
PHYSICAL REVIEW B VOLUME 15, NUMBER 3 1 FEBRUAR Y 1977

Nuclear double resonance: Cross relaxation rates between two spin species*
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A rotating-frame nuclear-double-resonance experiment is reported in which the cross-relaxation rates between
Li and Li in powdered lithium metal were measured, The theory developed by McArthur, Hahn, and

W'alstedt (MHW) is applied to these data and good agreement is obtained. We also apply this theory to other
published experimental data (LiF by Lang and Moran and adamantane by Pines and Shattuck) and find good
agreement. W'e conclude that the assumption of a Lorentzian correlation function, which forms the basis of
the theory of MHW, is generally valid.

I. INTRODUCTION

Nuclear-double-resonance spectroscopy is now
a well-known technique for studying nuclei whose
NMH signals are too weak to be detected directly.
This technique depends upon cross relaxation be-
tween two spin species, one abundant (hereafter
referred to as I spins) and one dilute (hereafter
referred to as S spins).

McArthur, Hahn, and Walstedt' (MHW) carefully
measured cross-relaxation rates between "F (I
spins) and "Ca (S spine) in CaF, under various ex-
perimental conditions. In particular, they treated
the case of adiabatic demagnetization in the rotat-
ing frame in which the I spins were in the demag-
netized state and the S spins were irradiated by
an rf field near their resonant frequency. Using
a thermodynamic model and assuming a Lorentzian
correlation function for the dipolar fluctuations,
they formed a theory which successfully fit the
data.

Demco, Tegenfeldt, and Waugh (DTW) refined
this theory, using a more fundamental approach
involving memory functions. This theory, when

applied to the CaF, work of MHW, ' resulted in a
slight improvement in the agreement between data
and theory. But, on the whole, the DTW and MHW

theories were shown to be in close agreement for
the case of CaF, . It is unknown whether or not
this close agreement also exists in other cases.

In this paper, we examine the MHW theory, ap-
plying it to other cases and comparing it to avail-
able data. We will show that this theory seems to
be generally adequate for calculating cross relaxa-
tion rates, which is fortunate since calculations
using the DTW theory are much more lengthy than
those using the theory of MHW.

Following a convention used by others' ' we intro-
duce a cross-relaxation rate 7~'„which charac-
terizes the relaxation of the S spins toward the
common temperature. It is defined by the follow-
ing equation:

dPs
CR() S fl) '

Then

dPI
dt CR() 1 ~S) (4)

To obtain a quantitative expression for ~c'R, we
follow MHW and write the Hamiltonian in the
double rotating reference frame. Expressing the
Hamiltonian in units of frequency, we obtain

+dII+Zs ++dIS0 0

X'1 = —Q li,s(3I„I,„-I,.' I„), . .

ass =-ysIIis g S"

are irradiated by an rf field B» at their resonant
frequency.

Using a thermodynamic model, we describe the
two sets of spin species with spin temperatures,
PI and Ps. Dipolar I-S interactions cause the sys-
tem to cross relax towards a common tempera-
ture. From conservation of energy we have

dP dP
dt dt

where the ratio of heat capacities E of the two sets
of spin species is given by"

e =XsS (S + 1)ysH', s/Ã1 I(I+ 1)yl Ifs~l .

II. THEOR~

Consider a system of two spin species, I spins
and S spins. The I spins are in a state of dipolar
order (see Sec. III in this paper) and the S spins

+yIS = B+ IgiS

A &= sylsx &(I —. 3cos 6+),

15 1271



l272 HAROLD T. STOKES AND DAVID C. AILION 15

and

Bz ——yzys Rr@'(1 —3 cos'6, ~), (10)

where a coordinate system has been chosen with

Hp along the z axis and H» along the x axis. As
in MHW's paper, we assume that dipolar interac-
tions between the dilute S spins can be neglected.

We then assign spin temperature Pr and P~ to the
terms X„rr and K~s respectively and write the
density matrix as

Pr&arr -~srezs .

Treating X~» as a perturbation which causes Pr
and P~ to evolve with time towards a common val-
ue, we obtain, using perturbation theory, ' for H»
on resonance,

rcR =(+~ )sing(ysHis)

where

(12)

J(~) = d7 cos(~v)G(~), (13)

and

G(~) =tr[X„',s (~)Xso,s)/tr(Xso, s)', (14)

(r (u') „=s I(I+ 1) Q B,' (18)

In order for this perturbation method to be valid,
the rf field II» must be large. This comes from
two different considerations. First, the "heat
capacity" of X» must be larger than that of K„'»,
that is, the perturbation must be small compared
to either of the other two parts of the Hamiltonian.
This condition can be written

y sH~S && (6&d )s ~ .

