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INTRODUCTION

A number of current problems of interest in active control involve the need
to control the acoustic radiation from a vibrating structure. It has been
demonstrated that the optimal solution for minimizing the radiation often does not
correspond to minimizing the vibration of the structure. As a result, there has
been considerable interest in exploiting the radiation mechanisms for a vibrating
structure as a means of controlling the acoustic radiation.

Several control schemes have been proposed that are based on a model of
the acoustic radiation [1,2,3]. An alternative method of minimizing the radiation
is to directly estimate the wavenumber spectrum of the vibrating structure, from
which the supersonic (radiating) components of the spectrum can be identified
and minimized [4]. This method has the advantage of providing a direct measure
of the radiation mechanism, which is not based on a model of the system. As a
result, if the parameters of the system change, the method would be sensitive to
those changes and capable of tracking the changing radiation conditions.

This paper outlines a method to obtain an estimate of the structural
wavenumber spectrum, from which the radiation can be estimated. The approach
is based on the use of an array of distributed sensors, which provides the
capability of attenuating the effects of spatial aliasing if there is significant
energy in the subsonic (nonradiating) components of the wavenumber spectrum.

ACOUSTIC RADIATION FROMSTRUCTURES

To control the energy that is radiated from a structure as efficiently as
possible, it is important to base the control strategy on the physical mechanisms
associated with radiation. The energy that is radiated from the structure can be
conveniently isolated from the energy that is not radiated by formulating the
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problem in the spatial transform (wavenumber) domain. In this paper, the
structure will be assumed to be one-dimensional, such that the transverse velocity
of the structure is described by vex). The spatial Fourier transform of this field
is the velocity wavenumber transform, and will be designated by V(kJ. The
fluid-structure interaction is described by Euler's equation, which couples the
transverse vibration of the structure with the acoustic pressure in the fluid
according to

iJU(x,Z) I = - iJp(x,z) I
Pf .':l .':l

vI z-o oz z-o
(1)

Here, Pf is the fluid density, z is the direction perpendicular to the plane of the
structure, and u(x,z) is the acoustic particle velocity, which is equal to the
transverse velocity of the structure at the surface of the structure. For far-field

radiation, the pressure field can be expressed as p =Poej(wI±k~X-k~z) ,where kf:<

and kfz are the components of the acoustic wavenumber in the x- and z-directions.
Transforming Euler's equation, with the assumed form for the pressure, leads to

WPf
P(kx'O) = T V(kJ .

fz

(2)

The acoustic power (per unit width) radiated from the structure can be
obtained from the integral of the normal acoustic intensity over the surface of the
structure, given as

L

IT = [~Re{p(X,o)u'(X'O)}dx , (3)

(4)

where L designates the length of the structure, Ref} designates the real part of
the argument, and * designates the complex conjugate operator. The acoustic
pressure and particle velocity can be obtained as the inverse transforms of P(k",O)
and V(kj, which after some simplification leads to the standard result

W k, 1V'i(k) 12

IT=~I x dk,
4:n: -kfk2 -e x

'V f x

where kf is the acoustic wavenumber.
Eq. 4 indicates that only structural wavenumbers that satisfy the condition

Ikx I ~ k
f

radiate energy to the acoustic far-field. This radiating portion of the

structural wavenumber spectrum is referred to as the supersonic wavenumber
spectrum. Thus, a sensing scheme that is capable of providing an estimate of the
supersonic wavenumber spectrum would be desirable for a control system
designed to minimize the far-field acoustic radiation.

There have been several control approaches proposed over the last several
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years that have focused on sensing and minimizing the supersonic wavenumber
spectrum, either explicitly or implicitly. However, most of these approaches have
minimized the supersonic spectrum based on information from an assumed model,
exceptions to this being the work of Maillard and Fuller [5] and Sommerfeldt [4].
If the physical system changes over time, an estimate of the radiated acoustic
power that is based on an assumed model may not be correct. The alternative
approach is to directly estimate the wavenumber spectrum from structural
measurements, which is the approach adopted in this paper.

According to the Nyquist criterion, a minimum of two spatial samples per
wavelength are required for the shortest wavelength (highest wavenumber) of
interest. For a given acoustic wavenumber, this will dictate the minimum number
of sensors that can be used to estimate the supersonic wavenumber spectrum.
However, if there is significant energy in the subsonic structural wavenumbers,
as there often is, aliasing will occur unless a lowpass wavenumber filter can be
implemented to attenuate the subsonic wavenumber components. It is possible
to accomplish this lowpass wavenumber filtering by using distributed sensors.
For this paper, PVDF sensors were assumed, due to their capability of being
easily shaped to provide desired filter characteristics. These sensors provide an
estimate of the induced strain in the structure. Since the strain is directly related
to the transverse displacement, and hence the transverse velocity, one can obtain
an estimate of the radiation in a form similar to Eq. 4. By shaping the sensors
properly, it is possible to estimate the supersonic wavenumber spectrum with a
smaller number of sensors than would be required for point sensors.

