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GENERALIZED SUSCEPTIBILITIES AND MAGNETIC ORDERING OF HEAVY RARE EARTHS*
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The generalized magnetic susceptibilities, p(q), have been calculated along the line 1
to A for the heavy rare-earth metals, Gd, Dy, Er, and Lu, using energy bands previ-
ously calculated by Keeton and I oucks. The initial ordering periodicity for each of
these metals can be related to Fermi-surface geometry by examining the maxima in our
susceptibilities. Agreement with experimental magnetic wave vectors is satisfactory.

The Ruderman-Kittel-Kasuya- Yosida (RKKY)
indirect exchange interaction can easily be relat-
ed to a q-dependent susceptibility, y(q). This
generalized susceptibility is the same as is ob-
tained from the Kubo' linear-response formal-
ism, and for one atom per unit cell it has the
form'

1 - (1-- -,)
kn k+q+K, n'

Nk,E,(k + q + K ) E(k) '-
)

where the fk are Fermi-Dirac distribution func-
tions for reduced wave vector k and band n, the
E„(k)are the energy bands, Ko is the reciprocal
lattice vector necessary to reduce k+q, and we
have assumed matrix elements to be constant
and have factored them out.

In previous work the evaluation of y(q) has
been done using free-electron energy bands. The
band calculations on rare-earth metals' show
that they are not free-electron-like, but resem-
ble more closely the transition element bands.
Also, the Fermi surfaces are very nonspherical.
We feel, therefore, that the use of free-electron
bands has been the weakest point in previous cal-
culations. In this work we have kept all the usu-
al approximations' in the derivation of Eq. (1),
but we have put in realistic bands. Our results
show that the Fermi surface geometry is the
dominant factor in the determination of the mag-
netic ordering periodicity in the heavy rare
earths.

We are interested only in q along the line I' to
A of the Brillouin zone because all the magnetic
ordering structures observed in the heavy rare
earths can be described by a wave vector in that
direction. The metals we are interested in all
have hcp crystal structures, and for q in the
special direction I' to A, we can treat y(q) in the
double-zone representation. (Hereafter, q will
indicate the magnitude of the vector q with q re-
stricted to the line I' to A. ) Relativistic-aug-
mented-plane-wave energy bands for Gd, Dy,

Er, and Lu were available to us from the calcu-
lations performed by Keeton and Loucks. ' We
have used these bands to calculate the suscepti-
bilities of these four metals. (These are para-
magnetic bands, so our conclusions apply to the
initial ordering of the metals, before the bands
are too greatly perturbed by the magnetic inter-
actions. ) We have used these bands in the dou-
ble-zone representation, where Eq. (1) is the
correct formulation of the susceptibility, be-
cause the maximum splittings introduced on the
AHL zone face were within the numerical accura-
cy of the bands. The relativistic form of the
bands was important to the present results, how-
ever, because of significant changes in relative
positions of the bands and in the Fermi surface
introduced by the relativistic formulation. '~'

The maximum in susceptibility determines the
stable magnetic structure. ' It was originally
pointed out by Lomer' that if the Fermi surfaces
may be approximated by pieces of parallel planes
separated by a wave vector Q, then there occurs
a logarithmic divergence in y(q) at q =Q. This is
generally referred to as "nesting Fermi surfac-
es." The relation between the shape of y(q) and
the Fermi surface geometry was discussed in de-
tail by Roth, Zeiger, and Kaplan. ' One may con-
clude from their discussion that the necessary
condition for a maximum in y(q) is to have siz-
able areas of Fermi surface that can nest with
roughly the same wave vector.

To perform the numerical calculation of Eq.
(1), we have neglected the temperature depen-
dence of the Fermi functions, and we have used
the three-dimensional extension of the trapezoi-
dal rule to perform the integration over k. We
have used a mesh containing 27 216 points in the
Brillouin zone for this integration. The finite
mesh may introduce spurious peaks in the sus-
ceptibility, and is the principal source of noise
in our calculation. Comparison with the Fermi
surface geometry allows us to eliminate peaks
due only to the numerical procedures since the
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(1) become large and the contributions to the sus-
ceptibility become less important. In view of
this result, the calculations that are reported
here refer only to the two bands determining the
Fermi surface.

We have considered also the effect of varying
the Fermi energy up or down by 0.005 Ry. We
find that the Fermi surfaces change very gradual-
ly along the heavy rare-earth series when we do
this. For example, the Fermi surfaces for Gd
with EF decreased by 0.005 Ry and for Dy are al-
most identical. There are subtle differences,
however, that would prevent us from simply tak-
ing one set of bands and varying the Fermi ener-
gy to get all the susceptibilities of the heavy rare
earths. In general, increasing the Fermi energy

Fermi surface is what is critical in determining
the shape of }((q).