Second, we must have "fast correlation. " This
means that the correlation function G(v) must de-
cay to zero much quicker than the time evolution
of the density matrix. This can be written

Xsls (~) = exp(~rXsli)Xsg s exp( IrXsl y) ~

The term (a&a')» is the Van Vleck second moment
of the S spins' NMR line due to I-S dipolar inter-
actions' and is given by

expression:

I3s= &Xsxl)«r(Xsn)'

Ps =- (Xss)/tr(X„)'.
(18)

(20)

If we then proceed to use perturbation theory, as-
suming a Boltzmann distribution only among the
energy levels of X„'rr, we obtain the same results,
as was shown in detail by DTW. '

In order to evaluate &c'„, it is necessary to cal-
culate the correlation function G(r) Sin. ce G(r)
cannot be calculated exactly, an approximation
must be used. This is where the MHW and DTW
theories differ. The DTW theory involves a mem-
ory function which uses both the second and fourth
moments of J(&u) to generate G(v). The MHW the-
ory, on the other hand, assumes the form of G(v)
to be Lorentzian (as will be explained in more de-
tail below) and consequently uses only the second
moment of J(~). Thus, the DTW theory is prob-
ably more accurate and more generally applicable
to different situations. The DTW theory suffers
a major disadvantage, though. The numerical cal-
culations are long and tedious, involving several
double and triple lattice sums, as well as numeri-
cal integration. One would hope that a simplifying
assumption could be made to reduce the numerical
work without greatly destroying the accuracy.
Such is the case with the MHW theory.

Prom data taken on CaF» MHW found &c'„ to be
exponential in H, s. From Eq. (13) we can see that
a Lorentzian correlation function would produce
such a result. Thus, we try

G(~) =[1+(r/~, )') '.
From Eqs. (12) and (13), we then obtain'

cR s ( )sI ce p( ysH1s c) '

(21)

(22)

1/~c = —~2 trl& s.~, X sos) «r(Xdls) (24)

By expanding both Eqs. (14) and (21) in powers of
&, we have

d'G(7'i 11+'r' ', ' +' ' =1 — —+*' ' . (23)
T P

7 c

Equating the coefficients of v' on both sides of the
equation, we obtain an expression for 7c:

7c ~~~ca (18)
Evaluating the traces, we obtain

where ~c is the correlation time of G(v. ). Since
7 c~ increases with increasing H», this condition
restricts H» to large values.

At this point, it should be noted that the descrip-
tion of the S spins with a spin temperature P~ is
actually invalid. The S-S interactions are too weak to
maintain a Boltzmann distribution among the energy
levels ofXss. We can, nevertheless, define thermo-
dynamic variables, P r and P ~, by the following

(au)')„= 3I(I+ 1) QA', ,

The term K is a geometric factor given by

(28)

1/~cs = ,'(a(u')„K, (»)
where (n,&u')zz is the Van Vleck second moment of
the I spins' NMB line due to I-I dipolar interactions
and is given by
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Z= A2 a' a. S
Kf

A2 82

(27)

In ionic crystals with cubic symmetry (sc, bcc,
fcc, etc.), we have found the value of E to vary
between about 0.5 and 1.0.

As an example, consider CaF, . The "F sub-
lattice is simple cubic. We can write

Q A',.q-y~h'a, 'S,(sc),

where

a
&,(ee)= P(—' (P,(«»,.)}'

i ik

(28)

(29)

and the summation is over a simple cubic lattice.
Similarly,

Q A'„Bq -4y. ', y'NS'a, "S,(sc)S,(sc') (31)

and

Lf

where

x P, (cos8,~)P, (cos6,,)[P,(cos6;,)]'. (33)

g II& =4y2zy2Nh'a, 6S,(sc'), (so)

where the primed notation S,(sc') is a. special case
of Eq. (29) in which the index i is summed over the
"F sublattice and k refers to a "Ca site —that is,
a summation over a simple cubic lattice from a
point not on the lattice. We can also write

In a free induction decay, the x component of the
magnetization (represented by (I„))oscillates with
frequency ylH, and is dephased by R„'~1 to zero in
a time of the order of T,. The envelope of the de-
cay of (I„) is given by G»n(v). Similarly, in the
cross-relaxation experiment, (R~oza) oscillates
with frequency 7'N II,N (in the rotating reference
frame) and is dephased by K„'zz to zero in a time
of the order of ~~. The envelope of the decay of
(70~,N) is given by G(r). Such transient oscillations
were observed by MHW. '

As was noted earlier, the agreement between
the MHW theory and experimental data for CaF,
is very good. ' There remains a question con-
cerning the simplifying assumption of a Lorentzian
correlation function. Is this assumption valid in
cases other than CaF, ~ In a few cases, experi-
mental evidence' ' has shown this to be the case.
In this paper we will apply the MHW theory to other
experimental data, thereby demonstrating the
validity of using a Lorentzian correlation function
in all cases studied.

