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In a general Landau-Ginzburg-Wilson Hamiltonian, symmetry allows a term linear in the
gradient and trilinear in the order parameter in many cases. General renormalization-group
equations to O(e) are given for such terms, and applied to the antiferrodistortive phase tran-
sition in calcite (R3c). The commensurate transition is continuous in mean-field theory, but
in the renormalization-group theory, this new term is relevant near all fixed points to O(e2)
and causes a fluctuation-induced first-order transition.

PACS numbers: 64.70.Kb, 02.20.+b, 05.70.—a, 64.60.—i

Previously' the authors introduced a general form
for the effective Landau-Ginzburg-Wilson Hamil-
tonian for a structural phase transition. This Hamil-
tonian has been applied to the zone-boundary (F
point) ferroelastic transition in calcite, which in the
high-symmetry phase of interest [CaCOS(I) j has
space-group symmetry R3c. Previously, calcite had
been assigned to the hypercubic universality class
with short-range interactions. Thus, it was predict-
ed to follow the stable Heisenberg fixed-point
behavior. 3 The observed first-order transition (at
room temperature and high pressure) to its lower-
symmetry phase could at nonambient temperatures
change to a continuous transition.

It is reported here, however, that a Hamiltonian
term similar to that recently introduced in the
literature for polar order parameters will also be

present in this and other antiferrodistortive struc-
tures. When the mean-field calculation is extended
to include this term, the commensurate transition
remains continuous if the new term is not too large.
However, this term is relevant in an O(e )
renormalization-group (RG) calculation. Thus, in
the case of calcite, there are no stable fixed points,
and a first-order phase transition is predicted. In
spite of some indication of critical phenomena from
observed ESR data, recent latent heat measure-
ments on calcite confirm' that the transition
indeed remains first order up to temperatures of
190'C.

The free energy for a lattice dynamical system
can be written'

F= —kaTln JtDc e

with

H(C)=xj'''jd i'''dHr(y, . . . , )5(Z&+'''+lr)C(Kl)''Ci (K).
mm=p m

Here fDc indicates a functional integration over
the collection of c;(K), where i refers to a basis
vector of a physically irreducible representation D;,.
K ranges continuously over the sphere K ( A ( A

the cutoff parameter), corresponding to mode am-
plitudes about the element of the extended star
(costar) ki to which icorresponds. That is, c~(K) is
a linear combination of mode amplitudes at ki+ ~.
Furthermore, H(c) must be real, and invariant
when c~(tc) is replaced by D;, (g) c,(S '2) for
g=(Si t +7) a space-group element of G, the
space group of the higher-symmetry phase. A sum-
mation convention on the components of the order
parameter i =1 through l, where l is the dimension
of D(G), is used and I is the compound coeffi-
cient iii2. . . im. For simplicity factors of 2m have
been absorbed in H .

Note that in Eq. (1) umklapp terms arise from
the ~smmetry of H(c) under crystal translations
(Ei t) and are implicitly contained in the sym-

I

metry-restricted form of H . In essence we have
taken A small enough so that g; K; will always be
smaller than any reciprocal-lattice vector for any set
of tr;, at least up to any order in H(c) that we deal
with. This may be considered a slight refinement of
the form used by Cowley and Bruce. " For further
details see Ref. l.

If we assume that the interaction is short ranged,
then HP ( {tr)) can be expanded in a Taylor series

in the K;. Now suppose that the unperturbed Ham-
iltonian is

Hp= 2 dKaK c; K c; —K

Then one can show that for linear scaling, where

C;(K)'=S ' ' 'C;(SK),

all the terms in H(c) with n + m )4 will vanish in
lowest order in e. Here n is the order of tc (or the
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gradient, in direct space) in the Taylor series of H and m is, of course, the order of c;(ir). This indicates
further, that if H(c) (excluding Hp) is of O(q), then terms with n+ I ) 4 must necessarily have fixed-
point values of O(q ) at least, since they arise from higher-order graphs. It then follows that in looking for
fixed-point Hamiltonians to O(q) in the vicinity of Ho, one need only consider the terms with n+ m ~ 4.

There are then six such terms in Eq. (1) if the interactions are short ranged, and one considers the Hamil-
tonian'

0= —,
'

dK r+a ~ij+ ji, i i+ ij, /m / m i j
+I)(Jdvdv'(bbt+bj ~ +hdtv ')c( )c~(F')c&( —2 r'r)—

+ 24 dK dK dK Idio[[~ Ci K Cj K CI K C~ K K K e (3)

We assume that only the appropriately symmetric
parts have been kept in Eq. (3). The anisotropic
terms corresponding to ai &

and b~;&, which are
usually omitted from H(c), are of central interest
in this Letter.

