
Laser-induced thermal lens effect:
a new theoretical model

S. J. Sheldon, L. V. Knight, and J. M. Thorne

A theoretical model for the laser-induced thermal lens effect in weakly absorbing media is derived. The
model predicts the intensity variation in the far field of the laser beam in the presence of the lensing medium

and takes into account the aberrant nature of the thermal lens. Some experimental results which support
the validity of this approach are presented.

1. Introduction

Thermal lensing or thermal blooming occurs as en-
ergy absorbed from a Gaussian beam produces local
heating of an absorbing medium about the beam axis.
A radially dependent temperature distribution is
created which in turn produces a refractive-index
change by the factor dn/dT, the change of refractive
index with temperature. This turns the medium into
a lens for the beam. The development of this thermal
lens occurs over the brief time it takes the beam to reach
thermal equilibrium with the medium. In most liquid
media the refractive-index changes because of a de-
crease in density with increasing temperature. In such
cases dn/dT is negative, and the thermal lens is a neg-
ative or diverging lens. As the lens develops there is a
spreading of the beam and a drop in its intensity. By
measuring the magnitude and time dependence of the
intensity change with a small aperture photodetector
placed at the beam center beyond a cell containing the
sample medium, the thermooptic properties of the
sample can be studied.

The thermal lens effect was first reported by Gordon
et al. in 1964,1 and an expression for the focal length of
the lensing medium was derived. Later, Hu and
Whinnery2 3 derived an expression for the intensity
variation in the far field of a Gaussian beam which
passes through a thermal lensing medium. These
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models are based on an approximation in which the lens
has a parabolic refractive-index distribution so that it
can be treated as a perfect thin lens-one having no ab-
errations. The parabolic model describes the general
behavior of the thermal lens quite well but is not
quantitatively accurate. A more accurate model can
be derived by taking into account the true aberrant
nature of the thermal lens.

II. Theory

The components of the thermal lensing experiment
are arranged as shown in Fig. 1. The laser will operate
in the TEMoo mode giving a Gaussian intensity distri-
bution. The beam passes through a converging lens so
that it is focused down to a waist. The location of the
waist is taken as the origin along the z axis. A sample
cell of length I is located at z 1 , and a photodetector is
centered in the beam at the position z1 + z 2. Its aper-
ture is made small compared with the beam diameter
at this location. The lensing effect in the cell causes a
slight intensity drop in the beam which is sensed by the
detector.

The absorbance b and the beam divergence angle are
small allowing the beam power P and the beam radius
X to be taken as constants within the cell. The length
and transverse dimensions of the cell are large compared
with the diameter of the beam so that the medium can
be considered as infinite in the radial coordinate, heat
conduction through the ends can be neglected, and thus
the temperature variation can be taken as purely ra-
dial.

In the derivations the following symbols will be
used:

b absorbance, cm- 1 ;
p density, g cm- 3 ;
I beam intensity, cal sec 1 cm-2;
1 cell length, cm;
P beam power, W;
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where Io(r) is the beam intensity entering the sample
at r, I(r) is the exiting beam intensity, and b is small.
Therefore,

0

LASER LENS CELL DETECTOR

Fig. 1. Components of the thermal lensing experiment.

4(r) = (r) = Io(r)b.

For a Gaussian beam the input intensity IO(r) is5

o(r) = 2 )exp(-2r 2 /W2 ).
7rW2'-

By combining Eqs. (3) and (4) the source term be-
comes

2

.~~~~~ 2

Fig. 2. Temperature distribution in the thermal lens at various
times.

z position along beam axis, cm;
r radius with respect to beam axis, cm;
n refractive index;
c specific heat, cal g-1 K- 1 ;
co beam radius, cm;
AT temperature change, K;
k 'thermal conductivity, cal sec-1 cm-1 K-1;
K thermal diffusivity, kcp, cm 2 sec- 1; and
X wavelength, cm

2(0.24P)b ( 2r2/ 2)

Whinnery2 showed that the solution to Eq. (1) is

AT(r,t) - 2(0.24P)b irt ( 1+
1rCpW2 Jo 1 + 2t`/t,)

X exp I ) dt',

where

4k 4U

(5)

(6)

(7)

This integral, the exponential integral, can be written
in its series form as6

AT(rt) =0.24Pb rln (1 + 2t) + (-2r 2 /cW2)m
47rk tc m=1 mm!