III. EXPERIMENTAL PROCEDURES

At this point, we will outline the experimental
procedures we use to measure ~c„. We use a
pulse technique, very similar to that of MHW, '
shown in Fig. 1. The I spins are prepared in the
demagnetized state by spin locking (that is, a 90'
pulse followed by a 90' phase shift) and then adia-
batic demagnetization. ' The S spins are then ir-
radiated by N rf pulses, each of length &o„and
separated by 7 o»» T», the spin-spin relaxation
time of the 8 spins.

Solving Eqs. (3) a.nd (4) with the initial condition

P$ =0 at the beginning of each pulse gives the re-
sults of MHW for the case of negligible spin-lattice
relaxation:

As before, the primed notation S,(sc') refers to
the case in which both indices i and j are summed
over "F sublattice sites and k again represents a
"Ca site. Finally, we can write for CaF„

1/r = I(I+ 1)y', 0'a 'S, (—sc)

I( ON) I 1( ON)

M, (o) p, (0)

(+e exp(-I((ee)/e }e „})
1+6 (37)

x [1 —S (sc')/S, (sc)S,(sc')] . (34)

G»n( r) =tr[Ix(T)'I&]/tr(I )

I„(7') = exp(ir X,', )I„1e x(-pi r X,'„).

(ss)

(s8)

More details are given about these lattice sums in
Appendix A.

At thi. s point, it might be well to discuss the
physical meaning of G(v). On inspection of Eq.
(14), we note that G(v) has a mathematical form
similar to that of the envelope of a normal free
induction deca. y (FID):

To monitor Pl, we simply remagnetize the I
spins' and observe the free induction decay, whose
amplitude MI is proportional to PI. Thus, for a
given H», we measure MI for several values of
7'oN (including 7'» —0) and then apply Eq. (37) to ob-
tain TcR.

The amplitude of the rf field H, $ is measured
using rotary saturation' (see Fig. 1). With the I
spins in the demagnetized state, we apply a single
long pulse of Hy$ whose frequency is modulated by
an audio frequency &, of small amplitude. This
produces an effective modulation of H, which
"heats" up the S spins. ' This effect is greatest
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I 2

Free Induction
Decay Observed

His (a)

H)s(b)

ON OFF I,
I I

/ Jl'

I I
Rotary Saturation

FIG. 1. Pulse sequence used for (aj measuring cross-
relaxation rates, and (b) measuring the amplitude of
ass

at &, =yzH, z (see Fig. 2), and thus enables us to
obtain the amplitude of &yg.

IV. EXPERIMENTAL RESULTS IN LITHIUM

We measured cross relaxation rates in powdered
lithiummeta. l(I ='Li; S='Li). Weusedasampleof
lithium-metal dispersion (30% lithium, 70% petro-
leum) manufactured by the Lithium Corp. of
America, Inc. The sample was submerged in
liquid nitrogen and placed in a dc magnetic field
of approximately 14.5 kQ. Under these conditions,
we measured for 'Li a spin-lattice relaxation
time T, = 574+10 msec at 24 MHz and a dipolar
relaxation time T, D300+10 msec (cf., the re-
sults obtained by Ailion and Slichter' who mea-
sured &y 470 +14 msec in another lithium sample
at 7.5 MHz at the same temperature).

We measured the cross-relaxation rate at three

different values of H, ~ (see Fig. 3). In doing this,
we found that the experimental values of e were
consistent with a higher local field H~~ than the
calculated dipolar local field (see Appendix B for
further discussion of this point). Accordingly, we
used the experimentally determined value of E in
determining ~c's from Eq. (37).

In applying the MHW theory to a powdered sam-
ple, one must recognize that each crystallite in
the sample contributes to the magnetization inde-
pendently of every other crystallite in the sample.
To interpret experimental data, we must write
the observed magnetization, given by Eq. (37) as
a function of crystal orientation, and then average
over all orientations' ":

1 l 28'

M,b, = (M) =— sin& de dP M(e, P) . (38)
7T

Q dp

Expressions for M(e, p) can be written using
angular dependences of the various lattice sums
involved (see Appendix A), but it is immediately
obvious that the integral in Eq. (38) cannot be eval-
uated analytically. An approximation to Eq. (38)
may be obtained by replacing each individual lat-
tice sum involved by its powder average. In the
case of powdered lithium metal, we evaluated
Eq. (38) numerically and found the error of this

IO.O

4.0

2.0

0.9-

~— 08-
Eh
O
Op

o 0.7-
Cl

O

Cl 0.6-
U

V
4P
N

o I.O

I

0.4

0.5- 0.2

IO 20 30
+o/2v' (kHz)

40

FIG. 2. Fractional decrease of P& as a function of
u, /2& using rotary saturation. This is an example of
how &&& can be measured. In this case we obtain
+ps =3.9+0.1 G.

