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E x p e r i m e n t a l  O b s e r v a t i o n s  o f  N o n l i n e a r  
Effects  m W a v e s  in a N o n n e u t r a l  P l a s m a  

Grant W. Hart, Ross L. Spencer and Bryan G. Peterson 

Department of Physics and Astronomy 
Brigham Young University 

Abs t r ac t .  We have been making measurements of nonlinear effects that occur in 
the normal modes of electrostatic waves in a pure electron plasma. The two effects 
described here are (1) mode coupling between normal modes and (2) formation of 
solitons from the normal modes. The coupling between the modes in the plasma occurs 
because of the nonlinear terms in the continuity and momentum equations. We see the 
coupling between the n.. = 1 and n. = 2 modes in our plasma, where n~ is the number 
of half-wavelengths that fit into the plasma. These are the only two modes that have 
close enough frequency matching to couple significantly. The predicted amplitude and 
phase dependence of this coupling theory are verified in our data. 

When normal modes are grown to large amplitudes, they can become solitons bounc- 
ing between the ends of the system. We have measured these solitons and have shown 
that they have the expected properties of solitons: when not interacting, they travel 
faster than the linear wave speed in the plasma and they also show the phase delay 
expected when they interact with each other. Because of the interaction between the 
height of the soliton and its speed, solitons can only be grown from normal modes in 
a limited amplitude range. Mode coupling can come into play with these solitons and 
even cause one to disappear. 

I N T R O D U C T I O N  

We have been s t u d y i n g  e l ec t ro s t a t i c  Tr ive lp iece-Gould  m o d e s  in a nonne u t r a l  
p l a s m a  confined in a M a l m b e r g - P e n n i n g  t rap [1]. Our  p l a s m a  is 60 cm long and  
a b o u t  2 cm in radius .  The  p l a s m a  t e m p e r a t u r e  is abou t  1 eV [2]. The  waves t h a t  
we have been  s t u d y i n g  have had  large  enough a m p l i t u d e s  t h a t  nonl inear  effects 

become  i m p o r t a n t .  T h e r e  are two m a i n  nonl inear  effects t h a t  we have observed:  
(1) Coupl ing  be tween  different  m o d e s  and (2) Solitons.  

M O D E  C O U P L I N G  

T h e  m o d e  coupl ing  we observe  occurs  between the  lowest  f requency  s t a n d i n g  
waves. Because of  our  long, th in  g e o m e t r y  these are  bas i ca l ly  Tr ive lp iece -Gould  
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modes with close to an integral number of half-wavelengths in the plasma [3,4]. 
We identify these modes by their nz value, which can be defined as the number of 
half-wavelength in the plasma. The lowest frequency mode has 1/2 wavelength in 
the plasma, so it has an nz of 1. It has odd symmetry relative to the center of the 
plasma. The next higher mode has one full wavelength in the plasma, so it has an 
nz of 2. It has even symmetry  relative to the center of the plasma. 

P h y s i c a l  M e c h a n i s m  of  m o d e  c o u p l i n g  

Product  terms, such as V • (nv) in the continuity equation and v .  V v  in the 
momentum equation can create a drive for other modes, because they involve the 
sum and difference frequencies. If the drive from these terms matches a mode's 
s tructure both spatially and temporally, then the driven mode can either grow or 
shrink, depending on the phase relationship between the mode and the drive. 

For example, if we have mostly the nz = 2 mode with just a little bit of the 
nz = 1 mode present, this can cause the n~ = 1 mode to grow to large amplitude. 