X[ 1(1 )J} (8)

Equations (6) and (8) are the desired expressions for
the temperature change in the sample. The quantity
tc defined by Eq. (7) is the time constant and is the
characteristic buildup time of the thermal lens. The
curves of Fig. 2 are computer generated plots of Eq. (8).
They show the predicted time evolution of the tem-
perature distribution. They are considerably different
from those arising from the parabolic approximation in
which only the first term in the series of Eq. (8) is
used.

The refractive index as a function of radius and time
can be obtained by substituting Eq. (6) or (8) for
AT(r,t) into the expression

An expression for the temperature change in the
sample as a function of radius and time AT(r,t) can be
obtained by solving the nonsteady state heat equation4

appropriate for the problem:
a

cp [AT(r,t)] = 4(r) + k 2 [AT(r,t)]; (1)

r < a;

AT(r,0) = 0.

The quantity (r), the source term, is the energy flow
into a unit volume per unit time at a distance r from the
axis. The intensity change in the laser light as it passes
through the absorbing medium can be written as

AI(r) = Io(r) - (r) o(r)bl, (2)

n(r,t) = no - d- AT(r,t),
dT (9)

where no is the refractive index at the initial tempera-
ture. Equation (9) assumes a decrease in refractive
index with increased temperature, and dn/dT is an
absolute value.

The next step is to determine what effect this re-
fractive-index distribution has on the beam intensity
for points on the axis beyond the cell. The approach
is based on the diffraction theory of aberrations and
begins with a statement of the Huygens principle: The
complex phase amplitude of a wave at a point on an
output plane is the result of a superposition of the Hu-
ygens wavelets emanating from all points on an input
plane. This is written as5
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Fig. 3. Symbols used in the diffraction integral.

b)

Ub0(t) = a ' f rO C(r(t) (t +-coa)

x exp[-i(2r/X)Iz2 - ri rdrdO,
1Z2-rl

(10)

the diffraction integral. Figure 3 indicates the mean-
ings of the symbols. U (r,t) is the complex phase and
amplitude of the waves at the input plane or where they
exit the sample cell. The second quantity in the inte-
grand is the inclination factor, and the third quantity
is the phase and attenuation of the wave after traversing
a distance I2- ri. Ubc(t) is the complex phase and
amplitude of waves on the axis or the beam center at the
output plane where the detector is located.

At this point some simplifying approximations are
made on Eq. (10). Since the transverse dimensions of
the beam are <<Z 2 ,

Z2 - rl n Z,(1
1 + cosa

1, (12)
2

and in the exponential

L1
INPUT
PLANE

Fig. 4. Phase distribution at the input plane: (a) with the lensing
medium absent; and (b) with the lensing medium present.

tive phase distribution or phase lag is therefore

(7rr
2)/(XR). (18)

Following Born and Wolf7 the effect of the lensing
medium is considered as an aberration. It is included
as a small perturbation in the form of an additional
phase lag to the phase term of the spherical wave, ex-
pression (18). The spherical waves emerge from the cell
at the input plane slightly distorted as shown in Fig.
4(b). An expression for this additional phase lag is
found by considering the problem from the point of view
of the optical path length in the medium. Initially, the
optical path length is

27r 2ir r 2

- IZ2-ri A- Z2+I2 .
X X~ 2 Z

With these the integral becomes

UCb(t) = A f 32 Ui (r,t) exp i ) rdrdO,

(13)