O, l

0
I I

2.0 4.0
HIS (gauss)

I

6.0

FIG. 3. Cross-relaxation rates in powdered lithium
metal. The solid line is calculated from the MHW
theory.
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approximation to be less than 5%.
In Fig. 3, the experimental data is compared to

the MHW theory (using the approximation de-
scribed above). As can be seen, the agreement
is quite good. A correlation time T~ of 163 p, sec
was calculated in this case, using

—,= p I(I+ 1)yl 5 'ao'
~C I+ S

N~/(N~+Ns), i & m,

0, 2=m .

This results in

2

Q A';;Ii) =4yzy'sff'ao"
1'+ Sif j

(42)

(S,(bcc)) + (S,(bcc))
&& S, bcc 1- (39)

a II', (cos&;,)]'.
i i k

(40)

Note that, by definition, the terms S„S„and S3
are sums over all lattice sites, not just occupied
sites. The terms which appear in Eq. (27), how-
ever, are sums over pairs of atoms and must be
converted to sums over sites in order to be ex-
pressed as functions of Sy S2 and S,. In the case
of CaF„ the sum over sites was identical to the
sum over atoms; however, in metallic lithium,
both I and S spins range over the same lattice so
that these sums are not identical. The extra term
S, arises from this feature as can be seen by con-
sidering the following term from Eq. (27), which
will now be converted from a sum over atoms to
a sum over sites:

gA', s',. =p, p, gx', , a'...
atoms sites

3 f

where P,. and P,. are the probabilities that sites
i and j, respectively, are occupied by I spins.
Since m is, by definition, an S site, P =0. Thus

(41)

where the powder averages of Sy S2 and S, in a
bcc lattice are denoted by (S,(bcc)), (S,(bcc)), and

(S,(bcc)), respectively. S, and Sf have been de-
fined earlier in Eqs. (29) and (33), respectively.
S, is defined as

x [S', (bcc) —S,(bcc)] . (43)

Substituting the above and similar expressions in
Eq. (27), we obtain Eq. (39).

V. COMPARISON WITH OTHER PUBLISHED RESULTS

A. Lithium fluoride

Lang and Moran" reported measurements in
LiF(I = 'Li; S ='Li). They observed that the cross
relaxation rate as a function of &y~ has wings
characteristic of a Lorentzian or exponential de-
pendence on H». This, of course, is consistent
with the MHW theory. There is an additional com-
plication in this case, though: a third spin specie' F. The 'Li nuclei, irradiated by a strong rf
field &yg cross relaxes with both the 'Li and ' F
nuclei simultaneously. Under these conditions,
fortunately, the 'Li and "Fnuclei cross relax
much more rapidly with each other than either
does with 'Li.

In other words, the 'Li and 'F nuclei maintain
a common spin temperature in the rotating refer-
ence frame (this time rotating with respect to
"Fas well as 'Li and 'Li). Such an assumption
has been shown to be valid experimentally. "'~
We thus have, as suggested by DTW, '

1/sea= (1/~ca)6 7 + (1/7ca)6 ), (44)

The correlation times of these two sets of interac-
tions are given by

1 = I I(I+1) 8 6 NI S (f ) 1 —S2(fcc)+ f(fcc)

Li Li

1 , I(1+1) ' 'S,( Ic))I) — I'-, )),
6 . 19 S1 fCC S1 fCC
Li- F

(45)

(45)

where I refers to 'Li in Eq. (45) and to "F in Eq.
(46). The primed notation fcc' refers to summa-
tions between two different sublattices, as in the
case of CaF, previously discussed. These corre-
lation times are listed in Table I for three differ-
ent crystal orientations. Values for &c'„using
Eqs. (44) and (22) a.re shown in Fig. 4.

Data was published" only for Ho in the [111]di-

rection. Good agreement is found between this
data, and the MHW theory (see Fig. 4). But Lang
and Moran" also reported that their measurements
for the [110]and [100)orientations showed thatvc'a in-
creases over the [111]values an average of about 15
and 30% for the [110]and [100]directions, respective-
ly. As canbe seen in Fig. 4, this agrees qualitatively
but disagrees quantitatively with the MHW theory
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TABLE I. Correlation times T~ given by Eqs. (45) and

(46) for the 6Li-'Li cross relaxation and for the 6Li-'~F
cross relaxation with three different orientations of Hp

in a single crystal of LiF.

