
PHYSICAL REVIE%' 8 VOLUME 31, NUMBER 5 1 MARCH 1985

Practical algorithm for identifying subgroups of space groups
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The problem of identifying subgroups 6' of a space group G with respect to a conventional listing
is considered. The properties of space groups and subgroups are given in terms of an algebraic rath-
er than a geometric description. In this algebraic description, 6 is equivalent to one of the standard
listings through a similarity transformation consisting of a linear unimodular component and a
translation. A general algorithm is presented to determine which standard listing corresponds to
subgroup G . The algorithm is applied to a specific example, a subgroup of D3d.

I. INTRODUCTION

Space-group methods are of significant utility both ex-
perimentally and theoretically. The use of these methods
in studying symmetry subgroups (particularly isotropy
subgroups) of a space group G is of interest in the descrip-
tion of phase transitions as well as in crystallography.
(An isotropy subgroup is the largest subgroup of G, which
leaves a vector in the representation carrier space un-

changed. ) The computer implementation of these space-
group methods allows one to apply them systematically to
a large number of situations. For considerations involving
subgroups, the identification of the subgroup in a stan-
dard form is a necessary and usually nontrivial part of the
process.

For example, group-theoretical methods in the Landau
theory o'f phase transitions and its renormalization-group
extension have been used to find allowed group-subgroup
phase transitions. ' Isotropy subgroups are first obtained
and then attention is restricted to those isotropy sub-
groups which satisfy the Landau and Lifshitz criteria and
correspond to the minima of the Landau free energy. We
have considered the direct group-theoretical conditions
characterizing isotropy subgroups and implemented these
conditions on a computer. All of the isotropy subgroups
for k points of symmetry have been generated for each of
the 230 three-dimensional space groups and the 17 two-
dimensional space groups.

In generating isotropy subgroups, it was necessary to
identify each as one of the space groups by putting them
into standard form. Many papers have necessarily gone
through this process of subgroup identification. This is
often the most difficult part of the general process of sub-
group selection. When considering transitions or sub-
groups of a given space group, nonmaximal subgroups are
often considered, as well as inequivalent selections of the
same type subgroup, and the associated relative relation-
ships of subgroup to parent group. Such relationships are
important for any detailed microscopics associated with
x-ray, NMR, EPR, low-energy electron-diffraction
(LEED), Auger-electron spectroscopy (AES), etc. ,
analysis. Such information has not been comprehensively
given in any existing publication. Qf crucial importance,
then, is the identification of the subgroup and its relative

origin and orientation with respect to the parent group.
The identification of the subgroup is actually a rather

general problem. Given a subgroup G' of some space
group 6, which space group is 6'? What is the choice of
basis vectors for G' which yields its standard form? How
are the space-group origins of G' and G related to each
other? To be of use, both the basis vectors and origins of
space groups must follow some convention, such as that
given in Ref. 8 or 9.

The determination of subgroups or isotropy subgroups
is simplified if the algebraic description of the space
group is exploited. ' In this paper we indicate an algo-
rithm based upon this algebraic description of space
groups which allows the identification of subgroups of
space groups. The algorithm is presented here for the
first time and has been implemented on computer and
used in a larger algorithm ' for obtaining isotropy sub-
groups. In Sec. II we indicate the distinction between the
geometrical and algebraic descriptions of space groups. In
Sec. III we briefly describe the characterization of a space
subgroup 6' based upon a recent discussion by Senechal. "
In Sec. IV we give a general outline of our algorithm con-
sistent with the algebraic properties of space groups. In
Sec. V we apply the algorithm to a specific example, a
subgroup of D3d.

II. SPACE GROUPS

When the symmetry of a crystalline solid' is con-
sidered, it is natural to define this geometrical object in
three-dimensional Euclidian space E . Associated with
E is a real vector space T(3) which consists of all
translations of E . With respect to an arbitrary (but
fixed) origin in E, there is a one-to-one correspondence
between the vectors of T(3) and the points of E . E can
then be taken as a three-dimensional real vector space.