The optical path length variation about the axis is
written as

(14)

where all constants are represented by A.
An expression for U (r,t) is found by first ignoring the

effects of the lensing medium and assuming the beam
to be composed of spherical waves with radius of cur-
vature R and a Gaussian amplitude distribution. The
amplitude factor is

I Q I = B exp(-r 2 /W2 ), (15)

where B is a constant and w is the beam radius. The
phase at points on the input plane is

- L = - (R2 + r2 )1/2 , (16)
X x

- (R + r 2/2R), (17)

as can be seen by studying Fig. 4(a). The approxima-
tion is valid in this case since the beam is confined to a
narrow region about the axis so that R >> r. The rela-

Substituting Eq. (9) into this for n and multiplying both
sides by 2 7r/X give

which is the desired expression for the additional phase
lag. With (15), (18), and (21) the expression

hU(r,t) = B exp(-r 2 /W2 ) exp(-i(r/X)(r 2 /R + 24') (22)

is obtained for the complex phase and amplitude at the
input plane. Substituting this expression for U into
Eq. (14), making the change of variable u = r2/W2, and
carrying out the integration over 0 give

| Ubc~U&(t) = Cf J.oexp - + i [ (ust)

(23)7W2 ~j 1 du f oR Z2) 
for the diffraction integral.

R

wave front

I US -

b0 = n. (19)

4'(r,t) = [n(r,t) - n(O,t)]. (20)

2r = dn- (r,t) = -[AT(0,t) - AT(r,t)],
X X dT

(21)
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The following substitutions can be made for R and
w in the phase factor8

W(ZI) = c)o[l + (/zc) 2]1/2,

R(zi) =1(Zl2+ 2),1
Z1

.06

.04(24)

(25)

where
2#7rwoxzcT (26)

Zc is called the confocal parameter of the Gaussian
beam, and w0 is the spot size or the beam radius at the
waist (z = 0). With these the third term in the inte-
grand becomes

i + Z1 Zc U.
Z Z2 Zc rI

.02

- .02

-. 04

-. 06

-10 -8 -6 -4 -2 0 2 4 6 8
Z cm

Fig. 5. Thermal lens position data and best fit curve.

(27)

If the detector is placed in the far field so that Z2 >> Z
all terms in (27) involving Z2 can be dropped. z1 and Zc
are generally of the same order.

Another approximation will be made at this point. It
is

exp[-i(2±r/X)4] 1 - i A 4' (28)
A

where it is assumed that (2-7r/X) <<1. This condition
is easily met in thermal lensing experiments. With
these modifications the diffraction integral becomes

Ubc(t) = C J ( 2- r< 4') exp[-(l + i)ujdu, (29)

where z = Z1/Zc.
Substituting Eq. (6) into Eq. (21) gives

-(u,t) =- tr[1 - exp(-2,ru)]dt' (30)A t, fo

for the additional phase lag, where

0.24P1 b dn (31)

X k dT0 = -- s ~~~~~~(31)
- + 2t'/t, (32)

As suggested by Eq. (30), approximation (28) is good
when 6 is sufficiently small. In most thermal lensing
experiments the parameters involved in expression (31)
are so that is of the order of 0.1 or less.

With the substitution of Eq. (30) the diffraction in-
tegral becomes finally

UbC(t) = C f {1-i f r[1 - exp(-2Tu)]dt'

X exp[-(1 + i)u]du. (33)

The integration over u is carried out first followed by
ti.