Interaction pair
Orientation of Hp

[1OO] [110]

611 7L
'Li-"F

154 @sec
49.5

132 @sec
41.9

117psec
45.2

B. Adamantane

Pines and Shattuck' reported measurements in
polycrystalline adamantane (I ='H; S="C). They
found the cross-relaxation rate to be exponential
in B», consistent with the MHW theory.

Adamantane (C„H„) is a, cagelike molecule
which, at room temperature, sits in a face-
centered-cubic lattice. " If we were to calculate
the cross-relaxation rates for a rigid lattice, we
would obtain values of the order of 10' sec '(rc„- 10 p, sec!) for an rf field H, ~ s 10 G. The actual
observed rates range from 10' to 1.0 sec ' over

which predicts increases of as much as an order
of magnitude and more. There seems to be some
limiting process in the sample which doesn't allow
the cross relaxation to proceed as quickly as the
theory would predict.

—,= '-,'I(I+ 1)yz 5'a, '(S, (fcc))
7 C

&& [1—(S,(fcc))/(S, (fcc))'j . (47)

As can be seen in Fig. 5, the agreement with the
experimental data of Pines and Shattuck is fairly
good.

the same range of H, ~.
Molecular rotation must be taken into account.

Adamantane is a very spherical molecule. The
rotational activation energy is about 3 kcal/
mole. "'7 At room temperature, the molecule
jumps furiously between 24 different orientations
at a jump rate" of about 2 &&10x6 sec z For our
purposes, then, the Hamiltonian must be averaged
over these orientations. The dipolar interaction
coefficients A,~ and B,~ vanish in this average if
the indices i and k refer to nuclei in the same
molecule. Thus only intermolecular interactions
need to be considered. To simplify the mathemat-
ics, the molecular rotation may be considered to
be isotropic. With this model, it can be shown
that the intermolecular dipolar interaction can be
calculated exactly by placing all nuclei at the cen-
ter of their respective molecules. ""This meth-
od has been successfully used to calculate the
second moment of the absorption signal in adaman-
tane l7g2l, 22

The calculations are thereby greatly simplified,
and with the same powder-average approximation
as for lithium (see Sec. IV), we obtain a correla-
tion time" 7~ =122 p. sec using

IO

l
Cl

N

O

l0

iO-

CJ
07

IO-
I

1.0-

His (gauss)

l0

0
H, s (gouss)

10

FIG. 4. Cross-relaxation rates in LiF. Data points
for [111] are from Ref. 12. The solid lines are calcu-
lated from the MH% theory.

FIG. 5. Cross-relaxation rates in polycrystalline
adamantane. Data points are from Ref. 4. Error bars
are from A. Pines (private communication). The solid
line is calculated from the MHW theory.
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VI. CONCLUSION

We have shown that the MHW theory is adequate
for calculating cross-relaxation rates in three
cases other than CaF, . In each case examined, the
experimentally measured rates have an exponen-
tial dependence on 8». Such a dependence has
been observed in other cases also (see, for ex-
ample, Ref. 5 and the comment in the reference
in Ref. 4 referring to private communication with
J. Waugh). This behavior leads us to conclude
that, in general, very little error is generated in
the calculation of cross-relaxation rates by as-
suming a Lorentzian correlation function —thus the
MHW theory appears to be generally valid.

ACKNOWLEDGMENTS

a)

b)

[100]

[001]
Ho

[001]
Ho

= [010]

[010]

We would like to thank Dr. D. Paquette and
Dr. D. Wolf for stimulating discussions that have
been very helpful in this work. Also we would like
to thank Professor C. P. Slichter, Professor P. R.
Moran, Dr. D. Lang, Professor A. Pines, and
T. Shattuck for their cooperation and for discus-
sions concerning their experimental work.

APPENDIX A: LATTICE SUMS

There are three different types of lattice sums
necessary for computing the cross-relaxation
rates in this paper. These are defined by

c)

[100]

fioo]

[001]

= [010]

6

S, = P —' [P, (cos8, ~)]',
fk

(Al)
FIG. 6. Definitions of various angles used in Appendix

A.

a
S, = g —' [P,(cos8,,)]',

jk

&&P,(cos8 z)P, (cos8»)[P, (cos8;,)]', (AS)

where 6,.k, 6,.k, 6,, are angles between Ho and rz,
r,.„r,.&, respectively, [see Fig. 6(a)]. The lattice
parameter a, is the distance between two nearest
neighbors along the [100] direction.

For cubic symmetric lattices, these sums can
be reduced to more convenient forms by introduc-
ing the angles &, P, y between H, and the three
principle axes of the crystal [see Fig. 6(b)] and the
angles & k, p,.k, y, k between r, k and the three crys-
tal axes [see Fig. 6(c)]. We then have

cos6, k
= cos& cos&,.k + cosP cosjg,.k+ cosy cosy, k.