Each element in the set of affine mappings A (3) of E
is uniquely broken down into a nonsingular linear com-
ponent R which leaves the origin fixed (point operation)
and a translation component x. Thus each mapping of
2 (3) can be written a = I x

i
R I with successive mappings

(the group binary product) given as ctia2 ——
I xi

+R &x2
~

R &R2 I. (We have used a reversed Seitz notation
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to emphasize that the linear component acts first, fol-
lowed by the translation. ) This set of elements forms a
group called the affine group of E . T(3) is an invariant
subgroup of A(3), and the group of nonsingular linear
transformations on E, GL(3,R), is also a subgroup of
2 (3). If we define the distance between two points of E
to be d(x, y) =(x—y, x—y)'~, the Euclidean group E(3)
is the subgroup of 2 (3) whose elements leave the distance
between any two points invariant, i.e., they are rigid
transformations. E(3) contains T(3) as an invariant sub-
group and also contains the group of linear isometric
(orthogonal) transformations O(3) which keep the origin
fixed. The set of all transformations in E(3) which map
a geometrical object onto itself constitutes its symmetry
group.

A crystal structure is distinguished by the property that
among its symmetry transformations is a discrete transla-
tion group To generated by three independent vectors of
T(3). Thus To is the set of all integral linear combina-
tions t of three vectors, a~, a2, a3. The set of all symmetry
transformations of a crystal structure is the space group
6 of the structure.

An element of the space group 6 is of the general form
[t+v;

~
R; j, where t is any translation in To, v; is a frac-

tional translation [i.e., if nonzero, it is in T(3) but is not
in To] associated with R;, and R; is the linear component
of g and is in O(3). The set of elements R;form a sub-

group PG of O(3) (PG is called the isogonal point group
of 6) and is isomorphic to the factor group 6/TG. Any
two elements g~, g2 of 6 will belong to the same co-set of
TG in G if and only if R

&

——R2. Since TG is an invariant
subgroup, the elements of PG transform the lattice back
into itself, i.e., for all tH TG, R;t&To. Notice that if we

select an orthonormal basis for T(3), i.e., i,j,k, then the
lattice TG and the lattice basis, a&, a2, a3, are expressed in
terms of this orthonormal basis. For example, the basis
vectors for space group D3d can be written in the form of
Eq. (14). With respect to an orthonormal basis, the repre-
sentation of each R; HPG is an orthogonal matrix. Any
questions about consistency of group products, selection
of subgroups, orientation of alternative lattice bases, etc. ,

would be determined with respect to this orthogonal basis
selection. This constitutes the geometrical view.

It is often helpful to take an algebraic approach in the
above description. In this approach we use a particular
lattice basis as the basis for T(3). Then To can be identi-
fied with Z, the additive group of triples of integers. In
the algebraic formulation, we easily see that the following
is true:

(1) A change of lattice basis to one of the infinitely
many other choices is obtained through a similarity
transformation by a 3/3 matrix whose entries are in-
tegral and whose determinant is +1. Such a matrix is
called a unimodular matrix.

(2) The linear component R of a symmetry transforma-
tion with respect to the lattice basis is also a unimodular
matrix. Furthermore, it can be shown' that two three-
dimensional space groups, 6' and G", are of the same
type if and only if there is a proper affine mapping
a&A(3) that transforms the first space group into the
second, i.e., aG'o. '=6". In the algebraic formulation,

this statement can be written as follows: 6' and 6" are
space groups of the same type if and only if there is a
proper (detS = + 1) unimodular matrix S and a real
column coordinate vector r such that the representation

[ [t'+v,' ~R/]] of 6' transforms into the representation

( (t"+v;" ~R;"J J of 6" under (r Sj. Thus,
(3) 6' and G" are of the same type if and only if there

exists a transformation ( t ~

S [ (S proper, unimodular)
such that

S]ttt'+v, '
IR,']][~IS]-'=!ft"+v

i.e.,

(a) St'e TG,
(b) R;"=SR S

(c) v;"—v —Sv,'+SR S 'rF To

Here, SR S ', Sv,', and St' are the linear component, its
fractional, and the translation expressed in the new basis
of To-. Since G' and G" are conjugate in GL(3,Z), the
isogonal point-group representations, PG and PG-, will be
also. The groups 6' and 6" are said to belong to the
same arithmetic class.