In finding the intensity variation Ibc(t) = I Uc (t) 12
all terms of order 02 are neglected, and a convenient
form for the equations is the fractional intensity change,
[I(t) - I(c)]II(co). The result is

1- 0 tan-' 1 2 l
IMt - I@ _ + p + (9 p2)(t,/2t}l

I(-)
- 1. (34)

1-Otan'- , 1\3 + 2)

The total fractional intensity change found by setting
t = 0 is

I(0)-I(Xo) 1
1. (35)

Through the dependence of t on w(z 1) [see Eq. (7)]
and the dependence of [I(O) - I(-)]J/I(-) on z1, both the
magnitude and time dependence of the thermal lens
effect are sensitive to the location of the cell z with
respect to the waist. Setting the derivative of Eq. (35)
with respect to equal to zero leads to the prediction
that the effect is optimized when = 1+\/3 or the cell is
located at /3 confocal distances in front of or behind
the waist. This is shown in Fig. 5, which is a fit of Eq.
(35) to some measured values of [I(O) - I(x)]/I(o) vs
z . Note that when the cell is at the waist no lens effect
is predicted. When it is behind the waist at negative
values of z the effect is inverted.

If the cell is located at z = 3Z 0, expression (34), the
expression for the fractional intensity change at the
beam center in the far field becomes

I(t) - I()
I(O)

1-0 tan-1 0.577 
1+ tit)

1 - 0(0.524)
- 1. (36)

11. Experiment

The experiment was designed to test Eqs. (35) and
(36), the thermal lens equations, when all parameters
of both the sample and beam were known. The three
parameters of interest in the equations are where

0.24P1 b dn

X hdT

the time constant t where

t = 2p W2

4k 4x

(31)

(7)
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Fig. 6. Optical layout and electronics block diagram.

and the confocal parameter of the beam Zc where

Z' =- (26)
The thermooptic constants b, dn/dT, k, c, and p are
variables depending on the sample; and the parameters
P, 1, X, ZC, and w are constants of the system. When
Eqs. (35) and (36) are fitted to data, values of 0, t, and
Zc are obtained from which the system constants are
calculated. These are compared with their expected
values.

The optical layout and electronics block diagram is
shown in Fig. 6. The laser is a He-Ne laser operating
at 6328 A in the TEMoo mode with an output power of
9.5 mW as measured by a Spectra-Physics model 4018,
6328-A power meter. The beam passes through a
20.7-cm focal length lens first, then through the sample
cell which is a 1-cm path length quartz absorption cell.
The shutter, a Uniblitz model 225L, is mounted beyond
the lens at the beam waist. The beam is folded back
three times by mirrors to make a separation between the
cell and the photodetector of -340 cm. The third
mirror has adjustment screws so that its tilt angle can
be varied allowing the beam to be centered on the de-
tector. A Polaroid plate is mounted in front of the de-
tector which can be rotated to make coarse adjustments
on the beam intensity. The aperture, a 0.1524-cm
(0.060-in.) hole drilled in a piece of shim, brass is built
into the photodetector assembly. The photodetector
consists of an MRD 500 photodiode and a one-transistor
current amplifier. The amplified photocurrent is sent
to a current-to-voltage amplifier with variable gain
whose output is proportional to Ibc (t). Also in the
circuit is a reference voltage source set to 5 V. The gain
of the signal amplifier g is set so that Ibc (-) is ap-
proximately equal to this 5-V reference level. When
signal and reference voltages are combined in the
summing amplifier, an output proportional to I(t) -
I(o) is obtained which is sent to the analog divider.

Table I. ThermooptIc Constants of the Four Samples

k K = k/cp -(dn/dT)
Sample c P X 144

X 10
4

X 10
4

Water 1.0 1.0 14.2 14.2 0.8
Methanol 0.609 0.79 4.83 10.04 3.9
Ethanol 0.586 0.791 4.00 8.63 3.9
Carbon 0.206 1.59 2.46 7.51 5.8

tetrachloride

Source Refs. 1, 9, and 10.