(A4)

Substituting this into Eqs. (Al)-(AS), we can ob-
tain S„s„and S, in terms of these new angles.
In doing this, the following relationships proved
useful:

cos'&+ cos'P + cos'y = 1,
cos2n cos2p+ cos'p cos y+ cos2y cos2n = ~ —~(cos n + cos4p + cos4y),

cos'n+ cos'p + cos'y = —2 + ~ (cos'n +cos'p+ cos'y) + 3 cos'n cos'p cos'y,

cos'n cos'p+ cos'p cos'n+ cos'p cos'y+ cos y cos'p+ cos'y cos'n+ cos'n cos'y

= 2 —2(cos'n+ cos'P +cos'y) —S cos'n cos'P cos'y,

cos & cos P+cos P cos y+ cos y cos &

= 2 —(cos'n + cos'p + cos'y) —4 cos'n cos'p cos'y+ &(cos'n + cos'p + cos'y),

(A6)

(A6)

(AV)

(A8)

(AQ)
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cos'& cos'P+ cos'P eos'&+ cos'P cos'y+ cos'y cos'P+ cos'ycos'&+ cos'& cos'y

= —3+ 3(eos'n + cos'P + cos'y) + 3 cos'n eos'P cos'y —(cos'n + cos'P + cos'y),

cos'n cos'p eos'y+ cos'p cos'y cos'n+ cos'y cos'n cos'p = cos'n cos'p cos'y .

(Alo)

(A11)

In cubic lattices, &,.~, Pz, and y,.„can be cyclically rotated without changing the value of the summation.
For example,

(A12)

cosn, 3 cosp, , = 0 .
jA,

(A13)

Also, in cubic lattices, any summation involving
an odd power of eosines is zero. For example,

Also, for S„we get

S,=A, +B,(cos'n + eos'p+ cos'y)

+ C 3 cos Q cos I3 cos y

+D,(cos'n+ cos'P+ cos'y) . (A26)

A = — —(7 —27eos n )
1 ao 4'8. ik

iA

(A15)

and

Using these relations, we obtain the following:

S, =A, +B,(cos4n+cos4P+cos'y), (A14)

where

The expressions for A„B„C„andD, are far
too lengthy to be useful. A much easier procedure
is to compute S, for four particular orientations
using Eq. (A3) and, in terms of these values, com-
pute A3, B„C3, and D, using Eq. (A26). For ex-
ample, if S, is computed for a powder as well as
for H, in the [100], [110], and [111]directions, we
obtain

B, =—Q —' (5 cos'n, „—1) .' 8
i

Similarly, we obtain for S, the following:

S, =A, +B,(cos'n + c os'P + co s'y)

+C2 eos Q cos p cos y

+D, (cos'n + cos'P + cos'y),

where

(A16)

(A17)

&3- -S3,100+20S3, 110

+
3 3 111 3 ( 3)t

3 4 33 100 33 110

133S ~ 733(S )

3 1QQ 6 3 110

4 S3,111+ 4 ( 3) &

(A27)

(A28)

(A29)

A, = -'(343 A', —2322B3 —2592C,'+ 1323D,'),
(A18)

C, = '-,'(-72 A3 + 4838,'+ 602C,' —273D,'),
D =32 (49A,' —336B3 —364C3+ 195D3),

and

(A20)

(A21)

B3= -(-2322 A3+ 15 822B,' + 17 388C,' —9072D'),

(A19)

(A3o)

&&P3(cos6,3)P3(cos8,.3)[P3(cos&;&)]'. (A31)

3 3 100 3q llo

Computing the powder average (S,) is not
straightforward. Consider, for example, the fol-
lowing term:

a', = p(—')"cos'

(A22)

(A23)

Great simplification occurs if we replace the in-
ternal angles by angles referred to an external
set of axes. Since Eq. (A31) is independent of
choice of external axes, let us choose the z axis
to be along r, ,. From the addition theorem for
spherical harmonics, '4 we can write

a
C,'= g —cos'n, .3 cos'P,.3 cos3y,.3,

ik

12

D2 —— —COS & -~ .I ao 8
ik '

gk

(A24)

(A25)

2

P (cose,. ) = 1r g Y (r; )Y*—(B ) .
m ~2

Using this identity, we have

(A32)
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Y2 rQ Y2. rja Y2 Bo Y2~ Ho Y20HO Y20HOr,, r„rj 5
m] ~ sl2

Also, using the composition relation for spherical harmonics, "we have

Y,„(H)Y, (H ) = P( ) (2m, 2m, ~~lm, +m)(2020~~)0)Y, , (H),

(A33)

(A34)

where (2m22m, ifm2+m, ) and (2020il0) areClebsch-Gordan coefficients. " Substitution of Eq. (A34) into

