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Energy approach to consistent QED theory for calculation of electron-collision strengths:
Ne-like ions
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An energy approach based on consistent QED theory is outlined which presents the energy of any de-
caying atomic state in complex form with the imaginary part responsible for different types of decays.
The aim is to study, in a uniform manner, elementary processes responsible for emission-line formation
in plasmas. The energy approach is generalized here for the collisional problem. Numerical results on
electron collisional strengths and rate coefficients for Ne-like ions are presented. It is shown that col-
lisional rate coe%cients are close to their maxima at an electron temperature -0.30E,h«sh, ~~ for iron and
-0.15Eth«shoig for argon.

PACS number(s): 34.10.+x, 52.20.—j

I. INTRODUCTION

The x-ray laser problem has stimulated the develop-
ment of theoretical methods for the modeling of rnul-
ticharged ion emission lines in plasmas. The purpose of
the present investigation is to study spectra line intensi-
ties in plasmas using a uniform advanced approach for
the calculation of elementary process rate coefficients.
The current trend is to study high-Z elements. The hope
is to find lasing effects on the transitions of Ne-like or
Ni-like ions. However, low-temperature plasma sources
are more efficient and less expensive devices. They show
promise for producing lasing in the vacuum ultraviolet
(VUV) and soft x-ray region. Preliminary investigations
of capillary spark discharge were made [1—4] which show
the possibility of their use as plasma sources for the gen-
eration of a soft-x-ray or extreme ultraviolet amplified
spontaneous emission (ASE). Recent experimental inves-
tigations [5—7] have shown that a capillary discharge is a
highly efficient plasma source that promises to meet the
conditions for lasing at definite transitions of mul-
ticharged ions. One approach is based on using a capil-
lary discharge plasma which can be laser heated to tem-
peratures of about 250 eV. This was shown by x-ray di-
agnostics [8,9]. ln [8,9] it is shown that the plasma might
be extremely uniform along the axis and that the electron
density can be varied by changing the electrical energy
supplied to the capillary.

Our atomic calculations [10,11] have identified several
potential laser lines in a collisionally pumped neonlike or
nickel-like plasma, and magnetohydrodynamic (MHD)
modeling [12] has shown that a capillary discharge device
should be capable of producing the appropriate plasma
conditions to achieve a population inversion in some of
these lines. An experiment is being constructed to evalu-
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ate the accuracy of the MHD model and investigate the
possibility of observing an inversion in a neonlike argon
or a nickel-like krypton plasma. It is necessary to search
for the optimal plasma parameters to give efficient opera-
tion of capillary discharge device as a laser.

Two key problems must be solved in order to develop a
code adequate to predict the plasma parameters needed
to generate ASE: (1) accurate calculations of rate
coefficients for elementary processes in the plasma that
are responsible for the formation of emission lines; (2)
kinetics calculations at definite plasma parameters to
determine level populations, inversions, line intensities,
and gain coefficients. The consideration of time evolution
of emission lines together with the evolution of plasma
parameters is of significant importance.

Under steady-state plasma conditions, two dominating
elementary processes should be included: (a) electron-
collisional excitation and deexcitation; (b) radiative relax-
ation of excited states. More sophisticated kinetics
analysis demands the inclusion of the variety of other ele-
mentary processes, as well as the effects of their interfer-
ence. We consider the inclusion of the high-lying Ryd-
berg and autoionization Rydberg states of the ions of the
previous ionization stage into kinetic scheme, to be one of
the most important refinements of the "simplest" model.

The most elaborate codes for atomic calculations are
based on different kinds of approximations to the
multiconfiguration Dirac-Pock procedure developed in
[13]. A brief review of these codes is given in [14],where
the comparison of oscillator strengths of Ne-like ions res-
onance 2-3 transitions is given for six versions. The com-
parison shows that oscillator strengths differ sometimes
by factors of 3—4. The disagreements in these very simi-
lar techniques are attributed to the different treatments of
electron correlation. There is also no complete agree-
ment between theories for 3-3 and 2-2 transitions [15,16].
These uncertainties in the ground spectroscopic data can
in principle lead to a misleading picture of the plasma
spectrum generated due to complicated multichannel
atomic processes.

Another question of primary importance for the inves-
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tigation of multichannel processes is the theoretical con-
sistency for all stages of the calculation. Thus, a uniform,
theoretically consistent approach to the whole problem is
needed. Here, we try to develop such an approach for
the calculation of the level populations in the simplified
collisional-radiative model with a restricted number of re-
action channels.

We present here the uniform energy approach (EA)
formally based on the quantum electrodynamic (QED)
theory, for the calculation of rate coe%cients. The elec-
tron collision strengths and rate coefticients of excitation
are calculated for Ne-like ions of argon, iron, and barium.
To test the results of calculations we compare them with
other authors' calculations and with available experimen-
tal data.

II. ENERGY APPROACH IN THE THEORY
OF DECAYING ATOMIC STATES

Perturbation theory

The adiabatic Gell-Mann and Low GML formula for
the state energy shift b,E [17] with electrodynamic
scattering matrix provides in principle a consistent QED
approach in the theory of the stationary states. It yields
for all excited states (that can decay due to either radia-
tion or autoionization) a complex value [18]

AE =RehE+ImhE

with the decay probability P =2 ImAE. The latter can be
presented as a sum of contributions of different physical
channels with specific final states [19]. Of course, the
final results for elementary processes coincide with those
of the traditional amplitude approach. Nevertheless, we
prefer the EA. It allows the application of the well-
developed theory of degenerate and near-degenerate sta-
tionary states in the theory of the nonstationary states,
thus accounting for elementary processes of a different
physical nature as well as their interference in a uniform
manner.