Simple  t h e o r y  

Assume modes of the form 

n l  ~-~ nlo sin (wxt) sin (kxz) 
'~z = ~zo sin (w~t + ¢) cos (kzz)  

(1) 
(2) 

the corresponding velocities are 

nlo  (..01 
?-'1 - -  COS (a.~lt) COS (]~1 z)  (3) 

rto ~1 
n20 022 

v2 - cos (w2t + ¢) sin (k2z) (4) 
?'tO ]~2 

We put these into the continuity equation and find the terms that have the same 
spatial and temporal dependence as the nl and n2 modes. The result is that 

Ohio nlon2o - - - 0 3 1  cos ¢ (5) 
Ot 2n0 

On2o n 2 
- -  -- '~10031COS ¢,  (6) 
Ot 2n0 

Note that  if the phase is in the right range the first equation leads to initial 
exponential  growth for the nz = 1 mode. If there is a small frequency mismatch 
between the two modes, we define 5w = w2 - 2CVl. We can model this by having a 
t ime dependent phase, ¢ = ¢0 + &)t in the above equations and it leads to alternate 
periods of growth and decay. 
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FIGURE 1. Mode conversion for 1 Volt drive. The upper plot shows the amplitude of the two 
modes as a function of time. The lower plot shows tile relative phase between the two modes. 

Experimental  Measurements  

We launch these modes by oscillating the confining potentials at the end of the 
plasma at the n~ = 2 mode frequency. For these experiments we applied the same 
oscillating potential to both ends, matching the even symmetry of the mode. 

We observe the modes by measuring the image charge induced on the wall rings. 
The amount of charge induced on an azimuthally symmetric ring is close to the 
total charge under the ring, so what we measure is approximately 

f z'ndn dz. (7) 
b e g  

Note that if a mode has a node centered under a ring, then we are insensitive to 
that mode on that  ring. 

We recorded our data  on two rings centered at -1-20 cm away from the center of 
the plasma, approximately 2/a of the way from the center of the plasma to its end. 
The rings were 10 cm long. It should be noted that this configuration is insensitive 
to the nz = 3 mode because of the ring placement relative to the nodes of that  
mode. The signals for the nz= l  and nz=2 modes can be separated by adding and 
subtracting these two signals because of the symmetry of the modes. We observe 
the image charge on these rings after the drive has stopped. 

Figure 1 shows the amplitude of the two modes as a function of time when the 
driving voltage is one volt. Note that the amplitude of the nz= l  mode grows and the 
nz=2 mode goes to a smaller (but nonzero) value. The phase approaches - ~ .  When 
the phase is -t-~, the mode conversion will stop because of the cos ¢ dependence in 
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F I G U R E  2. Mode conversion for 2 Volt drive. The upper plot shows the ampli tude of the two 

modes as a function of time. The lower plot shows the relative phase between the two modes. 

The shaded regions show the times when the nz = 1 mode is shrinking and the nz = 2 mode is 

growing. 

equations 5 and 6. All of our one-volt data shows the phase eventually going to 
one of these values. 

Figure 2 shows the amplitude of the two modes when the driving voltage is two 
volts. In this case we get conversion back and forth between the two modes as the 
relative phase varies due to the frequency mismatch. Equations 5 and 6 predict 
growth for the nz = 1 mode when cos ~b is in the range from - ~  to ~ and damping 
when outside that  range. The shaded areas on the lower curve in Figure 2 are 
the times when the phase should be outside of that range, based on the growth or 
damping of the modes. We can see that within the error bars this prediction is 
correct. 

In order go beyond the qualitative result shown above, we need to verify that the 
growth of the nz = 1 mode has the proper cos ~b dependence. The left hand plot 
of Figure 3 shows the growth rate of the nz = 1 mode with the n2o dependence 
divided out plotted versus cos ~b. This fits a linear curve very nicely, showing the 
predicted cos q~ dependence. We can also take the same data and plot it versus 
the amplitude of the nz = 2 mode, since this should also be linear when the ~b 
dependence is removed. The right hand plot of Figure 3 shows this plot, which is 
also linear. The slopes of these lines should depend only on no and aJ1, but there 
appears to be some variation between shots of different drive amplitude that is not 
yet understood. 
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FIGURE 3. Phase and Amplitude dependence of mode growth. The figure on the left shows 
that "//A is proportional to cos 0. The figure on the right shows that 7/cos 0 is proportional to 
A. 