MODEL CONFIGURATION

To determine the effectiveness of this approach in estimating acoustic
radiation, a clamped-clamped aluminum beam was investigated. The beam was
characterized by length 0.914 m, width 0.051 m, and thickness 0.006 m. The
resonance frequencies associated with this beam were calculated and the first five
of these are shown in Table 1. The decision was made to design the distributed
sensors to be able to estimate the supersonic wavenumber spectrum for the first
five resonances, which indicates that the shaped sensors should be designed to
operate as lowpass wavenumber filters with a cutoff wavenumber of
approximately 10 m', assuming radiation into air.

For a perfect lowpass wavenumber filter, the PVDF sensors should be
infinite in length and shaped according to sin(kcx)/(kcx), where kc is the cutoff
wavenumber. Since the filters must be finite in length, the response of the
sensors will roll off in wavenumber, and will have sidelobe responses. After
some investigation, it was decided to use a Hamming window multiplying the
sin(kc x)/(kc x) shape to minimize the sidelobe effects. In addition, a cutoff
wavenumber of 6 m" was chosen to provide a compromise between low
attenuation in the desired passband, and high attenuation in the desired stopband.
The lowpass filter characteristics were calculated for various sensor lengths, and
are shown in Fig. 1. Based on these results, the length of the PVDF sensors was
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Table I. Resonance frequencies for clamped-clamped beam.

Mode 1 2 3 4 5

Freq. (Hz) 40.1 110.5 216.5 357.9 534.7
(Theory)

chosen to be 0.6 m, and a total of six sensors were used, as shown in Fig. 2. The
spacing between the center points of the sensors is 0.2285 m. For the results
presented here, the beam was excited at one of its resonance frequencies by a
point force located at x =0.64 m. The time domain signals from the PVDF
sensors were then Fourier transformed into the frequency domain, after which the
frequency domain signals at the excitation frequency were spatially Fourier
transformed into the wavenumber domain.

NUMERICAL RESULTS

To further examine the approach outlined here, the wavenumber transform
of the strain field was determined using three different methods. For each of the
five resonance frequencies of interest, the exact wavenumber transform was
calculated for the given geometry. In addition, the wavenumber transform was
calculated using the six discrete signals obtained from the shaped PvnF sensors.
Finally, for comparison, the wavenumber transform was calculated using four
point measurements at the locations x =0.114, 0.343, 0.571, 0.8 m, such as one
might obtain from discrete accelerometers. Two representative results, for modes
3 and 4, are shown in Fig. 3 and Fig. 4, respectively. The vertical line at a value
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Figure 1. Wavenumber response of shaped sensors.
Sensor lengths shown are: 0.3 m; _ _ _ 0.6 m;
_._._. 1.0 m;



Sommerfeldt: Wavenumber Sensors; 38.2 283

o 0.114 0.343 0.571
Length (m)

0.8 0.&14

Figure 2. Schematic showing the layout of the shaped
sensors on the clamped-clamped beam.

of k = 4 m' in Fig. 3 and at k = 6.6 m' in Fig. 4 indicate the value of the
acoustic wavenumber.

For mode 3 (Fig. 3), it can be seen that the agreement between the exact
spectrum and the spectrum from the shaped sensors is excellent over the
supersonic region of the spectrum. At higher wavenumbers, there is significant
discrepancy, since the shaped sensors have been designed to suppress this region.
In addition, the wavenumber spectrum obtained using point sensors demonstrates
noticeable aliasing errors, which would make it difficult to obtain a reasonable
estimate of the radiated energy.

For mode 4 (Fig. 4), the agreement between the exact spectrum and the
shaped sensor spectrum is again quite good. There is some discrepancy near the
acoustic wavenumber, and at very low wavenumbers. For this mode, the acoustic
wavenumber is near the design cutoff wavenumber, resulting in a slightly
degraded estimate. Again one can see significant aliasing errors if point sensors
are used, since they do not suppress any of the subsonic wavenumber
components. The results for mode 5 are similar in nature, with the estimated
supersonic spectrum being a little more degraded than for mode 4, since the
acoustic wavenumber increases further.

CONCLUSIONS

The acoustic energy radiated from a structure can be estimated in a
straightforward manner from a knowledge of the supersonic wavenumber
spectrum. A method has been outlined that allows one to estimate the supersonic
wavenumber spectrum using an array of shaped sensors. Using shaped sensors
makes it possible to significantly reduce the number of sensors required for the
array, since the subsonic wavenumber components will be attenuated by the
sensors. The numerical results presented here indicate that it should be possible
to obtain a good estimate of the wavenumber spectrum over the design region of
the sensors. Work is currently in progress to mount shaped PVDF sensors on the
physical beam and to verify these numerical results.
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Figure3. Wavenumber transform of beam excited in its
third mode: analytic transform; point
sensors; _._._. distributed sensors.
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Figure 4. Wavenumber spectrum of beam excited in its
fourth mode: analytic transform; point
sensors; _._._. distributed sensors.
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