When studying complicated processes with many open
reaction channels, one faces the problem of the consisten-
cy of approximations used at different stages of calcula-
tion. The widespread electric method (using the "best"
available independently calculated values for different
atomic characteristics) is doubtful, at least from a
theoretical point of view. The EA automatically provides
theoretical consistency. In the frame of EA one deals
from the very beginning with the observable values—
atomic line intensities and cross sections rather than with
amplitudes. It simplifies the derivation of final expres-
sions because amplitudes contain some redundant infor-
mation of no physical sense.

To start with the QED GML formula, one must
choose the zero-order approximation. Usually one uses
for this purpose a one-electron Hamiltonian with a cen-
tral potential that can be treated as a bare potential in the
formally exact QED perturbation theory (PT). We are
not concerned here with the QED-renormalization pro-
cedure as the related problems do not appear in the
lowest orders of PT for the values under consideration.

The bare potential includes the electric potential of the
atomic nucleus and some model potential that is to be
compensated for in all orders of PT. What are the main
principles guiding the construction of the bare potential
in the atomic theory'

The most widespread one is optimizing of the level po-
sitions, calculated in the first order of PT, possibly ac-
counting for configuration interaction. The states of
several configurations can be optimized simultaneously.
This optimization principle is the essence of numerous
versions of the self-consistent mean-field approximation
and of the semiempirical fitting procedures, though the
optimizing criteria can differ. A great number of level
positions for different atoms and ions were predicted by
these methods with high accuracy. The accuracy of the
fitting procedures is typically higher than the accuracy of
the physical model on which the procedure is formally
based. But it is well known that optimizing the final state
energies does not provide the reliability of the zero-order
approximation, i.e., the quality of the individual electron
energies and of the corresponding individual electron
wave functions. Such functions do not represent the op-
timal basis for the consistent many-electron theory. It is
manifested in the poor convergence of the PT expansion
or in the poor convergence of the configurations superpo-
sition expansion. Of course this circumstance is of more
principal importance for the other atomic characteristics
than for level positions.

There are many well-known attempts to find the more
fundamental optimization principles for the bare one-
electron Hamiltonian or (what is the same) for the basis
set of one-electron functions which represents such a
Hamiltonian. Qne with the best theoretical foundation is
known as the method of natural orbitals [20]. The di-
agonalizaiton of the "exact" one-electron density matrix
of the many-electron system is accepted as the optimiza-
tion principle in this method. Another simplified solu-
tion is known as the density-functional method. The
minimization of th gauge noninvariant contribution of
the lowest QED PT corrections is proposed in [21] as the"ab initio" optimization principle. In our calculations of
different characteristics we dealt with atoms and ions
having one, two, or three quasiparticles (electrons and va-
cancies) outside the core of closed shells. For example,
the excited states 1S22S22psnl of the Ne like ion is a two-
quasiparticle (2QP) state. We accept, as the bare poten-
tial, a potential including the electric nuclear potential
and soillc paramctrlzcd potcIltlal that imitates thc in-
teraction of closed-shell electrons with quasiparticles.
The parameters of the model bare potential are
chosen so as to generate accurate eigenenergies
of all one-quasiparticle (1QP) states, i.e.,
1s2s 2p, 1s 2s2p, 1s 2s 2p states of the F-like ion and
1s 2s 2p nl states of Na-like ions, with the same nucleus.
The individual quasiparticle eigenfunctions and eigenen-
ergies satisfy the one-quasiparticle Dirac equation with
model potential [22].

Further, this potential is used as a bare potential in the
PT of states with any number of vacancies and electrons
outside the same core. The way the input 1QP eigenener-
gies had been previously obtained (theoretically or experi-
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mentally) does not mater. We assume that the "exact"
1QP energies are used to generate the zero-order approxi-
mation. To avoid accounting for the 1QP eFects twice
we omit the real parts of contributions of 1QP Feynman
diagrams in orders of PT, thus the theoretical consistency
is preserved. In contrast to the methods based on the op-
timization of the final theoretical energies our method
provides the reliable level structure in the zero-order PT
(at least for the two- and three-quasiparticle systems). It

t

ensures better quality of the individual quasiparticle
eigenfunctions and better convergence of the PT. The or-
bitals of quasiparticles are generally more compact in our
calculations as compared with the previous ones and the
cross sections are smaller, at least for the most intense
transitions.

In the second order of the QED PT (or for the first or-
der of the atomic PT) the energy shift is expressed in
terms of two-electron matrix elements:

V(1,2;4, 3)=Q(2j(+1)(2j2+1)(2j3+1)(2j4+1)(—)
'

J& J3 a J2
X (1)~

m) m3 p m2a,p L

j4 a

m p ~a 7Q (1243)
4

with

Q, (1,2;4, 3)=R, (1,2;4, 3)S,(1,2;4, 3)+R, (1,2;4,e)S, (1,2;4, 3)+R,(1,2;4, 3)S,(1,2;4, 3)+R,(1,2;4, 3)S,(1,2;4, 3)

+QRi(1, 2;4,3)S,(1,2;4, 3)+ g Ri(1,2;4, 3)Sg(1,2;4, 3)
1 I

—QRi(1, 2;4, 3)S,'( l, 2; 3,4) —g Ri(1,2;4, 3)S,'( l, 2;4, 3),
I I

(3)

where R, (1,2;4, 3) is the radial integral of the Coulomb
interelectron interaction with large radial components;
the tilde denotes a small component; the last four terms
account for the magnetic interelectron interaction with l
being space and a being total rank of interaction opera-
tor. For the Coulomb part the space and radial ranks
coincide. The interelectron interaction in the lowest or-
ders of QED PT is imitated by the photon propagator; its
expansion over products of the tensor operators generates
the a,p expansion in (2).

In the QED theory of the excited states the Coulomb
and magnetic radial integrals are complex values. The
definition of all integrals and angular multiplyers S, and
S„with the detailed description of their calculation, have
been given elsewhere [22,23].