E n e r g y  t r a n s f e r  

The small signal energy density of these modes can be shown to be 

= coE  (1+ 

The connection between Ez and the voltage that  we measure on the rings can be 
obtained by recognizing that the voltage is proportional to the charge under the 
rings, as in Equation 7. n can be obtained by recognizing that in this geometry 
the radial part of X72 dominates in Poisson's equation. This makes the electric 
potential proportional to n, independent of the frequency for low frequency modes. 
Therefore, Ez is proportional to ~ or nw. Since both modes are integrated over an 
integer number of half-wavelengths, the total mode energy can be written as 

Energy o¢ new 2 (1 + co2 ~ 

Using this result to plot the energy transfered between the two modes in the two 
volt case shown above, we get Figure 4. We can see that  the energy initially drops 
due to the damping of the nz = 2 mode. This levels out as energy gets stored in the 
nz = i mode, which has much less damping. When the system converts back to the 
nz = 2 mode, the energy again decays until the system ends up back in the nz = 1 
state. The wiggles in the energy curve at about 25 and 40 #see might correspond 
to energy being coupled into and out of the nz = 3 mode. The frequency of the 
wiggles roughly corresponds to the frequency mismatch between these modes, but 
we are unable to measure the nz = 3 mode directly because of the placement of 
the measuring rings. 
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FIGURE 4. Energy in the two modes. The dotted curve is the energy in the n z  = 1 mode, the 
dashed curve is the energy in the nz  = 2 mode and the solid curve is the total energy in both 
modes. 

This simple model does not predict that the modes should end up in the final 
state that  we see, with the phase near 4- 2 and the nz = 1 mode large and the nz = 2 
mode small. To predict how the phase should behave, we need more information. 

A more  comple te  m o d e l  

We need to include the momentum equation to find how the phase should evolve 
(equivalent to finding the nonlinear fi'equency shifts). We convert the set of equa- 
tions (one continuity and one momentum equation for each mode) to second order 
equations. From this we find a growth rate of 

"~ = 2n0~i cos¢  (8) 

for the nz = 1 mode, which is 3/4 of the rate given by Eq. 5 in the earlier model. 
When we numerically integrate these coupled equations, we find that  phase lock- 

ing does not occur unless there is damping of the nz=2 mode. Without  damping 
the modes just convert back and forth indefinitely. With damping, the phase locks 
near that  given by 

2&o 
tan ¢ = (9) 

72 

where 72 is the damping rate of the n~=2 mode. Note that for a small % this will 
be near 4-2, depending on the sign of 5w. 

The amplitudes obey the relationship that 

n 2----° l~  
n~ ° constant (10) 
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where the constant depends on 6~ and "y2 
CUI W I 

This final state represents a slow decay as energy is slowly fed into the nz=2 
mode from the nz=l mode. Since the amplitude of the nz=2 mode is small, the 
rate of energy loss is small and this state persists for a long time. Of course this 
model is also incomplete, as it is an infinite space model and ignores finite-length, 
image charge, and radial profile effects. It also ignores the damping of the nz=l 
mode. It does, however, seem to capture the essential physics of what is going on 
in tile experiment. 

G R O W T H  OF SOLITONS F R O M  N O R M A L  MODES 

A soliton is a wave in a dispersive medium that is large enough that nonlinear 
steepening effects just balance the dispersive spreading, causing it to propagate 
unchanged. Solitons occur in many physical situations [5]. 

The cold fluid equations for a plasma in a cylinder can be manipulated, mak- 
ing some assumptions, into the form of the first integral of the Korteweg-deVries 
equation [6]. This means that these solitons should have the properties of the well 
known solutions of that equation. 

