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New large family of vacuum solutions of the equations of general relativity
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A Backlund transformation for the Ernst equation of general relativity, published earlier by this author, is

used to derive a new large family of vacuum metrics with two commuting Killing vectors from the family

of Weyl or Einstein-Rosen metrics. Thus, any solution of the axially symmetric Laplace or wave equation

yields a solution of the Ernst equation. Asymptotically flat Weyl metrics yield new asymptotically flat

metrics. The solutions are nonstationary and may exhibit solitonlike behavior.

General solutions of linear partial differential
equations may be characterized by an infinite num-
ber of parameters (power-series coefficients} or
by arbitrary functions in an integral formulation.
It is rare for this situation to occur for nonlinear
equations. In general relativity, the sole examples
for many years were the Weyl and Einstein-Rosen
(WER) diagonal metrics. ' This paper presents a
new set of such metrics, which are solutions of
the Ernst and related equations and are derived
from the WER metrics by a Backlund transforma-
tion (BT}.' The new metrics are nondiagonal and
nonstationary. Thus they are different from the
Hoenselaers, Kinnersley, and Xanthopoulos (EIUS}'
metrics —which themselves exhibit an infinite num-
ber of parameters.

In using a BT, one begins with an initial solution
and finds a new solution from it by quadratures. -

In this paper, the initial solution is the WER met-
ric

d so' = X To(dx')'+S'T, '(dx')'

+me'&oT '(dS' I dR'),—

where X =+1, a =1 or -X, and Y'p and y, are func-
tions of S and B only. 4 Axially symmetric metrics
like Weyl's require A. = -1, wave metrics like Ein-
stein-Rosen require X=+1. (See I for details. ) For
the Kasner metric, which can be represented in
theaboveform, A. =-a=1. We put, as in I, k=vX
= 1 or i, x =

& (S+kR), and y = 2 (S -kR).
If we put Tp=e'~, Einstein's equations give

We now apply the BT to find a new metric of the
form

ds'=XT(dx'+Q dx')'+S'T '(dx')'

+ oe'"T '(dS' X dR'), (5)

dg = -'. S-'(g'- l)(gdx+ g 'dy) .
For metric (1}, the functions t, u, u, and w of

I become t p vp 2' -8 ' and Qp Kp 2V,
[Subscripts "0" refer to metric (1).] Equation (8)
in I for the pseudopotential q becomes, after re-
arrangement,

where T, Q, and y are functions of S andR only
and other symbols have their previous meaning.
Thus metric (5) has two commuting Killing vec-
tors. The quadratures referred to above can be
done entirely in terms of the functions T, (or V)
and y, above, and a new function U, defined below.
(In fact, Cosgrove' has shown that the equations for
this BT can be integrated completely, in terms of
initial functions. ) The BT procedure follows that
given in I.

We define a real function U by

dU = &V„d~+f"' V,dy. ,

where

g = [(kI —y)(k I+x)-']"'
as in I, where l is a finite real constant. Equation
(3} is the integrability condition for Eg. (8). We
note that

Vss+8 ' Vs- ~Vaz=o (2) (q' —1) 'dq = dU —(g' —1) 'dg,
the axially symmetric Laplace or wave equation,
which is

V„+—,'S '(V„+V„) =0

in terms of x and y. y is determined by quadra-
ture:

which integrates to

where

F =(e'~ ie)(e'~+i-e) ',

(lo)

dy =S(V„'dx+ V~'dy) . (4) e =+1, and we have used the facts that if X =+1 (-1),
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(gF +1)[t,F(F +g) '+-S-'],

a= (F+g) [a,F(gF+1)-'+S 'g '],
v=-F '(F+f) [v,(gF+1) '+S '],
~=-F '(V' +1)[~.(F+t) '+S'0 '].

Equation (1V) of I yields

(12a)

(12b)

(12c)

(12d)

g (or q) is real and q =q ' (f =g ') (ignoring reality
considerations relating to the domain of definition
of g).

Substitution of Eq. (10) into Eqs. (10) of I gives

d U = coshk8 d V+k sinhk8 +dV. (22)

The Laplace-wave equation (3) has solutions of
the form, in terms of r and p. =coshk8,

It is clear that, by virtue of the general nature of
V and U, Eq. (21) may include a large variety of
solutions.

Since dV= V„dx+V,dy and *dV=k '(V„dx —V„dy),
we have V„dx= ~(dV+k*dV) and V„dy= —,'(dV
-k*d V). Using these results and f =e~e in
Eq. (6), we find

T=khs()F +1)(F+/)(f' —1) 'F 'To ', (13) V= Q (A„r " '+B„r")p„(g)
n=0

(23)

where h is a real constant.
We now use Eqs. (12) and (13) to find Q and y.

We first integrate Eq. (18) of I for the twist poten-
tial P:

or of the integral form

V= Q Q —2Qpr+ r de, (24)

ihkSr. -(F' 1)(g' —1) 'F 'T, '. (14)

8 =-21+ r coshke,

8 = -kr sinhk8.