The signal produced by the analog divider is used only
for rough monitoring on the oscilloscope. The signal
from the summing amplifier is also sent to an analog-
to-digital converter (ADC) programmed to sample at
set time intervals. These data in the form At) - 5 are
sent to a computer for manipulation to obtain values of
[IMt)-I()/(

An experiment begins when the shutter opens. The
leading edge of the signal fires the trigger circuit which
in turn starts both the sampling sequence of the ADC
and the horizontal sweep of the oscilloscope. The
shutter is held open long enough for the signal to reach
a steady state or for the thermal lens to become fully
developed. The last sample taken just before the
shutter closes is used as I(-) - 5 to calculate the exact
value of [I(t) - I()]/I() for each data sample. These
values are stored in an array. With the closing of the
shutter one experiment is completed. Several experi-
ments are performed in a sample run so that several sets
of [I(t) - I(C-)]/I(o-) values are obtained. These are
then averaged by the computer.

Four test samples were chosen which had known
thermooptic constants. They were chosen to have a
wide range of evenly spaced thermal diffusivities, the
choices being limited by the availability of literature
data. They were carbon tetrachloride, methanol, eth-
anol, and water. The constants are listed in Table I.
By adding blue dyes the absorbances were adjusted to
any desired value.

Before any data could be taken it was necessary to
locate the beam waist and measure the beam radius wo
at the waist. A 2 5-lim pinhole was placed over the input
of the 4018 power meter, centered in the beam, and
moved along the beam axis. The power was plotted as
a function of position. The place where it had its
maximum was taken as the location of the waist. The
beam radius coo was found next. The pinhole-4018
assembly was moved along the beam axis, and the power
was noted at several positions relative to the waist. The
beam radii squared W

2(z) at each location were calcu-
lated from the power readings and the integral of in-
tensity over the area of the pinhole normalized to the
total power of the beam. A least squares fit of a straight
line to the w2 vs z 2 data was made [see Eq. (24)] giving
an intercept of W = (9.54 + 1.93) X 10-5 cm2 from which
a value of Z, = (4.74 ± 0.96) cm was calculated. The
rather large uncertainties of these values resulted from
an assumed tolerance on the pinhole of +1 Am. With
the parameters wo and X and the waist location, the
beam was completely specified.
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A sample of methanol and methylene blue was pre-
pared to give a 0 of -0.1. This was placed in the beam,
and [(0) - I()]/I() readings were taken every cen-
timeter from -11 to 15 cm relative to the waist.
Twenty experiments were performed at each location
and the data averaged. Stored in the computer was a
curve fitting program which calculated a least squares
fit of Eq. (35) to the data, adjusting the sigmas of the
data points to give a reduced chi-square of 1. The op-
timized parameters of the fit were 0 = 0.0984 + 0.0006
and Zc = (4.97 ± 0.08) cm. The data and best fit curve
are plotted in Fig. 5. The Z, value obtained from the
fit was in good agreement with the expected value ob-
tained by the pinhole method.

Using the value of Zc obtained from the fit of Eq. (35)
to the position data, the optimum location of the cell
was determined. With the cell in this position, the 0
and t dependences can be studied. For measurements
of the dependence, solutions of water with bro-
mothymol blue and 1 gram/liter K2HPO4 were used.
The absorbances b in these samples represent the sum
of the solvent absorbances b, and the dye absorbances
bd, or

b = b + bd- (37)

A starting solution was prepared which had a bd of -0.5
cm-1 as measured in a Beckman DU spectrophotometer
using the H20-K 2HPO4 solvent as a reference. Dilu-
tions were made with this starting solution to give var-
ious values of bd. Each sample was placed in the ther-
mal lensing apparatus and given about five runs of
thirty experiments each. For each experiment the ADC
was programmed to sample at a rate of about fifty
samples per ten time constants. Several times during
a run the lateral position of the cell was shifted slightly
to average out the effects of surface irregularities on the
cell faces, and the beam was recentered on the photo-
detector in case it had drifted. This seemed to be
critical in obtaining reproducible values for tc.