Eq. (A33) gives us

X (2020' f20)(2020 if,0)'Y H(y&H)YH (y»)Y,*, (H )Y, (H ) . (A35)

Now, we can take the powder average given by

A

(f,, ) =— dH f(~ (A36)

Using orthonormality of spherical harmonics,

dH, Y,*, (H,)1', ,(H, ) =8, , 8 (A3V)

and we obtain

(f„)=(—') (
—') (

—'
2 Y 2) l(2m2 —m~l)0)(2020()0)'Y, (Y,,)Y, (2,,).5, 2l+1 (A38)

Evaluating this expression, we have

(f,.») = (a,/y;, )'(a,/y») '(a, /y, &)',—,', [(3cos'8, —l)(3 cos'8& —1) +4 cos8, sin8,.cos8 J sin8 &+ sin'8, sin'8, .],
(A39)

where 8,, 8& are angles between r„. (the z axis by choice) and r,.„,r,.&, respectively. Using this result, we

finally have

) = V' —' —'- —0 [(3cos'8. —1)(3cos'8 —1)+4cos8. sin8 cos8 sin8 +sin'8 sin'8. ].j j j i j (A40)

For computational purposes, we can write this as

(S ) =-'a,"g y„'y»y, ~'([3(r„' r»)' y,'„y»] (y,', +y', ,)-.

—8 (r,»' r,«)'(y;'~+ y») +.y', ~ '~ y4(r+, ,' r»)'y& y&, + 'l (r» r,)'} (A41)

Table II lists computed values for S„S„andS3 and associated parameters for five different cubic lat-
tices." Three of them, simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc), are
straightforward with all indices referring to points on the lattice. Two of them, labeled sc' and fcc', in-
volve lattice sums from a nonlattice point k, in particular a body-centered point.

APPENDIX 8: LOCAL FIELD IN LITHIUM

The local field of 'Li in powdered lithium metal is given by

N, , 4 yHsS(S+1)Ns yH~S(S+1)NH '
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TABLE II. Lattice sums as defined in the text of
Appendix A.

O.I5

Ai
Bi
S i, ioo
S i, iio
S i, iii
(Si)

A2
B2
Cg

Dg
S 2, ioo
S 2, iio
S2 i«

sc

-0.8081
4.147
3.339
1.265
0.574
1.680

5.835
—13.899
-42.367

10.320
2.255
0.175
0.0 147
0.532

sc

9.732
-9.339

0.393
5.062
6.619
4.128

22.42
-44.76

90.34
22.40
0.054
2.81

11.66
3.86

bcc

8,924
-5.192
3.732
6.328
7.193
5.809

28.24
-58.68

48.06
32.70
2.260
2.986

11.671
4.389

fcc

31.96
—14.72

17.24
24.60
27.05
23.13

806
-1524
—7483

738
20.33

136.45
48.31
66.55

fCC

-83.66
280.14
196.48
56.41
9.72

84.42

23 060
-55 340
—165 800

414 90
9216
579.6
11.93

2111

O.IO
O
K

CP

CL
O
O

0.05

500 20

Hi$ (9DU8$ )

FIG. 7. Measured ratio of heat capacities as a function

of &i&. The straight line shown is the best fit through

the three data points and the origin.

A3
B3
C3
D3

3, ioo

S3, iio

S3, i«
(S

2.87
—6.32

-24.04
4.47
1.02
0.27
0.04
0.34

29.84
—66.50

-244.61
37.25
0.59
1.25

-0.002
0,030

48.0
—94.2
-381

47.9
1.62
6.84
4.24
3.768

646
—1370
—3050

791
67.3
60.0

105.8
58.8

7570
—17420
-55 640

10 090
240
121.0
75.8

-48.8

A careful evaluation of this expression, using
well-known properties of lithium metal, "gives

HI, I = 1.17 6 at 78 K and HI, I = 1.14 G, at 20 'C.
Others'" have reported this theoretical value to

be H»=1. 20 6, which is in slight error.
Our particular sample of lithium seemed to have

a somewhat higher value of H» than the calculated
value. The ratio of heat capacities e can be ob-
tained from the experimental data, using Eqs. (8)
and (4). From Eq. (2) we write

(a2)

In Fig. 7 we plot & as a function of H» and obtain
1.36+ 0.05 G

To verify this result, we measured the local
field using another method, that is, spin locking
and then adiabatic demagnetization of H, to a non-
ae&o value. The resulting magnetization (mea-
sured by turning off H, and observing the free in-
duction decay) is given by"'0

(as)

ay fitting this curve to experimental points (see

Fig. 8), we obtain H~z —-1.55 +Q. 1Q G.
Although this value for the local field is some-

what higher than the value obtained from cross-
relaxation data, the data in Fig. 8 is particularly
sensitive to small nonadiabatic effects in the de-
magnetization which would cause the local field to
appear larger than its true value. Our results do
verify the fact that the local field in our sample
is indeed significantly larger than the theoretical
value. This appears to be a peculiarity of our
sample, perhaps due to a small quadrupolar inter-
action with crystal defects and impurities. Other
published data seem to also show this effect (see
Appendix C).

