

Modes in a nonneutral plasma column of finite length

S. Neil Rasband and Ross L. Spencer

Citation: AIP Conference Proceedings 606, 335 (2002); doi: 10.1063/1.1454302
View online: http://dx.doi.org/10.1063/1.1454302
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/606?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Properties of axisymmetric Bernstein modes in an infinite-length non-neutral plasma
Phys. Plasmas 20, 102101 (2013); 10.1063/1.4821978
Damping of TrappedParticle Asymmetry Modes in NonNeutral Plasma Columns
AIP Conf. Proc. 692, 69 (2003); 10.1063/1.1635159
Vibrational modes of thin oblate clouds of charge
Phys. Plasmas 9, 2896 (2002); 10.1063/1.1482765
Experimental observation of fluid echoes in a non-neutral plasma
AIP Conf. Proc. 606, 347 (2002); 10.1063/1.1454304
Simulations of the instability of the $m=1$ self-shielding diocotron mode in finite-length nonneutral plasmas AIP Conf. Proc. 606, 287 (2002); 10.1063/1.1454295

Modes in a Nonneutral Plasma Column of Finite Length

S. Neil Rasband and Ross L. Spencer
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

Abstract

A Galerkin, finite-element, nonuniform mesh computation of the mode equation for waves in a non-neutral plasma of finite length in a Cold-Fluid model gives an accurate calculation of the mode eigenfrequencies and eigenfunctions. We report on studies of the following: (1)finite-length Trivelpiece-Gould modes with flat-top and realistic density profiles, (2)finite-length diocotron modes with flat density profiles. We compare with the frequency equation of Fine and Driscoll [Phys Plasmas 5, 601 (1998)].

INTRODUCTION

The familiar Cold-Fluid drift model for the nonneutral plasma gives inside the plasma the mode equation for the perturbed potential [1].

$$
\begin{align*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi^{(1)}}{\partial r}\right)-\frac{m^{2}}{r^{2}} \Phi^{(1)} & +\left(\left(1-\frac{\omega_{p}^{2}(r)}{\left(\omega-m \omega_{0}\right)^{2}}\right) \frac{\partial^{2} \Phi^{(1)}}{\partial z^{2}}\right) \\
& +\frac{m \frac{\partial \omega_{p}^{2}(r)}{\partial r}}{\Omega r\left(\omega-m \omega_{0}\right)} \Phi^{(1)}=0 \tag{1}
\end{align*}
$$

FIGURE 1. Region of Computation

The computation region is illustrated in Figure 1 with $0 \leq r \leq r_{\text {wall }}$ and $0 \leq z \leq$ $z_{\text {wall }}$, where the plasma in this region is confined to the region with the crosses.

Equation (1) can be written in the form

$$
\nabla \cdot\left(\epsilon \cdot \nabla \Phi^{(1)}\right)=0
$$

where

$$
\boldsymbol{\epsilon}=\left[\begin{array}{ccc}
1 & \frac{i}{\Omega} \int \frac{\frac{\partial \omega_{p}^{2}(r)}{\partial r}}{\left(\omega-m \omega_{0}(r)\right)} d r & 0 \tag{2}\\
\frac{-i}{\Omega} \int \frac{\partial \omega_{p}^{2}(r)}{\partial r} \\
\left(\omega-m \omega_{0}(r)\right)
\end{array} r \quad 1 \quad 0 \quad 0 \quad 1-\frac{\omega_{p}^{2}(r)}{\left(\omega-m \omega_{0}(r)\right)^{2}} .\right]
$$

and

$$
\Omega=\frac{q B}{m c}, \quad \omega_{0}=\frac{q}{m \Omega r} \frac{\partial \Phi_{0}}{\partial r}
$$

Construct a decomposition of the region of interest into triangular elements, where the plasma boundary is approximated by edges of the triangles. Figure 2 shows an example with $r_{\text {wall }}=3.81 \mathrm{~cm}$ and $z_{\text {wall }}=30 \mathrm{~cm}$.

FIGURE 2. A triangulation of a plasma equilibrium. The region occupied by the plasma is shaded. Note that the scales for the vertical and horizontal axes are not the same.

Each triangle has 6 nodes (3 mid-points for the sides and 3 vertices) and on each node I a parabolic function:

$$
\Psi_{I}(x, y)=\beta_{1}+\beta_{2} x+\beta_{3} y+\beta_{4} x^{2}+\beta_{5} x y+\beta_{6} y^{2}
$$

This function is defined so that it has value 1 at the I th node and 0 at all other nodes in the triangle. Then approximate $\Phi^{(1)}$ as a sum over nodes:

$$
\Phi^{(1)}(x, y)=\sum_{I} C_{I} \Psi_{I}(x, y)
$$

Boundary nodes have the C_{I} determined from boundary conditions on $\Phi^{(1)}(x, y)$.
The Galerkin integration of Eq.(1) multiplied by the approximating functions Ψ_{J} proceeds numerically by doing one triangular element at a time. If the element is outside the plasma, then $\epsilon=\mathbf{1}$, otherwise it is as given in Eq.(2). This gives a matrix equation for the C_{I}.

$$
\sum_{I} A_{J I} C_{I}=0
$$

with nonzero values of C_{I} only for certain values (eigenvalues) of ω. In practice we set

$$
\begin{equation*}
\sum_{I} A_{J I} C_{I}=1, \quad \text { for each } \quad J \tag{3}
\end{equation*}
$$

and look for ω such that $\max \left(C_{I}\right) \rightarrow \infty$ or so that $1 / \max \left(C_{I}\right) \rightarrow 0$.

