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Numerical Non-neutral Plasmas

Ross L. Spencer, Grant W. Mason, and S. Neil Rasband

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

Abstract. For the past 15 years, or so, a set of computational tools for studying non-neutral plasmas
has been developed at Brigham Young University. These codes, which include equilibrium codes
(for both static plasmas and solitons), radial eigenvalue codes, 2-d eigenvalue codes, and both
2-d and 3-d particle-in-cell simulation codes, will be discussed, along with their applications to
problems of interest to the non-neutral plasma physics community.

INTRODUCTION

For many years we have been developing at Brigham Young University a set of com-
putational tools for studying non-neutral plasmas, tools which are now being used by
several different groups around the world. This paper is a brief review of these tools, the
computational methods they use, and the situations in which they might appropriately be
used. Since we usually work with students, we have tried to keep the methods that we use
as simple as possible. In practice this means that we mostly use finite-difference meth-
ods on uniform grids, although we have done some work with non-uniform grids using
finite-element methods. The codes are all written in FORTRAN, either using embedded
graphics via the PLPLOT package from the magnetic fusion group at the University of
Texas, Austin, or using MATLAB to produce graphics after the codes have produced
data files. The all-important electrostatic field solve is handled in three different ways,
depending on the number of computational dimensions. For one-dimensional problems
we simply use a standard tri-diagonal Gauss elimination algorithm. For two-dimensional
problems we use a banded matrix solver, similar to the tridiagonal Gauss elimination al-
gorithm, but with a much larger bandwidth. We number the points on the grid by moving
along the smallest dimension first (ther direction in(r,z) problems in the standard axi-
ally elongated non-neutral plasma geometry) so that the bandwidth of the sparse matrix
that results from finite-differencing the Laplacian is 2N + 1, whereN is the number of
grid points in the shortest direction. On modern computers this produces a manageable
matrix problem. In three-dimensions we use a multi-grid algorithm.

In the following sections each of the codes in our suite is described.

DRIFTK

This code[1] is a 1-dimensional radial eigenvalue code based on the drift-kinetic equa-
tion, which means that the dynamics perpendicular to the magnetic field is governed
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by theE×B drift, while parallel to the field we use kinetic theory, as embodied in the
plasma dispersion function. The plasma equilibrium is assumed to be infinitely long and
axisymmetric so that we may write

φ1 = φ1(r)exp(ikz+ imθ − iωt) , (1)

and the mode equation based on this model is
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φ1 = 0 , (2)

where k is the axial wave number,m is the azimuthal wave number,ω2
p(r) is the

plasma frequency, which varies with radius because the densityn0(r) varies with radius,
vth =

√
kBT/m is the thermal velocity,q is the particle charge,B is the magnetic field

strength,ε0 is the permittivity of free space,ω0(r) is the equilibrium driftE×B rotation
frequency, and wherevb is the net velocity of the plasma in thez-direction. The function
W(z) is defined by

W(z) =
1√
2π

∫ ∞

−∞

xe−x2/2

x−z
dx , (3)

analytically continued from the upper-halfzplane, and the boundary conditions are that
φ1 vanish at the conducting wall and thatφ1 = 0 for m≥ 1 or thatdφ1/dr = 0 for m= 0.
It should also be mentioned that the code also allows for multiple species.

The algorithm to solve this equation starts by finite-differencing the differential equa-
tion on a radial grid. Since the resulting system of linear equations is homogeneous a
straightforward solve will just giveφ1 = 0 for any choice ofω. To solve this problem
we remove the equation corresponding to some radiusr0 from the system and replace it
with the equation

φ1(r0) = 1 , (4)

which now gives a system for which there is a solution for any value ofω. There is,
however, a kink in the solution atr = r0 unlessω is one of the mode frequencies.

The algorithm now varies the mode frequencyω until the removed equation is satis-
fied and the kind is removed (this technique is called matrix shooting.) The user chooses
values fork andm, then supplies the code with an initial guess forω. The algorithm
depends sensitively on this initial guess and often blows up when the guess is inappro-
priately chosen, so the code also allows the user to scanω either along the real axis or
across a region of the complexω plane to find approximately where the mode frequency
lies. When an approximate value found by scanning is used as an initial guess, the code
usually converges.