In the following we will be interested in identifying a
subgroup 6' of a given space group. The discrete transla-
tion group is then the same for G' and G" (the standard
form). The conditions in (3) for equality of space-group
type in the algebraic formulation then become conditions
for the proper equiuaience of the space groups and corre-
spond to the freedom in choosing the basis for TG and
the origin for G'. This algebraic formulation will be of
importance in Sec. IV as we describe the computer algo-
rithm for identifying space groups. There we will refer
back to results (1)—(3) as listed in this section.

III. SUBGROUPS OF SPACE GROUPS

Recently, Senechal" described a simple characteriza-
tion of subgroups of space groups. Owing to a version of
Hermann's theorem and a subgroup theorem due to Fro-
benius, each subgroup 6' of G is determined by a lattice
TG E Tz, an isogonal point group PG HPG, and two com-
patibility conditions. The first condition, (A), requires
that the lattice TG be invariant under the isogonal point
group Po, i.e., each R HPo transforms the lattice back
onto itself. The co-set representatives (v';

~

R } (represen-
tatives of TG in 6') have the form [v;+t; ~R;J. This
means that the new fractional associated with each R; in
6' is equal to the old fractional v; associated with R; in
6 plus some lattice vector t; of 6 (t;ETG) which, if
nonzero, is not a lattice vector of 6'. The vectors t; asso-
ciated with the R; must then satisfy the second condition,
(8). Namely, for each product Rk =R;RJ, we must have

Vg +Rg VJ Vk+t& +R&t& —tk E TG~

Note that if any one of the vectors t; is replaced by t;+t'
(t any translation in TG ), the above condition (B) is again
satisfied. Only subgroups with distinct vector sets (t;[
within the primitive cell of 6 correspond to distinct sub-
groups. In the following we assume subgroups 6' of 6
are specified by co-set representatives (v,' ~R [, where
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R,v,' are taken as known (each v,' is a combination of
known vectors, v; and t;). Additionally we assume that
conditions (A) and (B) are expressed with respect to the
lattice basis, i.e., within the algebraic view. Our algorithm
for identification of space groups applies to subgroups
specified in other forms but the above specification is used
here as an important example.

IV. ALGORITHM

Consider a space group 6 . Let the vector t be a gen-
eral translation vector of the Bravais lattice of G, written
as

3

t =gnjaj, (I)
j=1

where n ~, n2, n3 are integers and a~, a2, a3 are basis vectors
for the lattice. The basis vectors aj transform under a
point operation R; in the following way:

3

R; aj gak—D—Pj(R; ), (2)
k=1

where D (R; ) is a unimodular matrix [see property (2) of
Sec. II]. (For each Bravais lattice in our computer algo-
rithm, we have defined the connection between conven-
tional basis vectors and the selection of primitive vectors
in the same way as in Ref. 9. We develop the algorithm
with respect to this primitive basis' and assume such a
choice through the remainder of this development. )

Let 6' be a subgroup of 6 . Thus, as described in Sec.
III, we assume that the basis vectors aJ. of G' are already
defined and given by

3

a;= g ak~k, (3)
k=1

where A is a 3X3 matrix containing only integers. The
set Iaj ] is chosen such that detA is positive. Each co-set
rep of G' must have the form Iv,'

~

R j = Iv; +t; R; I,
that is, each point operation R in 6' must be one of the
point operations R; in 6, and the associated fractional
v,' must be equal to the former fractional v; in 6 plus a
possibly nonzero translation vector t; of 6 .

The subgroup G' must be properly equivalent to one of
the 230 space groups in standard form. Our algorithm
finds which one by systematically comparing it to each of
them. When one is found, we can stop the process, since
no others will be equivalent to G'. The comparison is
made by looking for a proper unimodular matrix S and a
real coordinate column vector ~ which transforms G' to
the standard form. Consider the space group 6~. If 6' is
equivalent to G~, their isogonal point groups must be iso-
morphic and have the same geometric meaning. This is
easily checked by simply examining the representation of
point operators with respect to the lattice basis, i.e., com-
paring their determinant and trace. If the isogonal point
group of 6' and G~ are the same, then we make a one-
to-one correspondence R ~R;~ between the point opera-
tors R of G' and those R;~of G~. By this we mean that
(I) the point operators are of the same type (C2, o, I,
etc.), and (2) that they have the same multiplication table
(if R RJ ——RI'„ then R; RJ Rg). There may b——e more
than one way to make this correspondence.