With use of Eq. (2), r, a;, i, and bji scale to
lowest order in e as s, s', and s', respectively.
These exponents will not change significantly be-
cause of O(q) perturbations. The r term is always
allowed by symmetry, and so always provides a
relevant parameter. aij I and bJI, which transform
according to the antisymmetric square-vector
representation and the symmetric cube representa-
tion of 6, respectively, then must vanish as a result
of symmetry, since we want only one relevant
parameter. This leads to the well-known conditions
of Landau and Lifshitz for an active irreducible
representation. '

Of the other parameters in Eq. (3), a;J im scales to
lowest order in e as s, b~;& as s', and u;,&

as s'.
Thus, around the Gaussian fixed point, these terms

are marginal or relevant. Following the usual RG
prescription one then looks for other, stable fixed
points in the vicinity of the Gaussian fixed point us-
ing perturbation theory to O(q ). This procedure is
well known for the terms corresponding to r and
u;jI, ' particularly in isotropic and cubic systems.
However, no general treatment of a,j I and b~;I
appears to have been given. In Refs. 4-8, they are
treated (in mean-field theory) for a few cases of or-
der parameters at k =0, with a variational principle.
Reference 6 also carries out RG calculations for
several order-parameter forms at k =0. In what
follows, we will first give a general treatment of the
a;ji and bI;t terms within the renormalization-
group theory. Then we will give rigorous mean-
field as well as RG results for the first case of an
antiferrodistortive phase transition where such
terms play an important role.

From the graphs shown in Fig. 1, to O(q ), one
obtains the general RG equations for the nonzero
terms in Eq. (3) as

and

(1pq il pq + 2 0 E4 lns ( bmilpbm jl q
+ bm il qbm jlp + i bm il ibmjl rgpq )

1 1

bjiim = (1+ 2 qlns) b&ii, m 4 tr 1~41ns (urjribriim urjribr i(,m)

(4)

(5)

S
~ijlm

=(1+qlns) uji —', u;,pqu~i a k4—1ns, (6)

where K4=(8qr ) '=(2qr) f de in d =4.
Equations (4) and (5) are properly symmetric, but
the last term in Eq. (6) must be symmetrized, e.g. ,
by substitution in Eq. (3) and reading off of ap-
propriate relations. The equations for r and a (from
which one obtains 7) by requiring marginality) can
also be given, but are of less interest here. One can
then solve Eq. (6), then (5), and then (4).

From Eq. (4) and its extension to O(q ) one can
show that a j I is always irrelevant if bj;& is 0.
This follows from the fact that spatially anisotropic

terms can arise only from graphs with spatially an-
isotropic vertices. Then there are no O(q') graphs
contributing to a;ji, and to second order in e, it
scales like s ", where q (0.

The specific case that we are considering, calcite,
in the high-temperature, low-pressure phase has

FIG. I. Nonzero graphs contributing to Eqs. (4)-(6).
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bJ il m ib ij l imn ~nn ~

where b is a real parameter and e;jl is the completely
antisymmetric tensor in three dimensions. Note
that n is summed, but i is not, in Eq. (8).'6

The general form for a;,.l, which transforms like
[D] x [ V], for the representation of interest in cal-
cite can be written

aij&im 8(j( Q25((8(m + Q3 8(l +Q3 8im + Q4) (9)

where one supposes that ai = a in Eq. (3).
Unfortunately, it appears not to be possible to

generalize the form of Eq. (8), found in d =3, to
d =4, the form in which it appears in the e expan-

space-group symmetry 83c, which changes to
P2i/c on application of pressure at room tempera-
ture at about 14 kbar. X-ray data indicate that the
transition is displacive, i.e. , due to small shifts in
the mean positions of the atoms. Furthermore, the
pattern of shift can be matched to a zone-boundary
soft mode'4 which transforms like the active irre-
ducible representation of 83c denoted by A 2 in
the notation of Bradley and Cracknell. ' None of
the other active irreducible representations of A'3c
match the observed displacement.

With this, one finds that uji of Eq. (3) has the
typical hypercubic form

uijlm 3 u ( 5(j 8(m + Oi(hjm + f(im bj l) + V eij (m &

where 5;jl~ is 1 when i =j = I = m and 0 otherwise.
Substituting Eq. (7) into Eq. (6) one finds that the
Heisenberg fixed point, with u'=6a e/(I I %4),
v'=0, is the only stable fixed point in the u-v
plane.