It is worthwhile to emphasize that all electrons of the
system (including the electrons of closed shells) are
presented explicitly in the PT though the lowest orders
include only eigenstates of quasiparticles. In our calcula-
tions the highest-order corrections are usually accounted
for through the modification of the bare potential and the
interaction of quasiparticles with each other, thus
preserving the analytic form of the lowest-order correc-
tions [24]. All the modifications approximate the contri-
butions of th definite high-order Feynman diagrams (FD).

III. ENERGY APPROACH IN
SCATTERING THEORY

%'hen studying the electron-positron pair production
in nuclear collisions [25] we generalized the EA to cover
the problems of scattering theory. Here, we

briefly

outline the main idea using, as an example, the
collisional deexcitation of the ¹ like ion:

((2j;, ) '3j;, [JM;],e;„)~(@o,e„). Here, @0 is the state
of the ion with closed shells (ground sate of the ¹like
ion), J; is the total angular moment of the initial target
state, indices iv, ie are related to the initial states of va-
cancy and electron, indices and c;„and e„are the in-
cident and scattered energies, respectively to the incident
and scattered electrons, respectively. In the second-
quantization representation, the initial state of the system
"atom plus free electron" can be written as

~I ) =a;„g a;,a,„@oCJ™'
ie ™iu

with

—J,.M —i iC ' =+2J;+ I( —1)"
ie' iu iem miu

being Clebsh-Gordan coemcient with the additional
phase multiplier accounting for tensor properties of the
annihilation operator a;, . Final state is

where 4o is the state of an ion with closed electron shells
(ground state of ¹like ion), ~I ) represents three-
quasiparticle (3QP) state, and ~F) represents the 1QP
state. Quantum numbers of the free-electron states are
not specified yet.

To justify the EA in the scattering problem, we sup-
pose that the system "atom plus electron" was placed at
the time t~ —~ in a potential box of large but finite
size. All the states (4) and (6) of a confined system are
stationary, their eigenenergies are quantized. The box
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ImhE =~G(E;„E,.„E;„,E„) .

Here, 6 is a definite squared combination of the two-
electron matrix elements (3). The value

o.= —2 ImhE (9)

represents the collisional cross section if the incident elec-
tron eigenfunction is normalized by the unit How condi-
tion, and the scattered electron eigenfunction is normal-
ized by the energy 6 function.

The next step, mixing of the near-degenerated atomic
states, accounts for the highest-order corrections of a
specific type. To obtain the complex eigenenergies in the
frame of the rigorous theory of the near-degenerate sta-
tionary states [26] one must diagonalize the complex sec-
ular matrix (I'~M~I) calculated between the states (4).
In the lowest order, the secular matrix coincides with the
usual energy matrix. It should be emphasized that in the
lowest order of the consistent PT one must take the same
c.;„for all the states to be mixed and zero-order scattering
energy c„=c,, +c.;, —c.;„. Refinement of c„using the
"more accurate" transition energies effectively accounts
for the highest-order corrections. At least part of these
corrections will be accounted for the second time while
mixing the near-degenerated states. Accounting for the
same effects twice is a common shortcoming of the eclec-
tic calculations.

The simplified diagonalization procedure is widely used
in practice. Usually one diagonalizes only the real part of
the secular matrix, yielding a real matrix of eigenvectors
coeKcients B;,;,„-. The matrix realizes the transition
from the pure-jj-coupling representation to the represen-
tation where eigenstates are numerated by numbers I,K.
The diagonal elements of the transformed matrix

effect at t —+ —ao can be described by the additional po-
tential Vb, its concrete form is of no matter. Next, we
use traditional procedures which provide automatically
the ImhE for the states that become nonstationary dur-
ing adiabatic evolution of the potential, namely, we (i) in-
troduce the time-dependent box potential
Vb [1—exp(at) ], a )0, thus at any time t & 0 we deal only
with the stationary states, however, the box potential
disappears as t~0; (ii) treat —Vbexp(at) as a perturba-
tion on an equal footing with the interaction of quasipar-
ticles with each other; (iii) calculate the energy shifts 5E
of all states (4) at t &0 using the GML formula for the
stationary states; (iv) assume t =0, a=O in the final ex-
pression.

For the state (4) the scattering part of ImhE appears
first in the second order of atomic PT in the form of the
integral over the scattered electron energy c„:

fde„G(E;„E;„e;„,e„)/(E„E;„——c,;, E;„—iO—),
with

IV. COLLISIONAL TRANSITIONS WITH
PARTICIPATION OF THE GROUND STATE:

DEEXCITATION AND EXCITATION

The deexcitation process is presented in the second or-
der by the only 3QP diagram (the so-called annihilation
diagram) since the transition to the final state without
quasiparticles can be formally considered as quasiparticle
annihilation. The diagram is shown in Fig. 1. Let us dis-
cuss brieAy the diagram's elements. The end and the

1n

ie'
I sc

in

ie
ie'
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ie
in
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1n ie
in

ie'
in

SC
I

in
'e

1V

represent the cross sections of the collisional deexcitation
(~IK, e~J;„)~(@o,e,g„). The uncertainties in cross sec-
tions arising from this approximation are of the order
ImhE/5E, where 5E is the typical distance between the
mixing states of the target [19].

