� terms.
Let us first discuss the theoretical validity of our expres-

sions for Q and E. As shown in Eq. (9), global Q-ball
solutions must fulfill the relation dE=dω¼ωdQ=dω.
Expressing ω as a function of the radius by inverting
Eq. (58), we can check this relation order by order in
1=R� with our expressions from Eq. (60) and find that
dE=dR� ¼ ωðR�ÞdQ=dR� is valid up to terms of order
ðR�Þ0. One could imagine taking the Q and E results as
exact, and then require that Eq. (9) be satisfied to determine
κðR�Þ. The result is κ2 ¼ 1=R� þ ð1þ ln 16Þ=ð8R�2Þ þ
Oð1=R�3Þ, but as the improvement with respect to
Eq. (58) is marginal, we do not pursue this further here.
We have yet to address Q-ball stability [4,7,23,28],

mainly because it has no bearing on solving the differential
equation (22). Once interpreted in a physical context,
however, stability further restricts the allowed values of
κ. While there are several criteria for Q-ball stability, the
strongest one in our case is also the one that is easiest to
understand. This is the criterion that the energy of a stable
Q-ball must be less than the mass of Q free scalars,

E < mϕQ: ð61Þ

If Eq. (61) is not satisfied, the Q-ball can decay. Using
our approximations, we can reexpress this stability require-
ment as

FIG. 2. Top: the profile fðρÞ for κ ¼ 0.8 (left) and κ ¼ 0.1 (right). In black dashed lines, we show the exact numerical profile, in blue
lines the profile of Eq. (54), and in dotted red lines the transition profile fsðρÞ extended beyond its region of validity. Note that within the
bounds of the right-hand plot, the transition profile and the profile of Eq. (54) coincide. Bottom: the difference between the exact profile
and the two approximations.
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ω

mϕ
≲ 1

14
ð5þ

ffiffiffiffiffi
41

p
Þ þ

�
1

8
þ 37

56
ffiffiffiffiffi
41

p
�
ω2
0

m2
ϕ

ð62Þ

for ω0 ≪ mϕ. Notice that stability does not depend purely
on κ but also on ω0=mϕ. Using numerical results, we can
show that this dependence is rather weak and that the region
of stability is between κ ≲ 0.82 (for ω0 ¼ 0) and κ ≲ 0.84
(for ω0 ∼mϕ).

4 From Fig. 3, we can already see that our
analytic approximations are valid precisely in the stable
Q-ball regime, while failing to describe the unstable thick
Q-balls5 that arise for κ ≳ 0.84.

V. COMPARISON BETWEEN NUMERICS
AND ANALYTICS

In this section, we test our analytic results by comparing
them to numerical solutions. We start by comparing the
two integrals of Eq. (59). These analytical expressions are
shown along with the exact numerical values in Fig. 3. As a
function of R�, we see a remarkable agreement between our
prediction and one branch of the exact numerical solution.
As a function of κ, our expressions successfully approxi-
mate the numerical solution for κ ≲ 0.8. This is precisely

the regime where Q-balls are stable, and hence most
interesting for most physical applications. Again, as a
function of R�, the analytic approximation of

R
dρρ2f2

agrees with the numerical results to better than 1% for
stableQ-balls; as a function of κ, this agreement worsens to
up to 13% (near κ ∼ 0.5) due to our imperfect R�ðκÞ
modeling. The integral

R
dρρ2ðf0Þ2 agrees with the numeri-

cal results to better than 5% for R� > 2 and to better than
13% for κ ≲ 0.8; again, our formula for R�ðκÞ introduces a
rather large error.
In Fig. 4 (left), we compare our analytic approximation

of R�ðωÞ from Eq. (58) to numerical results with ϕ0 ¼ mϕ,
ω0 ¼ 0. Beyond ω ∼ 0.82mϕ, the Q-balls have E > mϕQ
and are unstable to fission. Our analytical estimate in
Eq. (58) agrees with the numerical results to better than 5%
in the stable Q-ball regime. As expected, in the thin-wall
limit ω → ω0, the agreement becomes exact, since our
profile [Eq. (54)] approaches the exact profile.
In Fig. 4, we also show Q (middle) and E (right) as

functions of ω. Again, the numerical and analytical results
are in excellent agreement—better than 13%—over the
entire stable region. Recall that the agreement was only to
50% using the simple formulas in Eq. (36). As in that case,
small deviations in our R�ðωÞ from the true relationship
clearly propagate into larger mismatches inQ and E, which
could be alleviated by using an improved R�ðωÞ.
Finally, by inverting Eq. (58) to obtain ωðR�Þ, we can

obtain QðR�Þ and EðR�Þ, which are compared to the
numerical results in Fig. 5. The agreement is superior to
what is shown in Fig. 4—better than 3% for QðR�Þ and 5%

FIG. 3. The integrals
R
dρρ2f2 (top) and

R
dρρ2f02 (bottom) as a function of R� (left) and κ (right). The dashed black line denotes the

exact numerical solution and the blue solid line our prediction from Eq. (59).

4The analysis of stability may be more subtle when ω0 ¼ 0;
see Ref. [22].