This code has been used to study damped quasi-modes (spatial Landau damping) and
is routinely used by the experimenters at Brigham Young University and other places to
identify the modes observed in experiments.
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DRIFT2D

We (S. Neil Rasband) have also developed a 2-dimensional eigenvalue code[2] for use
with the(r,z) cold-fluid vb = 0 version of Eq. (2). In this case the perturbed potential is
taken to be of form

φ1 = φ1(r,z)exp(imθ − iωt) (5)

and the mode equation involves bothr andzderivatives. This code uses a finite-element
algorithm on a non-uniform rectangular mesh in ther,z plane. After performing the
many moment integrals of the finite element method a large linear algebra problem of
the form

L(ω)i j φ j = 0 (6)

is obtained. To avoid the trivial solutionφ = 0 we replace the zero on the right-hand side
by some suitably chosen vectorr i to obtain

L(ω)i j φ j = r i , (7)

which is directly solved by LU decomposition using a banded matrix solver. The un-
known mode frequencyω is then varied until the solution vectorφ j becomes numer-
ically infinite, indicating that a mode has been found. (The mode frequencies are the
values ofω that make the operatorL singular.)

This code is used to find frequency shifts and eigenfunction changes due to finite
length, equilibrium shape, and induced charges on nearby walls in non-neutral plasma
modes.

EQUILSOR

This code[3] is our axisymmetric equilibrium code which finds the equilibrium potential
φ(r,z) and densityn(r,z) given electrode shapes and applied voltages. The code can
model both rings at the outer edge of the cylindrical computing volume, or electrode
segments specified as line segments in the(r,z) plane within the cylindrical computing
volume. By choosing many such segments any axisymmetric electrode arrangement may
be modeled. When the electrode line segments cross the grid lines we use a short-legged
version of the finite-difference approximation to the Laplacian to minimize the relatively
large errors produced by a “stair-step” approximation.

The code computes three types of equilibria, corresponding to the following three
forms of the non-linear equilibrium equation:

Mid-plane density profile:

∇2
φ =− q

ε0
nmid(r)exp(−q(φ(r,z)−φ(r,0))/kT) . (8)

This form allows the user to specify the radial density profilenmid(r) at the plasma mid-
plane (z= 0) then allow the plasma to adjust its density along the magnetic field lines
until equilibrium is reached.
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∫
ndzprofile:

∇2
φ =− q

ε0
nmid(r)exp(−q(φ(r,z)−φ(r,0))/kT) . (9)

This form allows the user to specify a radial profile of the line-integrated density
∫

ndz,
and then the algorithm, as part of the equilibrium solve, adjusts the mid-plane density
profile nmid(r) until the computed profile of

∫
ndzmatches the profile supplied by the

user. So this form is just a slight modification of the mid-plane profile form.

Global thermal equilibrium:

∇2
φ =− q

ε0
n0exp(−q(φ(r,z)−φ(0,0))/kT +Cr2) . (10)

This version adjusts both the radial and axial profiles using the above form of the density
obtained from the condition for global thermal equilibrium[4]. The constantC is adjusted
as the algorithm proceeds to achieve the mid-plane radius specified by the user.

The convergence rate of the code is determined by the ratioλD/Lp, whereλD is
the Debye length and whereLp is a measure of the size of the plasma. The code
converges very quickly when this ratio is of order 1, but slows down as this ratio becomes
small. In addition to the convergence problem, small values of this ratio also cause
the exponential factor on the right-hand side of the equilibrium equation to blow up.
This can be controlled by starting the iteration sequence at a larger value of the plasma
temperature than desired, then slowly decreasing it toward the target value. This allows
the equilibrium to slowly adjust to a decreasing Debye length, controlling the potentially
large value of the exponential function when the temperature is small.

This code provides the input for DRIFT2D, RATTLE, and INFERNO (discussed
below) and is routinely used by experimenters to turn profiles of

∫
ndz into pictures

of what the plasma equilibrium looks like.