A least squares fit of Eq. (36) was made to the first
fifty data values or out to about ten time constants
which yielded optimized values of and tc. Figure 7
shows the data and best fit curve for one of these sam-
ples.

There exists a linear relationship between and bd
which, using Eqs. (31) and (37), can be expressed as

= =(0.24P11 bd dn + 0.24Plb, dn (38)
XJ k dT kX (38)

where is the dependent variable and bd/k (dn/dT)
is the independent variable. The quantity in paren-
theses is the slope and the desired system constant.
The second term is the intercept and is related to the
absorbance of the pure solvent b. A least squares fit
of Eq. (38) to the 0 vs bd/k - (dn/dT) data gave 0.24Pl/X
= (33.4 0.4) cal sec-1 . This was in good agreement
with the expected value of 31.7 obtained by measuring
P with the 4018 power meter allowing for the reflection
loss at the front surface of the cell.

The data are plotted with the best fit straight line in
Fig. 8. The fit was made to only the first six points

.02

.01

0
.1 .2 .3 .4 .5

t sec

Fig. 7. [(t) - I()]/I(C) vs t data and best fit curve for a sample
of water-1 g/l K2HPO4 and bromothymol blue.

.200
I

S

/1

e
.100

0 1 2 3 4. 5 6 7

d qVd tb X 103

Fig. 8. vs (bd/k)(dn/dT) data and best fit line for samples of
water-i g/1 R2HPO4 and bromothymol blue.

which showed a clearly linear behavior. The line was
extrapolated up through the remainder of the points to
show that a deviation from linearity occurs when, pre-
sumably, was too large or when approximation (28) is
not good. A weighted average of the t values obtained
from the first six samples was taken and used in the next
part of the experiment.

Measurements were next taken with the thermal
lensing apparatus to obtain values of t for carbon tet-
rachloride with Sudan black dye and for methanol and
ethanol both with methylene blue dye. The thermal
lensing time dependence of a sample is related only to
its thermal diffusivity K = kcp; therefore it was not
necessary to know absorbances here as it was with the
water samples. The dyes were added only to make the
absorbances large enough to produce easily measurable
signals.
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There exists a linear relationship between t and 1/K
which can be expressed as

tc= l-)- (39)
Here t and 1/K are the dependent and independent
variables, and 2/4 is the slope and another one of the
system constants. Recall that w is the beam radius at
the cell. A least squares fit of a straight line to the tc vs
1/K data gave w2/4 = (8.62 t 0.1) X 10-5 cm2 as com-
pared with the expected value of W2/4 = (9.55 i 0.2) X
10-5 cm

2 obtained by using z1 = ZcV/3 and w2 = (9.54
i 1.93) X 10-5 cm2 in Eq. (24).

The thermal lens equations developed here, Eqs. (34),
(35), and (36), are based on the diffraction theory of
aberrations and the assumption that the absorbance b
of the sample is small, the beam radius within the
sample c is nearly constant, the detector is placed at the
beam center in the far field so that Z2 >> Zc, and the 0
parameter is 0.12 or less as suggested by Fig. 8. Fits of
the equations to data taken on samples with known
properties yielded values for the system constants Zc,
0.24Pl/X, and w2/4 that were within 10% of their ex-
pected values. These results support the validity of the
equations and establish their usefulness.

Reproducibility in 0 was excellent, but in t it was
often rather poor. As mentioned, factors involved in
this seemed to have been lateral cell positioning, beam
centering, and spatial noise on the beam. The spatial
noise appears to have been the major source of error.
Nevertheless, when fits of Eq. (36) to data were very
good, both 0 and t were quite reproducible and very
close to their expected values.

Since the equations are based on the aberrant nature
of the thermal lens, they are able to make quantitative
predictions that are more accurate than predictions
made by the equations based on the parabolic or thin
lens approximation. Thus the thermal lens technique
is an accurate as well as a simple means of measuring the
thermooptic properties of weakly absorbing mate-
rials.
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