TRIVELPIECE-GOULD ($\mathrm{M}=0$) MODES

As a first example we present the results for a flat-top density profile with the plasma edge at $r_{\text {plasma }}=1.89 \mathrm{~cm}, z_{\text {plasma }}=17.71 \mathrm{~cm}$. The triangulation for this equilibrium is shown in Figure 2. The aspect ratio $\alpha=9.37$ and $r_{\text {plasma }} / r_{\text {wall }}=$ 0.496. For the modes that can be compared with the results in Table II of Jennings, Spencer, and Hansen [2] the agreement is excellent.

Figure 3 shows a scan in frequency for even modes in z with some of the prominent modes indicated.

FIGURE 3. Scan of $1 / \max \left(C_{I}\right)$ as described following Equation (3) for even modes.

A similar scan in frequency for the same equilibrium but odd modes gives frequencies $\omega / \omega_{p e}=0.1079,0.3060,0.4630,0.5766$ for the modes $(1,0),(3,0),(5,0)$, and $(7,0)$, respectively. Figure 4 shows the perturbed potential eigenfunctions for some of these modes.

FIGURE 4. Perturbed potential eigenfunctions for selected modes
Lastly, for $\mathrm{m}=0$ modes we consider briefly the effect of a radial dependence in the density profile. We compute equilibria [3] whose midplane density is

$$
n(r) / n_{0}=\left(1-\sqrt{\left.(1.5 / \nu)\left(r / r_{\text {wall }}\right)^{2}\right) \exp \left(-\left(r / r_{l}\right)^{\nu}\right) ~}\right.
$$

We choose $r_{l}=r_{\text {wall }} / 2$ and compare two choices for $\nu, \nu=5.0,40.0$, corresponding to a more-or-less average monotonic profile and a flat profile, respectively. Figure 5 shows the profiles with the corresponding $(2,0)$ mode frequencies. The changes in the mode frequencies for such changes in density profiles are on the order of 10%.

FIGURE 5. Density profiles and frequencies for $(2,0)$ modes.

THE DIOCOTRON ($\mathrm{M}=1$) MODE

We examined the finite-length diocotron mode frequency for a number of differing equilibria with varying plasma radii. All equilibria have flat-top density profiles and are computed in a Malmberg trap with radius $r_{\text {wall }}=3.81 \mathrm{~cm}$, half-length $z_{\text {wall }}=30.0 \mathrm{~cm}$ and magnetic field 375 G . Figure 6 shows the shift in frequency from the infinite length result as a function of the plasma radius. This figure also compares these results to those obtained with the formula of Equation (24) in Fine and Driscoll [4].

FIGURE 6. Diocotron frequency shift as a function of plasma radius.
For the case of $r_{\text {wall }} / r_{\text {plasma }}=2.0$ Figure 7 shows the shape of the perturbed plasma potential in the quarter cylinder computation region. For a fixed z value less than the plasma half-length it is evident that inside the plasma the perturbed potential dependence on r is almost linear. A detailed examination of these eigenfunctions shows that inside the plasma their dependence on r is like $r+a r^{3}+\cdots$ and in z like $1+b z^{2}+\cdots$ with a and b small for long plasmas. This is consistent with solutions inside the plasma that go like a modified Bessel function I_{1} in r and $\cosh (k z)$ in z, with k very small corresponding to a wavelength much longer that the length of the confining cylinder [1].

This curvature in r is readily seen for a pancake-like equilibrium. In Figure 8 we show the edge curve for a pancake-like equilibrium with $r_{\text {plasma }}=2.524 \mathrm{~cm}$ and $z_{\text {plasma }}=0.138 \mathrm{~cm}$ for an aspect ratio of $\alpha=0.055$. This Figure also includes a plot of the scaled perturbed potential as a function of r for a fixed value of z where the curvature is readily apparent. The $\mathrm{m}=1$ diocotron mode for this equilibrium has a frequency of $\omega / \omega_{p e}=0.00902$.

FIGURE 7. Perturbed Potential in the quarter cylinder for a $\mathrm{m}=1$ diocotron mode

Plasma edge curve for pancake equilibrium

$\Phi(r)$ at a fixed value of z

FIGURE 8. Pancake-like plasma edge and perturbed potential as a function of r for a fixed value of $z=0.05 \mathrm{~cm}$

REFERENCES

1. Prasad, S. A. and O'Neil, T. M.,Phys. Fluids, 26, 665 (1983).
2. Jennings, J. K., Spencer, R. L., and Hansen, K. C., Phys. Plasmas, 2, 2630 (1995).
3. Spencer, R. L., Rasband, S. N., and Vanfleet, R. R., Phys. Fluids B, 5, 4267 (1993).
4. Fine, K. S. and Driscoll, C. F., Phys. Plasmas, 5, 601 (1998).