The elements of the secular matrix are representable by
the energy FD. Each diagram describes the concrete vir-
tual process and can be classified in accordance with the
number of the real target quasiparticles involved in this
process. In the first and the second orders of atomic PT,
there exist only vacuum, 1QP, 2QP, and 3QP diagrams.
The energy shift of any system (with any number of
quasiparticles outside the same core), can be expressed in
terms of the contributions of these diagrams. Vacuum di-
agrams have no end lines. 1QP, 2QP, and 3QP diagrams
have one, two, and three pairs of end lines, correspond-
ingly. Generally, vacuum diagrams are not considered as
they contribute only the energy of the closed shells com-
mon for all states, i.e., they do not manifest themselves in
any observable process. The real part of 1QP diagrams in
all orders must be omitted, too, according to the special
choice of zero approximation. The Im( (M~ ) related to
the collisional transitions appears first in the second PT
order; it is represented by the 2QP and 3QP diagrams.
These diagrams are considered in Secs. IV and V. As
mentioned above, the highest-order corrections are ac-
counted for effectively through modification of the bare
potential and the potential of interquasiparticle interac-
tion.

(ac'~iv ~m )

g B.., ., (iu', ie', J, ~M ~iu, ie, J, )BP, z
iu', ie' iu, ie

(10)

FIG. l. 3QP annihilation diagram, describing the deexcita-
tion of the 2QP target. Direct-direct, exchange-exchange,
direct-exchange, and exchange-direct versions are shown. Each
version accounts for the direct (D) or exchange (E) interaction
of the incident electron with the "bra" or "ket" target states.
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inner solid lines directed from the right to the left are la-
beled by the electron state indices. Those directed from
the left to the right are labeled by the indices of the va-
cancy states. The end lines indicated by the indices
(ie', iv') are related to the "bra" state in (I', ~MiI &.
Those indicated by the indices (ie, iu) to the "ket" state.
Bra lines are assumed to be continued infinitely to the
left; ket lines are assumed to be continued infinitely to the
right. All possible versions of indexing of the end lines
are shown on the Fig. 1. The central section of each dia-
gram has an imaginary line drawn between two vertices
(two dashed lines of the diagram). It generally intersects
several inner and end quasiparticle lines. Their indices
must be attributed to the final state of the system "atom
plus free electron. " In the case under consideration there
is only one such line with index sc. It means that the
final state is one-quasiparticle state with one free electron
outside the target with closed shells.

Rather complicated combinations of 3jm symbols ap-
pear in the angular parts of matrix elements, especially in
the case of the "excited-excited" transitions. The sum-
mation over all m numbers is greatly simplified due to use
of the momentum diagram techniques [27,28]. The start-
ing momentum diagram consists of the core part that is
topologically equivalent to the corresponding FD and
two additional bar and ket fragments that link all the
bra-quasiparticle lines and all the ket-quasiparticle lines.
The topology of these fragments reAect the scheme of in-
dividual quasiparticle angular moment coupling [29).
The summation over all m numbers is reduced to a trans-

I

formation of momentum diagram according to simple
rules [30]. An example of such a transformation is given
in Sec. V.

Here, we only note that the partial cross section for the
transition between states (4) and (6) depends on
j;„,j„,m;„,I„,M;. The numerical summation over
j;„,j„is assumed. The dependence on magnetic quantum
numbers is eliminated in the amplitude approach by in-
troducing the total angular moment JT of the system
"atom plus free electron" with subsequent summation
over JT [30]. This elimination occurs in the energy dia-
grams automatically, without introducing JT. This
simplification is especially significant in the case of
"excited-excited" transitions.

The collisional strength Q(I~F) is widely used in-
stead of the cross section o (I~F). These values are con-
nected with one another as follows:

o(I~F) =. Q(I~F)
(2J, + l)E;„[(aZ) E;„+2]

(relativistic formula). Here and below the Coulomb
units are used: 1 C.u. =27.054Z eV, for energy; 1

C.u. =0.529X10 /Z cm for length 1 C.u. =2.419
X10 ' /Z sec for time. Z is the nucleus charge and a
is the fine structure constant. To simplify the comparison
with the formulas of the amplitude approach we rear-
ranged the final expression for the deexcitation cross sec-
tion so as to pick out the amplitudelike combination:

o(IIC ~0)=2m . g (2j„+1) & & Ojl;.,j,jl;„j;.,J; && Ix.
~In ~sc ~ie '~iv

where the amplitudelike combination

(Oj~;„,j„ji;,j;,J; & =Q(2j;, +1)(2j;„+1)(—1)"

k+ J. 1X g( —1) 5~+ Q&(s cie;i uin) +' . .
&

'Q&(ie, i inv, )sc' 2Ji+ 1
'

jie jiv
(13)

Upon substituting the two-term expression (13) into (12), one gets four terms corresponding to the four diagram ver-
sions in Fig. 1: direct-direct, direct-exchange, exchange-direct, and exchange-exchange. The version name rejects the
type of interaction (direct or exchange) of the free electron with the target in the bra and ket states.

For the collisional excitations from the ground state (inverse process), we consider a;„4&0 as the initial state, and

~

F &
=a„g af, af, @DC

m&, mI

as a final state. The cross section is

o (0~IF)=2m(2Jf+ I ) g (2j„+1)
~In ~sc

2

f,f jf j f f j; j,.lO &

Jye ~ Jyv

(14)

(15)

with

(Jf Jf Jf iJ;„,J„i 0 &
—'1/ ( 2jf, + 1 )( 2jf, + 1 )( —1 )

A, +J~ 1 Jln JSC J
X g( —1) 5~~ Qz(sc, ie;iu, in)+ ' . .

&
'Q&(fe, sc;fv, in)' ~ 2Jf+1 ' ' '

Jfp Jfe
(16)
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It is worthwhile to remember, that the different nor-
malization conditions are used for the incident and for
the scattered electron wave functions. Upon accounting
for the normalization multipliers (see Appendix) one gets
symm. etrical expressions for the excitation and deexcita-
tion, saving the weight multiplier 2Jf + 1 in (15).