In considering the convergence of the sums on
energy bands indicated in Eq. (1), we calculated
the susceptibility for Dy (using the bands for the
potential called Dy 2 in Ref. 3) using (1) the eight
calculated bands, (2) the eight calculated bands
plus four free-electron bands above them, and
(3) only the two bands which determine the Fer-
mi surface. We found no appreciable difference
in the features of the susceptibility in these three
cases, only an essentially p-independent shift.
The reason for this seems to be that the bands
near the Fermi energy are quite flat. For those
bands which are much higher or lower than the
Fermi energy, the energy denominators of Eq.
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FIG. 2. Generalized susceptibilities and Fermi-surface cross sections for erbium and lutetium.
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F1G. ]. Generalized susceptibilities and Fermi-surface cross sections for gadolinium and dysprosium.
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for a given set of bands decreases the wave vec-
tor Q at which the maximum in the susceptibility
occurs.

In Figs. 1 and 2 we show the calculated suscep-
tibilities along with appropriate Fermi-surface
cross sections for Gd, Dy, Er, and Lu. (The po-
tentials called Dy 2 and Er 1 in Ref. 3 are those
used here for Dy and Er.) When only the bands
defining the Fermi surface are used, it is straight-
forward to show that X(0) = ,'N(EF-), whirr~ N(EF)
is the density of states at the Fermi energy. As
an internal check, we note that the limit of g(q)
as q goes to zero is in good agreement with

2N(EF) from Keeton and Loucks' in each case.
We see that the susceptibilities for Dy, Er, and
Lu have well-defined peaks around 0.6m/c. The
magnetic wave vector for these metals is slightly
smaller than this, being (in units of w/c) 0.49 for
Dy, 0.57 for Er, and 0.53 for Lu by extrapolation
from Tb-Lu alloys. 4 Small increases in Fermi
energy without changing the bands can bring the
positions of the maxima in the susceptibilities in-
to agreement with the experimental values. How-

ever, there is at present no reason to expect any
better agreement than we have obtained using the
calculated Fermi energies. The inclusion of a @-

dependent matrix element could have the effect
of pulling down the right side of the susceptibili-
ties shown in Figs. 1 and 2 and hence shift the
peak slightly to the left into better agreement
with experiment. Also, the energy bands are not
sufficiently well known at present to expect de-
tailed quantitative agreement with experiment.

We note that the beginning of the peaks in the
susceptibilities of Dy, Er, and Lu corresponds
quite well to the Fermi-surface separation we
have labeled (l). This piece between two arms
of the Fermi surface has been called the "web-.

bing" by Keeton and Loucks. ' They have suggest-
ed that the webbing may be responsible for the
antiferromagnetic ordering arrangements in the
heavy rare earths. Our results seem to confirm
this idea. The webbing seems to be important to
determining the exact position of the peak in Dy,
Er, and Lu. If we look at Gd where the webbing
is absent, we see that there is a much wider
range of p's that contribute significantly to the
susceptibility, so that y(q) is rather flat. A 0-
dependent matrix element would probably pull
down the right of the curve and establish q = 0

quite firmly as the maximum of y, in agreement
with the ferromagnetism observed in Gd at its
initial ordering point. The webbing in the heavi-
er metals tends to allow a cluster of q's in a
small range around the webbing q to dominate
the susceptibility.

The good agreement between the experimental
and the calculated magnetic ordering periodicity
indicates that most of the magnetic ordering in-
formation is contained in the energy bands, and

the matrix elements are probably smooth func-
tions of g. When we allow the matrix elements
to be smoothly decreasing functions of p, we see
that our curves are in nice qualitative agreement
with the experimental magnon spectrum obtained
for Tb-10% Ho by Mgfller, Houmann, and Mackin-
tosh. We get a very nice peak in each half of the
susceptibility curves just as their analysis showed

More experimental and theoretical work will
have to be done before the susceptibilities can be
understood in greater detail. The inherent uncer-
tainties in calculations such as ours are present-
ly rather large because of the uncertainties in
the band calculations and of our lack of under-
standing of the matrix elements that enter the in-
direct-exchange interaction.

We wish to acknowledge the kindness of Dr. S.
C. Keeton and Dr. T. L. Loucks in providing the
energy bands used in this calculation. We have
also benefited greatly from many discussions
with Dr. Loucks during the course of this work.
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