We next look for an expression for the basis vectors aj~

in terms of ak by means of a proper unimodular transfor-
mation S [property (3) of Sec. II], i.e.,

3

aj —g akSkj (4)
JG =1

As written, S will take coordinates of t'K G' and
transform to coordinates with respect to G~. This is con-
sistent with definitions in property (3) of Sec. II. Similar
to Eq. (2), the transformation of the lattice basis vectors
a&P transform under a point operation as

3
RPai'= g aj'Dg, (R/') . (&)

k=1

Using Eqs. (2)—(5) we thus obtain

D~(RP ) =S 'A 'D (R; )AS

as a condition on S since we assume everything else given.
We solve for the elements Skj of S which satisfy this

equation. If we multiply each side by S,

SD ~(RP) =A 'D (R; )AS,

we obtain equations linear in the elements SkJ. There are
nine such equations for each point operator R; . Not all
of these equations are independent though, since we need
only consider the generators of PG and even these equa-
tions are not all independent. Usually, there are less than
nine independent equations and thus an infinite number of
solutions. Remember, however, that we are looking for
solutions such that all Skj are integers and detS=1.
These requirements severely restrict the solutions to Eq.
(7). On the computer we solve Eq. (7) by trial and error.
We first find those equations in Eq. (7) which are linearly
independent. Suppose there are m such equations. Since
there are nine variables Skj, then 9—I of them are in-
dependent. We are free to choose any values for the in-
dependent Skj, from which the values of the remaining
Skj can be uniquely determined. We thus only need to try
assigning various sets of integers to the independent Skj,
and then determine the remaining Skj. If the latter are
also integers and if detS =1, then we have found a solu-
tion.

When considering isotropy groups of all 230 space
groups corresponding to k points of symmetry, we have
found that, for all cases, ~Skj ~

(2. For 9—m indepen-
dent variables Skj, we would need to try 5 sets of in-
tegers. It is conceivable that for other subgroup con-
siderations a solution may exist only for some

~ Skj ~
& 2.

In this case our computer solution may become impracti-
cal.

Once we have found an appropriate solution S to Eq.
(7), we need to express v,' with respect to this new basis,
which we denote Sv,' [see property (3) of Sec. II] and then
compare the fractionals Sv,' and v~. Although the frac-
tionals Sv,' and v~ may not appear to be the same, they
may still differ through a translation of space-group ori-
gins. If we translate the origin (of G') by an amount v,
then the new fractionals become

We thus look for a translation v such that the new frac-
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tionals are equal to v~ modulo a lattice vector t~. This
means that

Sv" —~+R,~&=v~+&~ (9)

3

Sv', = g v;,'a, ,p

j=1
3

Tj SjP
j=1

3
v~= y U~a~

j=1

(10)

(12)

for each R;. [This is equivalent to expression (c) of prop-
erty (3) in Sec. II.] The lattice vector t~ may be different
for each R;. If we write all the vectors in terms of a&~,

throughout this section. ) The lattice is trigonal with

a~ ——(0, —a,c),
a2 ——( —,

' v 3a, —,'a, c),
a3 ——( ——,~3a, —,

' a,c),
(14)

where the vectors are given in terms of the Cartesian coor-
dinates. The co-set reps of D3d are

{ooolzj, {ooolc,+ j, {ooolc;j,
{000lIj, {Goo lS3 j {ooolS3 j

then Eq. (9) becomes
3

Ugg
—&j+ ~ &gk&k=vgJ+njP P

k=1
(13)

where the fractionals are the components of v; in terms
of aJ.

Consider the subgroup G' with the lattice,

where nj are integers. This gives us three equations
(j=1,2, 3) for each RP.

Note that although we began with only three unknowns

~j we now have all of the nj also as unknowns, since they
can each be any integer. Thus, there are three more vari-
ables than equations. We solve these equations in a simi-
lar way to Eq. (7) except that here, the three variables rJ
are not restricted to integer values. We expect simple
fractions for r~. If we find an appropriate solution to Eq.
(13), we then know that O'= G~ and our search is ended.
If we do not find a solution, we must return to Eq. (7) and
see if there is yet another way to choose S which may al-
low us to find a solution to Eq. (13). If all attempts here
also fail, then we must try a different set of 'one-to-one
correspondences R ~RP. If this also fails, then G'&G~
and we should examine another space group 6~ as a pos-
sibility.