APPENDIX C: LURIE-SLICHTER EXPERIMENT

ln 1964 Lurie a,nd Slichter" (LS) published ex-
perimental results for lithium metal (I ='Li; S='Li)
which demonstrated the validity of spin tempera-
ture concepts in nuclear double resonance. They
used a pulse sequence identical to that described
in this paper [see Fig. 1(a)]. This affords us an
excellent opportunity to compare their data with
the MHW theory, using Eqs. (22) and (37).

In the Appendix of LS, a calculation of the cross-
relaxation rate was presented and then applied to
the experimental data, using an equation equiva-
lent to Eq. (37). We found some minor errors in
that treatment which we would like to report here.

Equation (A24) in LS should be

(cl)

{c2)

g, ),((o)(uF —Qq)d(u= —24 [—,I(I+1)]2(2I+1) & Q 5B,„B,.~A~~p+ Q 4B~B,.,~, A„'q,
oo

Eqs. (A25), (A26), and (A28) in LS consequently are also in error, and Eq. (A29) in LS should finally be

a ( +»s(H&)a 4&s v&r"~&II "', &o, o,&'y. ,
TI~ NzI(I+ l)y~z[(H, )21+ —,'&3'H)zz] 3 y~z 1QK'
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O

O

Cl

Io

FIG. 8. Magnetization following an adiabatic demagne-
tization of the rf field to a value &&~. From this data,
the local field of 'Li was determined to be &Lz ——1.55+
0.10 G, shown by the arrow in the figure. The solid line
shown is obtained from Eq. (83) using this value for &Jz. 0 2 5 4 5 6 7

6
Lj H, (gauss)

where

(c3)

FIG. 10. Correction of Fig. 10 in LS (Ref. 29) using
Eq. (C5) in this paper instead of Eq. (A31) in LS.

and

A', , B',. +-', B,, B,.

where

50

1 I I I I I I

40
g
C

50

JS

c
~o 20
O
H

X

IO

Similarly, Eq. (A31) in LS should be

1 NayaS(S + 1)(H,)a
T N y'I(I + 1),'(LPH)a-

2ys ~(&'~&. '", .;).,3y' E

(c4)

(C5)

(d~ ———(6 (d)I~K,1 9 II (c6)

and Z is defined by Eq. (27) in this pa.per.
The theoretical lines in Figs. 9 and 10 in LS

were also drawn wrong, even if Eqs. (A29) and

(A31) in LS were used as written. It appears that
Tl~ was evaluated wrong using a factor which +as
271 too small. This could be due possibly to the
use of the wrong units for yi and y~. Accordingly,
in Figs. 9 and 10 of this paper, the solid curves
represent the corrected theory of Eqs. (C2) and
(C5) above. The data on these figures is redrawn
from Figs. 9 and 10 of LS.

The corrected result, as given in Eq. (C5), is
identical to what we would obtain from Eqs. (12)
and (13) if we had assumed the form of G(~) to be
Gaus sian.

G(v') =e ' i'c . (cv)
As can be seen in Fig. 10, the agreement between
data and theory is not very good in this case. If

60
50

'c 40
D

.S ao
O
.'JJ

O

IO

Qil i i ~ I 1 1 I

OPS 4 5 6 7 8
6

Li H, (gcIuss)

IO

FIG. 9. Correction of Fig. 9 in LS (Ref. 29) using Eq.
(C2) in this paper instead of Eq. (A29) in LS.

I I I I

0 2 5 4
I I

. 6 7
Li H, (gauss)

FIG. 11. M~ vs &&~ in lithium metal for &=25. The
data points are from Ref. 29. The solid line is calcula-
ted from the MHW theory and Eq. (31) using Bz& =1.4 G.
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we apply the MHW theory [which assumes G(r) to
be Lorentzian instead of Gaussianj, the agreement
between data and theory is not significantly im-
proved. If, however, we use a local field 8~1=1.4
instead of 1.2 G, the agreement is much better
(see Fig. 11). This seems to indicate that the local
field in their sample of lithium is larger than the

calculated dipolar local field, just as we ob-
served in our sa.mple (see Appendix B). LS also
made an independent measurement of the local
field by a method identical to that described in
Fig. 8 of this paper and determined B» to be
1.2 G. We do not know the source of this apparent
discrepanc y.
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