V. EXCITED-EXCITED COLLISIONAL TRANSITIONS

The state (4) is accepted as the initial and the state
(14)—as the final in the "excited-excited" transition.
Three energy digrams describe this process. Four ver-
sions of each diagram are shown in Fig. 2. The first eight
2QP digrams describe pure electron or pure vacancy
transitions, resulting from the immediate interaction of
the free electron with an excited electron or vacancy.
The free line denotes the spectator (or passive) quasiparti-
cle which does not participate in the process directly.
The last four 3QP diagrams describe the processes that
change the states of both quasiparticles of the target, the
bound electron, and the vacancy. The section of each di-
agram, drawn between two vertices, intersects three lines
(one of them is the inner line with index sc), i.e., here we
deal with the 3QP final state. Let us emphasize that the
total moments Jf of the final states are not specified yet.
The diagrams represent the summary cross section of the
transitions to all final states with the particular electron

configuration of the target rather than to concrete states.
The quantum numbers of the concrete final states are in-
troduced below as the result of the diagram transforma-
tion.

The momentum diagram technique is illustrated by the
direct electron-exchange vacancy diagram (D„E,). The
starting momentum diagram is shown in Fig. 3. The bra
and ket fragments are on the left and on the right sides of
two dotted lines. According to general rules, every line
of momentum diagram carries two indices, j and m: the
rank of the definite tensor operator and the index of its
particular component. Summation over all m is assumed.
Summation over index M; of the line J; realizes averaging
over the magnetic quantum numbers of the initial state.
Two elementary reduction rules, graphically shown in
Figs. 4(a) and 4(b), simplify the diagram if the latter in-
cludes the corresponding "elementary" fragments, trian-
gles, and loops. Otherwise the "preliminary" transforma-
tion, shown in Fig. 4(c), can be used to preform the "ele-
mentary" fragments. Each preliminary transformation
implements additional summation over the auxiliary mo-
ment I. Using these simple rules, one can reduce step by
step any diagram to the single line carrying the 6 func-
tion. The diagram contribution will be expressed in
terms of 6j Racah symbols with summation over all auxi-
liary moments. Any moment diagram of the second or-
der is reducible to the single line due to a two-step "pre-
liminary" transformation and a sequence of the "elemen-
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FIG. 2. The diagrams, describing collisional
transition between excited 2QP of the target.
The first eight 2QP diagrams describe transi-
tions with changing of only one quasiparticle
state of the target. The last four 3QP diagrams
describe the transitions with changing of both
quasiparticle states of the target. Capital
letters indicate direct or exchange interaction
of the target with the incident electron in the
"bra" or in the "ket" state. Small letters indi-
cate with quasiparticle (electron or vacancy)
changes its state.
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jl
)iv'

a
I 2

] j
jn

ji = j)ie' fe

3
SC

a
1

3 =3.
fv iv

I

l

I

3

I

in

jm j'm'

3 1 3i~

jm 3

1 2

1 1
1 2

FIG. 3. Momentum diagram corresponding to the D,E, FD.
The dotted lines cut off the "bra" and "ket" fragments.

3
1

(c)

tary" transformations. The resulting expressions have
the form of the double summation gl I over auxiliary1' 2

moments I&,I2. There are several alternative variants to
choose the "preliminary" transformations, leading to al-
ternative equivalent forms of the final expression. For
each starting moment digram, corresponding to the FD
of Fig. 2, one of the "preliminary" transformations had
been chosen to link the final states lines fe and fv. The
corresponding auxiliary moment can be identified with
the final-state total moment Jf. This allows the represen-
tation of the total cross-section as a sum over concrete re-
action channels in the jj-coupling scheme. Both steps of
the "preliminary" transformation of the diagram D„E,
are shown in Fig. 5. The same two-step transformation

FIG. 4. Two "elementary" (a),(b) and "preliminary" (c)
transformations. The set of these transformations reduces any
momentum diagram to the single line.

followed by the set of obvious "elementary" transforma-
tions reduces any of the second-order diagrams to the sin-
gle line.

Similar to previous case, we rearranged the final ex-
pression for the cross section to pick out the arnplitude-
like combination. In the intermediate-coupling-scheme
representation, the cross section of the collisional
excited-excited IK~IF transition looks as follows:

cr(IK~FK)= —g (2j„+1)g (2I+1) g g (2J~+1)[Bf,f, &j f j,f,Jf IIj;„,j„j,„j;„,J; &B;, „,]2 Ijtn jsc jie'Jiu Jfe' tv

'2
(17)

with the amplitudelike combination depending on the auxiliary moment I. In the amplitude approach, every amplitude
depends on its own auxiliary moment. Thus the cross-section expression in that approach include two independent aux-
iliary summations I 30].

The amplitudelike combination consists of the electron and vacancy parts:

(18)

Substituting the two-term expression (18) into (17), one gets four combinations that can be related to the purely elec-
tron, to the purely vacancy, and electron-vacancy diagrams of Fig. 2. The electron and vacancy parts of the amplitude-
like combinations can be represented in turn as a sum of the direct and exchange parts.

The electron contribution is

I Jf J;
& IIj;„,j„I&„=5,, f,+(2J'„+1)(2j,„+1)(2jf,+1)(2jf,+1) ' .

Jiu Jie jfe

Jln
'Q, (s fce; i ien)

Ji.e
(19)

In the direct part, auxiliary moment I coincides with the total rank of the interaction a.

ie

ie' fe

3 =3.
fv iv

ie' J
/ I,J j

3 ie

fe

3
fv

ie

,

3
fv (2I+1) (2J +1)

f

(d)

FIG. 5. Two-step "preliminary" transfor-
mation. Each rnomenturn diagram of this
work can be reduced to the single due to this
"preliminary" transformation and a set of "ele-
mentary" transforrnations.
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The vacancy contribution is

I Jf J;
( ~I,j;„,j „~ )„„=6,, f,+(2j,, +1)(2j,, +1)(2jf,+1)(2jf„+1)' .