5It is worth emphasizing that the regions of stability can
change significantly with the type of potential that produces the
Q-balls [25]. For instance, in Ref. [29] is shown that the Q-balls
which spring from a potential with a cubic term can be stable even
for ω → mϕ.
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for EðR�Þ for stable Q-balls. Again, the simple results in
Eq. (36) led to agreement as poor as 40%, so an order of
magnitude in improvement has been achieved. This again
demonstrates that R�ðωÞ is the dominant source of error,
while the explicit dependence on the radius in Eq. (60) is
very accurate.

In Fig. 5, we also show the qualitative difference of the
two cases ω0 ¼ 0 (left) and ω0 > 0 (right). For large R
and ω0 ≠ 0, E ∝ Q ∝ R3, as expected from the thin-wall
approximation. However, as observed in Ref. [22], for
ω0 ¼ 0, ω ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
mϕ=R

p
for large R, and thus Q ∝ R5=2 and

E ∝ R2. In the unstable regime, not covered by our

FIG. 5. Q vs R for ϕ0 ¼ mϕ, ω0 ¼ 0 (left), ω0 ¼ mϕ=2 (right). The dashed black line is the exact solution in the stable regime; the
dashed red line is unstable. The blue solid line is our prediction from Eq. (60).

FIG. 4. RðωÞ (left), QðωÞ (middle), and EðωÞ (right) for the potential parameter set ϕ0 ¼ mϕ, ω0 ¼ 0. In the upper row, black/red
dashed lines show the exact numerical values in the stable/instable regime, and the blue and red lines show our approximation of
Eq. (60). In the lower row, we show the relative difference between exact and approximate values. The red marked region ω≳ 0.82
indicates unstable Q-balls with E > mϕQ.
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approximations, we find numerically that E ≃mϕQ ∝ R
for large R for all ω0.

VI. CONCLUSION

We have provided a guide to understandQ-ball solutions
and provided simple formulas for describing their salient
characteristics which can be used without numerically
solving the underlying differential equations. Our analyti-
cal approximations significantly improve upon Coleman’s
well-known thin-wall solution both qualitatively and quan-
titatively. We can describe stable Q-balls in arbitrary Uð1Þ-
symmetric sextic potentials to about 10% accuracy, and
much better for larger Q-balls.
Our expectation from effective field theory is that

these potentials capture the leading dynamics which
produce Q-balls, and are therefore of particular interest.
Consequently, we expect our results to be useful for simply
and accurately finding the properties of Q-balls for use in
various cosmological and astrophysical studies. In addition,
our approach has been general, allowing the complete set
of Q-ball-producing sextic potentials to be modeled and
studied, even though no exact solutions for this potential
are known.
Furthermore, we have derived a scalar profile that closely

describes the exact solution to the differential equation over
a wide range of parameters. We have also obtained accurate
analytical formulas for the resulting Q-ball properties,
namely the charge, energy, and radius. The procedure
employed here should be useful in finding analytic approx-
imations for Q-balls in other space-time dimensions or
potentials—and, more generally, to other similar differ-
ential equations—for instance, in the context of vacuum
decay. Finally, our improved description of global Q-balls
paves the way to a better description of the significantly
more difficult gauged Q-balls, which will be discussed in a
separate article.
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APPENDIX: MATCHING CONDITIONS
FOR THE FULL PROFILE

In this appendix, we determine the conditions on the
profile of Eq. (54),

fðρÞ ¼ fþ

8>>><
>>>:

1 − c<
sinhðαρÞ

ρ for ρ < ρ<;

½1þ 2e2ðρ−R�Þ�−1=2 for ρ< < ρ < ρ>;
c>
ρ e−ρ

ffiffiffiffiffiffiffi
1−κ2

p
for ρ> < ρ;

ðA1Þ

that make f and f0 continuous at ρ<;>. First, we find that ρ<
is determined by the equation

2ρ< ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2e2ðρ<−R�Þ
p

− 1
	
ð2þ e−2ðρ<−R�ÞÞ

× ½αρ< coth ðαρ<Þ − 1�: ðA2Þ

This has no simple solution, but if we assume ρ< ≪ R� and
αρ< ≫ 1, we find

ρ< ≈
1

α − 2
≈
1

2
R�; ðA3Þ

where we have used κ2 ¼ 1=R�. The constant c< takes the
form

c< ¼ 2e2ðρ<−R�Þρ2<
½αρ< coshðαρ<Þ − sinhðαρ<Þ�½1þ 2e2ðρ<−R�Þ�3=2

≈ R�e−2R�
: ðA4Þ

So, we find that the interior solution joins the surface
solution about halfway between the center of theQ-ball and
the edge, and that only for smaller R� does the sinh term
play a significant role. Note that we also find a prediction
for the value of the profile in the center of the Q-ball:

fð0Þ ¼ fþð1 − αc<Þ: ðA5Þ

This shows how the initial value of f on the potential is
away from the maximum as R� becomes smaller, but only
by exponentially small amounts.
Turning to ρ>, we find the matching condition

e−2ðρ>−R�Þ ¼ 2

�
ρ>

1þ ρ>
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2

p − 1

�
; ðA6Þ

which leads the approximate solution

ρ> ≈ 2R�: ðA7Þ

We also find the integration constant c> to be

c> ¼ ρ>eρ>
ffiffiffiffiffiffiffi
1−κ2

p
½1þ 2e2ðρ>−R�Þ�−1=2 ≈

ffiffiffi
2

p
R�eR�

: ðA8Þ

In this case, we find that the matching point to the
exterior solution is well beyond R�. Thus, we again find
that much of the full profile is approximated by the
transition solution.
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