RATTLE

This code[5, 6] is an axisymmetric particle-in-cell simulation in(r,z) geometry. Note
that axisymmetry means that each “particle” is actually a ring of charge. The Larmor
radius is assumed to be infinitesimally small, so that the radial position of each particle
remains unchanged. For simplicity, particles are constrained to lie on thez= const grid
lines of the simulation, so that the interpolations that produce the densityn(r,z) and
the axial electric fieldEz(r,z) only take place inz. This code reads an equilibrium file
produced by EQUILSOR and uses the densityn(r,z) from this file to load the particles
onto the simulation grid. RATTLE has the same varied electrode shape capability as
EQUILSOR. The code has a time step constraint given by the usual electrostatic Courant
condition:

ωpτ < 1 . (11)
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For most plasmas this constraint means that the code is useful for modeling plasma
loading, plasma dumping, and Gould-Trivelpiece waves, e.g., processes that occur on a
timescale of 1/ωp or L/vth, whereL is the system size andvth is the thermal velocity.
The code is not very useful for studying transport processes because the collisions are
constrained to axial exchanges of energy along the field lines (which means that the
axial distribution functionf (vz) can’t evolve due to collisions) and because transport
processes are slow.

The basic cycle that occurs during each time step is:

(1) The particles are moved using the standard leapfrog algorithm in which velocities
and positions are known at different times:

vn+1/2 = vn−1/2 +
q
m

Ez(rn)τ ; zn+1 = zn +vn+1/2τ , (12)

with Ez(r) found by linear or quadratic interpolation on the grid.

(2) The particle positions are then used to create density at each grid point, using a
matching form of interpolation to the one used in step (1). If they don’t match, a single
particle will exert a force on itself.

(3) Using the density from step (2) the potentialφ(r,z) is found by LU-decomposition
and back-substitution on the large banded matrix that represents the Laplacian operator.
This direct solve is quite manageable on modern PCs. For instance, a 100× 500 grid
makes a banded matrix of size[100×500,201] which requires only 80 Megabytes of
memory.

This code is used to interpret the meaning of observed mode frequencies in exper-
iments, to simulate plasma loading and dumping, to study nonlinear waves (including
solitons), etc..

INFERNO

This code[7] (Grant Mason) is a 3-dimensional particle-in-cell simulation in which the
motion in z is governed by Newton’s second law, but the motion in thex,y plane is
governed by theE×B drift. We compute in a cylindrical geometry, but use a Cartesian
grid in (x,y). The reason for this somewhat awkward choice is that the pain of finite
differencing the Laplacian near a circular boundary that crosses Cartesian grid lines is
easier to bear than that associated with ther = 0 singularity in a cylindrical coordinate
system. In addition, the small errors inφ caused by the mismatched boundary are of very
short wavelength, and hence decay exponentially from the wall into the plasma. This
code is suitable for simulating non-axisymmetric Gould-Trivelpiece modes, diocotron
modes, loading and dump effects, etc.. Due to the same limitations on the modelling
of particle collisions as in RATTLE, and due to the increased run time required with a
3-dimensional grid, it is not very useful for studying transport problem.
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INFERNO has the same basic 3-step cycle as RATTLE, except that particles must be
moved in the(x,y) plane as well as inz. To follow the drift motion in the(x,y) plane we
use a predictor-corrector algorithm discussed by Tajima[8].

The field solve must also be handled differently because in 3-dimensions the banded
matrix form of the Laplacian is too large for LU decomposition, so we use a multi-grid
algorithm for the field solve.

This code has been used to study the instability of them = 1 diocotron mode for
hollow density profiles, and has been used more recently to simulate the trapped-particle
asymmetry modes discovered by Kabantsev,et al[9].

CONCLUSION

These codes occupy a middle ground between experiment and theory, and are therefore
useful for connecting the two. They can be used to interpret experimental signals, to
test theoretical ideas, and can be usefully thought of as highly diagnosable simplified
experiments in which the laws of physics can be adjusted to see the relative importance
of various effects. They are available upon request for use by anyone who is interested.
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