Jie Jiv Jfv

1/2+ j. +J.+Jf ].X g( —1) " ' f 5, 1 Q, (sc, iv;fu, in)+2I+1
Jsc Jin

Q', (sc, iu;in, fv )
Jiu Jie

(20)

VI. NUMERICAL RESULTS

The above theory is applied here to investigate
electron-collisional cross sections and rate coefficients for

I

¹-like ions excitations. Radiative recombination rates
for these ions have been investigated in [15, 23] using the
same theory. Rates for both elementary processes will be
used then in the kinetics calculations for ¹ like ion pop-

TABLE I. Energy levels of Ne-like ions Ar Ix and Fe xvII (units are cm ').

ArIx (Z =18) Fexvrr (Z =26)

No. Level
Expt.
[34]

Theory
Present work Level

Expt.
[35]

Theory
Present work

Theory
[31]

2s

2p3/2

2p3n
2p 1/2

2p 1 n

2p
3$ i/2

3$ in
$1/2

0
2 026 542
2033 120
2 044 670
2051 880

0
2 026 504
2033 273
2 044 390
2 052 270

2s

2p3/2

2p3/2
2p 1/2

2p

2p
S 1/2

3$ i/2

0
5 849 320
5 864 590
5 951 212
5 960 870

0
5 849 054
5 864 708
5 950 805
5 960 998

0
5 855 681
5 871 662
5 956 518
5 967 008

6
7
8

9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27

2p3/2
2p3/2

2p3/2
2p 3/2

2p3n
2p i/2
2p i/2
2p 1/2

2p 1/2

2p3n

2p 3/2

2p3/2

2p3/2

2p3n
2p 3/2

2p
2p 3/2

2p 3/2

2p 1/2

2pin
2p 1/2

2p 1/2

3p3/2

3p3/2
3p 1/2

3p in
3p3/2
3p i/2

3p in
3p3/2

3p3/2
3p3n

3d 3/2
3d 3/2
3d 5/2
3d 5/2
3d 3/2
3d 3/2
3d 5/2
3d 5/2
3d 3/2
3d 5/2
3d 5/2
3d 3/2

2 149 320
2 169 894
2 170923
2 176 716
2 182 224
2 189 330
2 192 240
2 195 230
2 196230
2 265 320

2 349 300
2 351 420
2 355 570
2 358 730
2 361 760
2 366 960
2 370655
2 381 120
2 382450
2 384 880
2 385 380
2411 310

2 149 800
2 169 600
2 170 620
2 176 320
2 181 790
2 188 900
2 191 620
2 194 790
2 195 540
2 275 360

2 348 603
2 350 700
2 354 950
2 358 660
2 361 960
2 366 990
2 371 530
2 381 490
2 382 700
2 385 380
2 385 430
2 418 700

2p3n
2p3/2
2p 3/2

2p 3/2

2p 3n
2p 3/2

2p i/2
2p 1/2

2p
2p 1/2

2p 3n
2p
2p 3/2

2p 3/2

2p 3/2

2p 3/2

2p3
2p3/2
2p i/2

2p 1/2

2p 1/2

2p i/2

3p in
3p i/2
3p 3/2

3p 3/2

3p3n
3p3/2

3p1n
3p3/2

3p3/2
3p 1/2

3d 3/2
3d 3/2
3d 5/2

3d 5/2

3d 3/2
3d 3/2
3d 5/2
3d 5/2

3d 3/2
3d 5/2
3d 5/2
3d 3/2

6 093 407
6 121 606
6 134 630
6 143 730
6 158 360
6 202 450
6 219 114
6 245 225
6 248 350
6 353 230

6 463 942
6 472 500
6486288
6486 530
6 492 788
6 506 650
6 515 320
6 552 200
6 594 461
6 606 500
6 606 500
6 660 000

6093 153
6 121 033
6 134044
6 142 989
6 157 278
6201 869
6 219 605
6 244 090
6 247 741
6 363 845

6 462 790
6 470 917
6485 900
6 487 059
6493 559
6 506 800
6 515 800
6 547 857
6 594 789
6 600 953
6 605 908
6 666 952

6 099 089
6 128 677
6 141 047
6 150493
6 164 853
6 211 008
6225 625
6 250 816
6 254 324
6 382 883

6471 451
6 479 930
6495 791
6497 860
6 502 404
6 516087
6 526 494
6 564054
6 602 675
6 610 544
6615 598
6 679 234

30
31
32
33

34
35
36
37

2s 1/2

2si

2$ 1/2

2$1 /2
2s in
2$ 1/2

2s
2s
2$

2$1 /2

3$ i/2
3$1/2

3p i/2
3p 1/2

3p3/2

3p3/2

3d 3/2
3d 3/2
3d 5/2
3d 5/2

2 791 700

2 639 720
2 668 780

2 780 200
2 781 050
2 783 390
2 792 670

2 967 370
2 967 470
2 967 600
2 984 800

2s i/2
2S 1/2

2s i/2
2s 1/2
2S 1/2
2S 1/2

2$ 1/2
2$ 1/2
2S 1/2
2S 1/2

3$ i/2

3p 1/2

3p 1/2

3p3/2

3p3n

3d 3/2
3d 3/2
3d 5/2
3d 5/2

0
1

2
1

6932 114
6 986 582

7 196098
7 199 894
7 218 806
7 233 790

7 560 137
7 561 509
7 563 671
7 606 710

6 951 738
7 005 493

7 216 068
7 219 978
7 238 595
7 254052

7 580 521
7 582 528
7 585 978
7 625 118
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ulations in a plasma. The numerical investigation is ac-
complished here for argon and iron in the ¹ like state.
Level populations and line intensities of Ne-like argon are
needed for the search for the optimal conditions in the
plasma of a capillary discharge for lasing generation in a
collisionally radiative scheme. Presently spectroscopic
characteristics of multicharged iron states are under
thorough theoretical and experimental investigation be-
cause of the broad need for these data for many applica-
tions. To test our theory we compare our calculations on

collisional cross sections for ¹-like iron with known cal-
culations [31,32]. Another test is conducted here by
comparison with experimental data of Ref. [33], where
few collision transitions in Ne-like barium were studied.