In summary, the algorithm consists of the following
steps, assuming that a subgroup 6' is given in terms of
group transformations of G.

Step 1: Choose one of the 230 space groups G~ with an
isogonal point group isomorphic to PG .

Step 2: Choose an isomorphic mapping between the
isogonal point groups of G' and G~ such that each linear
component has the same geometric meaning.

Step 3: Look for elements of the matrix S satisfying
Eq. (7). This corresponds to a change of lattice basis, so S
must be a unimodular matrix of determinant 1. S defines
the change of basis from O' to G~. If this is unsuccess-
ful, return to step 2.

Step 4: Look for solutions of Eq. (13), which corre-
sponds to a translation of origin. The translation v may
not be integral in the basis a;. If this step is success-
ful, the subgroup is in standard form with r the position
of the origin of G~ with respect to O'. If unsuccessful,
return to step 3.

V. EXAMPLE

Consider the space group G =D3d. ' (We use the no-
tation and conventions of Bradley and Cracknell

O!8] —Sf
a a

2 2 3

a a
83 82 +$3

and co-set reps,

ooolzj, {ooolrj, {—,'-,'-,'
I
c,',

(16)

(17)

(The fractionals here are still given in terms of aJ~. ) The
matrix A is thus

1 0 0
0 1 1

0 —1 1

The matrices of the point operators are given by

D;~(E) =5;~,

D,J(I)= —5,J,
—1 0

D (Cpi)= 0 0 —1

0 —1 0

Dq(od ) ) = D~(cp) ) . —

(19)

I~I,
Cz~~C2.

~d l~~z

To this point, we have just given the specification of the
subgroup consistent with Eqs. (1)—(3). We now compare
6' with the standard listing of space groups. The isogo-
nal point group of G' is C2~. There are six space groups
(Czh ) with this isogonal point group. In each of these
space groups the point operators are E, I, C2„and o,
There is only one possible way to make a one-to-one
correspondence between R and R;~ in this case:
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Let us try a space group G~ with a primitive monoclin-
ic lattice (space groups Czt,

' ' ). The basis vectors are
given in terms of Cartesian coordinates by

8] — 8]P a

2 aI +a2+ 3
P a a a

(24)

a~& ——(0, —b, o),
a2 ——(a siny, —a cosy, o),P

a~3 ——(O, o,c) .

(21)

DPj(E)=5;I,
Dpq(I) = —5~J. ,

—1 0 0

The matrices for the point operators in this lattice are
given by

P a a
83 ag 83 ~

Thus the isogonal point groups of G' and G~ are in the
same arithmetic class, and the Bravais lattice of G is
primitive monoclinic. We can now limit our search for
G~ to the four space groups (Czh' '

) with this lattice.
The co-set reps of G', when written with the fractionals in
terms of aj, areP

I
—o—

f
C2. I I

—o 2 f ~. l

Let us try to identify these co-set reps with those of C2t, .
The co-set reps of C2i, are5

Iooo fEI, I-,'o-,' frI, Ioo-,' fc„I, j —,'oo f,J. (26)

D (C2,)
—— —1 0

0 1

0
0

DPq(o, ) = DPj(C2, ) .—

Using Eq. (13), we find that
1—2zr ———, +n

—2%2 =n22 (27)

S= 0 0 1

0 1 0
(23)

Of course, this is not the only choice of S which will lead
to the successful identification of the space group. This
choice of S is the one which the computer found. Using
this S, we thus find that

Using Eq. (7) we find that S[3—S2) —S22 —S33 0.
The remaining five variables Skj can take on any value
and are thus independent variables. There are many pos-
sible choices for these Sk~ which will give us detS=1.
The choice we wi11 use here is

—1 —1 0,

1—2' ———, +n23 .

An obvious solution is r= ( —,
' 0—,), which tells us that

indeed G'= C2h.
We note that although we gave the x,y, z coordinates of

the basis vectors in Eqs. (14) and (21) for the reader' s
benefit, we did not use them. Our method only used the
transformation properties of these vectors as given by the
D matrices in Eqs. (19) and (22), consistent with the alge-
braic view. In the systematic approach to identifying sub-
groups, the above algorithm based on the algebraic view is
mathematically well justified and is original with our
description here.
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