(18)

(19)

Theng=e~e, r'=(A+21)' Xs', ~dr=-rd8, and
+d8 = -A.r 'dr. Thus,

T = -A. hrT, '(coshk8+tanh2U), (20a)

To find Q, we integrate dQ =ST '*dQ, where * is
linear and *dx =k 'dx, +dy = -k 'dy (see I). We
get

Q =-A. ih 'g(F' —1)(&F+1) '(F+&) 'To.

We write dy —dyo from Eq. (19) in I and obtain
terms linear in t, u, v, w, which integrate to give
(K constant)

y= yo+V+ « In[KTTO (f —1)g 'S cosh2U] .
(16)

Equations (13) and (14) now give the Ernst poten-
tial F- =2+i/:

Z =khST, '(g'-1) '(1+g'+2gF).

For substitution into the new metric, it is con-
venient to introduce new real independent vari-
ables r and 8:

where f (n) is an arbitrary function and one takes
appropriate account of the singularity. Using a
version of Eq. (22),

U„=gV„+r '(1 —p,') V„,
Up=-rV„+ p, V~ &

(26)

(26)

helps us find expressions for U corresponding to
the above V:

or

U = g (A„,r" +It„„r"")p„(IJ.)
n=O

(2V)

U= ~ (y r (y 2(yp, r+r

(A, is an integration constant).
AsymPtotic behavior. Metric (1) is asymptotical-

ly flat if V and yo-0 as r-. If U 0 as r-~,
then metric (21) also is asymptotically flat. We
make two successive variable transformations to
show this explicitly.

First set r= &~', 8=M, x'=)+«l, x'=g —«l,
and 8 = 1, h = -X, U = V = yo =0. Equation (21) then
takes the asymptotic form

d8 =X '7 (d$ cosh kb + d'q slBh k5)

Q = eAhrTO ' sech2U, , (20b) +6 {'7 d f —X d'T ) . {29)

and
Q =

-each

'T, sech2U(coshk8+tanh2U) ', (20c) Now put m = so (= 1 or i) and introduce the real
variables

e'«=e'«o To '(sinh2U + cosh8 cosh2U) . (20d)

The new metric (where we put T, =e' ) becomes

ds' = -hre '«(coshk8+tanh2U)(dx')'

+ 2eA, r sech2Udx' dx'

a= vcoshkb coshm g,

b = m r coshk5 sinhm $,

f=kv'sinhk6 cosm«1,

g =km 7' sinhk5 sinmq .

(30a)

(30b)

(30c)

(30d)

- h 're'"(coshk8 -tanh2U)(dx')'

+ o e'«o cosh2U(rd 8 —Xr «) ~

Then Eq. (29) becomes the manifestly flat form

ds' = dg'+ hfdf'+z db' dada'.
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For the three possible choices of o and ~, this
metric has the correct Minkowski signature. By
choosing a, 5, f, and gas in Table I, we can ex-
press Eq. (31) as d s' = dp'+ p'd Q'+ dz' - d f ' in the
usual cylindrical variables.

We note from Egs. (18), (19), and (30) and the
definition of r, 8, and p, that

4(R+2l) =4pr =a' —ah'+Xf2+Aag

and

p sing p cosQ

-1
1
1

1
1

-1

b
a
f

a
b

g

TABLE I. Choices of coordinates a, b, f, and g, for
various X and o', which give the usual Minkowski cylin-
drical metric.

4r = r' =a' - O'O' -Xf - Xag2.

We now see from Table I that for all cases

ye = gX(t'-z'+p').

(33)

(34)

(35)

with B=24A.a in terms of the variables p, z, and
t. Where the expression vanishes —true singular-
ities in the new metric —we have t2 =z'+(p +8)',
displaced light cones. Thus the singularities are
suggestive of solitonlike behavior.

We choose as an example the Kasner metric.
We write it in the form

Thus, wherever r and 0 appear in the new metric
(21) we may use Eqs. (34) and (35) to express it in
terms of the variables t, z, and p, for which (21)
is manifestly flat at infinity. Thus it is clear that
the new metric is nonstationary. If we impose the
reasonable condition r(=-,'~')&0, we see from (34)
that we axe restricted to the interior or exterior
of the light cone in the new metric, depending on
the sign of Xo.

The expression r2 —2mp. r+0.', which occurs in
Egs. (24) and (28), takes the form

d+2 ts& +s2 -1 (dz2 d f 2) + t2sydx2+ f 2s2dy2

where s, +s, = 1, in usual coordinates. Set K = 2sy .
Then S=t, T=S~, V=2KlnS, and y, = &K'1nS.

We obtain e'~=(tanh5)». Investigation shows that
this yields the Belinsky-Zakharov metric, ' essen-
tially as noted in I. (This metric has soliton be-
havior, as noted by Belinsky and Zakharov. ) Sim-
ilar solutions have recently been found by Cos-
grove' and Neugebauer. '
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W. Kinnersley, C. Hoenselaers, and C. Cosgrove.
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