In Table I our calculations of energy levels for ¹-like
argon and iron are given. A description of our method
for energy-level calculation is presented in [24]. The
first-order PT correction is calculated exactly, the high-
order contributions are taken into account effectively:
"polarization" interaction of two above-core quasiparti-

TABLE II. Electron-collision strengths for excitations from the ground state of Ne-like iron (in-
cident electron energy E =76.83 Ry). Two approximations are given: (a) first order of the PT; (b) first
order of the PT+effective accounting for the high PT orders corrections. Results are compared with
the theory [31]. Our cross section of excitation (in cm ) calculated with the accounting for high PT or-
ders are in the last column. The numbers in brackets denote multiplicative powers of ten.

Transition (a)

Electron collision

Present theory

(b)

strengths

Theory Ref. [31]

Excitation

cross section

(present work)

1-2
3
4
5

1.144[ —03]
1.214[—03]
2.252[ —04]
1.086[ —03 ]

1.073[—03]
2.603[—03]
2.118[—04]
2.227[ —03]

1.351[—03]
2.439[—03]
2.730[—04]
2.266[ —03]

1.227[ —21]
2.978[—21]
2.423[ —22]
2.547[ —21]

6
7
8
9

10
11
12
13
14
15

3.327[ —03]
2.730[—03 ]
3.411[ —03]
1.236[—03]
2.196[—03]
2.740[ —03]
1.338[—03]
1.410[—03 ]
2.615[ —03 ]
4.938[—02]

2.772[ —03]
3.032[ —03]
2.966[ —03]
1.033[—03]
2.572[ —03]
2.683[—03]
1.144[ —03]
1.154[ —03 ]
3.057[ —03]
4.009[—02]

3.550[ —03 ]
3.581[—03]
3.889[—03]
1.375[—03]
3.178[—03]
3.142[ —03]
1.466[ —03]
1.560[ —03]
3.826[ —03]
4.567[ —02]

3.171[—21]
3.468[ —21]
3.393[—21]
1.181[—21]
2.942[ —21]
3.069[—21]
1.308[—21]
1.320[ —21]
3.497[ —21]
4.586[ —20]

16
17
18
19
20
21
22
23
24
25
26
27

1.380[—03 ]
4.247[ —03]
5.306[—03]
4.827[ —03]
3.536[—03]
1.889[—03 ]
2.466[ —03]
2.428[ —02]
2.256[ —03 ]
2.976[—03 ]
2.989[—03]
7.094[ —02]

1.417[—03]
4.464[ —03]
5.530[ —03]
4.744[ —03]
3.692[—03]
1.865[ —03 ]
2.694[ —03 ]
2.778[ —02]
2.201[—03 ]
2.930[—03]
3.207[ —03]
1.042[ —01]

1.661[—03]
5.030[—03 ]
6.499[—03]
5.693[—03]
4.317[—03]
2.313[—03]
3.165[—03]
2.517[—02]
2.682[ —03]
3.517[—03]
3.834[ —03]
1.058[—01]

1.620[ —21]
5.106[—21]
6.326[ —21]
5.426[ —21]
4.221[—21]
2.133[—21]
3.081[—21]
3.177[—20]
2.518[—21]
3.350[—21]
3.669[—21]
1.192[—19]

28
29

9.674[ —04]
1.861[—02]

8.179[—04]
1.596[—02]

9.570[ —04]
1.590[—02]

9.355[—22]
1.825 [ —20]

30
31
32
33

2.013[—04]
6.427[ —04]
1.006[ —03]
7.982[ —04]

2.059[—04]
8.833[—04]
1.019[—03]
2.514[—03]

2.500[—04]
9.190[—04]
1.278[ —03]
2.070[ —03 ]

2.348[ —22]
1.010[—21]
1.165[—21]
2.876[ —21]

34
35
36
37

1.520[ —03]
2.570[—03]
3.576[ —03 ]
1.016[—02]

1.519[—03]
2.574[ —03]
3.570[ —03]
1.398[—02]

1.773 [ —03]
3.004[ —03 ]
4.139[—03]
1.438[ —02]

1.738[—21]
2.945[ —21]
4.083 [—21 ]
1.600[—20]
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TABLE III. Comparison of measured [33] and calculated elec
tions (o. ) for ¹likebarium for

an ca cu ated electron-collisional excitation cross sec-
o. or e- i e arium for two values of incident electron energy. (Units are 10 ' cm )

Theory

Measured [33] Present work [36] [37]

Level

Level
energy

(eV) 4~ ( 90')
dA

Level
energy

(eV)

Sum (J=O)
2p 3/2 3d 5

2p1/2 3d3/2

4937
5295

E(el)=5.69 keV
2.50+0.35
3.98+0.56 4937.7
2.12+0.30 529S.9

2.48
3.20
1.78

2.58
3.44
2.42

2.60
3.56
2.00

Sum (J=0)
2p 3/2 3d 5/2

2p&/2 3d3/2

E(el) =8.20 keV
2.27+0.32
3.30+0.46
1.82+0.25

1.83
2.87
1.64

1.89
2.99
2.10

1.94
3.23
1.82

cles and the effect of their "mutual screening. " It should
be noted that strong compensation of different PT terms
is a characteristic feature of the states with vacancies in
t e core. This is one of the main reasons for the fact that
t e accuracy of conventional a priori calculations of such
states does not always satisfy the requirements arising in
some applications. This compensation becomes stronger
with increasing nuclear charge. It manifests the crucial

role of the theoretical self-consistency of the approach to
the whole problem.