The relevant properties of Korteweg-deVries (KdV) solitons are 

1. They travel faster than the linear wave speed in the medium. 

2. Two solitons pass through each other basically unaffected, except that their 
exit times are delayed relative to what you would expect from their initial 
speeds and entry times. If we just observe their entry time and exit time we 
would say that their average velocity is less while interacting. 

3. The amplitude is linked to a specific speed and width. As the amplitude 
increases the speed also increases. As the amplitude increases the width de- 
creases. 

4. The soliton has the characteristic shape of sech2(z/A) where A is the width 
of the soliton. 

Solitons can be created in two ways. One is to put a large potential step on a 
confining ring [7,8]. This requires a relatively large voltage (tens to hundreds of 
volts.) Another way is to create them from normal modes [6]. Essentially you are 
repeatedly hitting the pulses at the right time with a small voltage. This second 
method is the one used to make the solitons in this paper. 

The number of solitons created from a given normal mode is equal to nz and in 
numerical simulations they have the characteristic seth 2 shape of KdV solitons [6]. 
Solitons can only be created in a small amplitude range with this method. For the 
soliton to to remain in phase with the drive, the average speed of the soliton must 
be equal to the linear wave speed. This requires a balance between the amplitude of 
the soliton (which affects its speed) and the nonlinear slowing during interactions. 
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FIGURE 5. Normal Modes and Solitons. The figure on the left shows waveforms on various 
wall rings when the n~ = 2 mode is in its linear state. The figure on the right shows the waveforms 
when solitons are present in the system. 

When the soliton is not interacting, its speed is greater than the linear wave speed, 
and so the speed can average to the linear wave speed. 

Figure 5 shows the waveforms on different sections of the wall both with and 
without solitons. Without  solitons, shown on the left, all the signals have different 
amplitudes, but the same time dependence. With solitons, as shown on the right, 
you can see the negative bump of the soliton moving under each ring in sequence. 
There are also other oscillations visible in this figure that we think are due to 
external resonances in our system. Assuming that  the peaks in the figure occur 
when the peak of the soliton passes under the center of each ring and knowing 
where each ring is located allows us to compute the velocity of the soliton. The 
position as a function of time is shown in Figure 6. This shows that the speed is 
higher during the short t ime when the solitons are not interacting either with the 
ends or with each other. 

If we observe these solitons 20 microseconds later, as shown in Figure 7, we 
see that one of the solitons has disappeared. This disappearance of the soliton is 
somewhat reminiscent of the mode coupling - the equivalent of the nz=2 mode 
has disappeared and been replaced by the equivalent of the nz=l mode. When we 
observe during the t ime of disappearance, as shown in figure 8, we find that  one of 
the solitons decreases in amplitude and slows down until it is overtaken and appears 
to be absorbed by the other. The details of how this happens are still unclear. It 
is possible that  a small amount of the linear type nz = 2 normal mode oscillation 
occurs underneath the solitons. If this mode converts to the n~ = 1 mode, one side 
will be enhanced and the other decreased by that mode. This would cause one side 
to be smaller and move more slowly. This hypothesis has not yet been investigated 
in detail, however. 

The non-interacting velocity of the single soliton is too high for a cold fluid model 
of the soliton to explain, but is about what you would expect from a kinetic model 
[9]. The non-interacting velocity of the two solitons is somewhat higher than that  
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twice  as  long  as it  is in F igure  5. T h e  figure on  the  r ight  shows  the  pos i t i on  vs, t ime  of the  one 

so l i ton .  
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FIGURE 8. Disappearance of One Soliton. One soliton becomes smaller and slower than the 
other. The arrows indicate the position of the soliton that will disappear. 

of the one soliton and cannot yet be fully explained. 

C O N C L U S I O N S  

The nonlinear effects of mode coupling, phase locking and soliton formation have 
all been experimentally observed and most of their properties are as predicted. 
Some points have not yet been reconciled, including the amplitude dependence of 
mode coupling, the fact that the free soliton velocity is too high when two solitons 
exist in the system and the details of how one of the solitons disappears. 
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