From Ref. 1, we note that the coefficients bJ;l
correspond to occurrences of identity representa-
tions in D E & V, where D E is the nonsymmetric
part of the third Kronecker power of D. Thus

bj ii ~ = bJ', li ~ = bijl ~ + bl iJ'

For FI'2 (R3c) one finds one such invariant, which
in a suitable basis leads to

sion. This is a very real and significant problem
with which one must deal, in general, any time that
one studies anisotropic terms like bJ;l and a,J l in
the e expansion. Here one does the best one can by
applying the form of Eq. (5), obtained in d =4, to
the d=3 forms. In essence, we assume a d=4
magnitude for K, but a d=3 angular dependence.
When Eq. (8) is substituted into Eq. (5), with the
use of Eq. (7), one finds that the parameter b satis-
fies

b'= (1 + —,
'

e lns) b ——,
' a E4 lns bu, (10)

which leads to a scaling exponent of 4e/11 around
the Heisenberg fixed point. Thus b is a relevant
parameter. On substitution of Eqs. (8)—(10) into
Eq. (4), one easily sees that the a;, i =2-4, of Eq.
(9) are relevant about their fixed point of zero as
well.

If we consider even the most general Gaussian
propagator allowed by symmetry, i.e., we let the a;
of Eq. (9) be of 0(1), the results are not signifi-
cantly changed. The "Heisenberg" fixed point may
shift off the u axis, but is still stable in the u-v
plane. The parameter b, when nonzero, again
causes the fixed points to be unstable for any value
of aij l . Thus, the transition is predicted to be first
order. Details of this and other results reported
here will be published elsewhere.

To interpret the meaning of the RG results we
now look briefly at mean-field theory. We thus re-
place the free energy Eof Eq. (1) by H(c), also of
Eq. (1), and then minimize this H(c) with respect
to c to obtain the minimum. Thus we require
5H/Bc;( K) =0, where 5/Sc;( K) is the infinite
volume limit of 8/Bc;( K) and His given by Eq. (3).
Supposing, then, that solutions occur when c;( K)
=a;5(K) leads to

1 1f 0 + 2 b Jlc7JO l + 6 uIJl~o Jo l0 ~ =0.

For stability, or an absolute minimum, one requires
that 5 H/Sc;( K) hcj( K ') be nonnegative definite.
This condition will be satisfied if the Hermitian ma-
trix

2 ]
b(j ( K ) = ( r + a K ) 5 ij + Qij i K i + Qij im K (Km + ( bij ( + b( jim Km ) K( + g uj((m (r( wm

has nonnegative eigenvalues for all K, K (A, when the solutions of Eq. (11) are substituted for o=. If the
transition is to be continuous, even this more general form of the usual stability criteria requires that a;J l and
b;,( vanish by symmetry. To keep the analysis of Eq. (12) tractable, we let a; =0, i =2-4, in Eq. (9). There
are two kinds of solutions to Eq. (11) for which h ( K) will be positive semidefinite, namely, (a) o. 6gi (100)
and (b) (r Er(3(111),where r(i = —6r/(u+ v) and r(3= —6r/(3u+ v). Another type of solution, 7(2(110),
is not stable in Eq. (3). Examination of Eq. (12) shows that solutions (a) will be stable and associated with a
continuous transition when

r (0, u+v &0, a &0, and v(3b /a, (13a)

2427



VOLUME 53, NUMBER 25 PHYSICAL REVIEW LETTERS 17 DECEMBER 1984

while solutions (b) will be stable when

r &0, 3u+u &0, v &0, a &0, and when ~u~ &3b/a, u & a(u 3—b /a) /4b . (13b)

In each set of conditions (13a) and (13b) the last
condition was obtained from KWO parts of h(K)
and are exact.

Since mean-field analysis predicts a continuous
transition to a commensurate phase, while RG cal-
culations indicate that such a transition must be
first order, we predict a fluctuation-induced first-
order commensurate phase transition for this sys-
tem. However, the details of the stability calcula-
tion, combined with the RG results, Eq. (10), lead
one to expect that the system may possess a con-
tinuous, incommensurate transition, as is seen in
variational calculations in Refs. 4—8.

Many other systems possess nonzero D~ && V

invariants. ' It is possible that a search for stable
fixed points in such systems may yield new critical
properties. Certainly such systems should be inves-
tigated experimentally and theoretically.

We thank Marko Jaric for helpful comments con-
cerning this work.
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