A compartson with experimental energy levels [34,35]
shows that the typical discrepancy between our theoreti-
cal and experimental values is several hundreds of cm
Two states are the exceptions: No. 15 (J =0) '

2
and No. 27 in 2p 3d. For these terms the calculational
uncertainty is several thousand cm ' a d

' '
lan is practica ly

CD

bQ0

-12

—13

FIG. 6. Temperature dependence of some
rate coeKcients for electron-collisional excita-
tions of ¹like iron. The solid line corre-
sponds to the calculation [32]; the dashed line
corresponds to the present calculation (a) tran-
sition 1-1S; (b) transition 1-14; (c) transiton 1-
32 (see Table I for designation of levels).

*
200 400 600

I

800 1000
T (ev)

e

1200 1400
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independent of Z. Comparison with experimental ener-
gies encourage us to believe in the accuracy for highly ex-
cited states for which there is no experimental informa-
tion.

Our results on electron collision strengths and cross
sections of excitation from the ground state for Ne-like
iron are given in Table II. Summation over j;„,j„in (16)
spreads over the range 1/2 —23/2. We investigated nu-
merically the convergency of this sum. It turned out that
the highest partial-wave contribution is less than 1% for
all states considered. The incident electron energy
E,&=76.83 Ry = 1045.4 eV was chosen for comparison
with the corresponding data of Ref. [31]. Our results are
presented in two approximations: (a) accounting for only
first-order PT contributions in the secular matrix; (b)

with the effective inclusion of the high-order corrections
mentioned above. For some levels these corrections
change the results by a factor of 2 —3. As it was expected,
our final collisional strengths appeared to be smaller (typ-
ically by 10—30 %) than those of Refs. [31,32].

In both cases (argon and iron) the collisional strengths
have been calculated for the three reference values of the
incident electron energy and then approximated by a sim-
ple analytical formula with "exact" asymptotics. The
latter have been used in the convolution relativistic for-
mula for the rate coefFicients. The comparison of our col-
lisional rate coefficients for iron with those from [32] is
shown in Fig. 6. Their dependence on the electron tem-
perature is shown for three different transitions. Like the
cross sections, our rate coeKcients are typically less than

E (eV)
Transition ~-

TABLE IV. Electron-collision strengths for the Ne-like argon excitations from the ground state. E
is impact electron energy. The numbers in brackets denote multiplicative powers of ten.

425 500

1-2
3
4
5

2.377[—03]
6.583[—03]
4.736[—04]
1.468 [—02]

2.036[—03 ]
7.566[ —03]
4.048[ —04]
1.761[—02]

1.303[—03]
9.017[—03]
2.587[ —04]
2.241[—02]

6
7
8
9

10
11
12
13
14
15

6.300[—03]
7.219[—03]
6.238[—03]
2.173[ —03 ]
6.770[ —03 ]
2.029[ —03]
1.604[ —03]
8.090[ —03]
1.793 [ —03 ]
8.607[ —02]

5.437[—03]
5.012[—03]
5.824[ —03]
1.794[ —03]
6.794[—03]
1.675 [—03]
1.079[—03]
8.140[—03]
1.488[ —03]
8.758[ —02]

3.456[ —03]
2.911[—03]
4.795[—03]
1.033[ —03]
6.451[—03]
9.641[—04]
8.794[ —04]
7.814[—03]
8.561[—04]
8.670[ —02]

16
17
18
19
20
21
22
23
24
25
26
27

2.807[ —03]
8.829[ —03]
1.296[ —02]
9.348[ —03]
7.349[—03]
4.374[ —03]
6.110[—03]
1.463[ —02]
3.658[ —03]
6.086[ —03]
3.919[—03]
2.632[ —01]

2.197[—03]
7.091[—03]
1.041[—02]
7.180[—03]
6.082[ —03]
3.325[ —03]
5.854[ —03]
1.552[ —02]
2.744[ —03]
5.532[ —03]
2.939[—03]
2.933[ —01]

1.136[—03]
4.129[—03]
5.227[ —03]
3.512[—03]
3.994[—03]
1.579[—03]
5.623[ —03]
1.866[—02]
1.254[ —02]
4.763 [ —03]
1.341[—03]
3.725[ —01]

28
29

1.926[ —03]
3.128[—02]

1.561[—03]
3.219[—02]

8.504[ —04]
8.670[ —02]

30
31
32
33

4.332[—04]
1.383[—03]
2.152[—03 ]
5.089[ —03]

3.544[ —04]
1.201[—03]
1.764[ —03]
7.505[ —03]

2.129[—04]
8.918[—04]
1.066[ —03]
1.323[—02]

34
35
36
37

3.082[ —03]
5.155[—03]
7.220[ —03]
2.387[—02]

2.428 [ —03]
4.060[ —03]
5.681[—03]
2.818[—02]

1.264[ —03]
2.116[—03]
2.956[—03]
3.771 [ —02]
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those of Ref. [32]. It should be noted that inclusion into
consideration of Rydberg and autoionization Rydberg
states of ions of the previous ionization stage will
definitely increase coHisional rates. The method which
allows treatment of these states on an equal basis with the
adjacent continua has been elaborated in the scattering
theory [25]. The numerical calculations on this subject
are in the progress. The experimental information about
the electron-collisional cross sections for high charged
¹-like ions is very scarce, and is extracted from indirect
observations. Such experimental information for a few
collisional excitations of the ¹ like barium ground state
had been obtained in [33]. (Two electron-collisional ener-
gies were used in [33].) Table III compares these experi-

mental results with our calculations and with those of
two other theoretical works [36,37]. No obvious
discrepancies between theoretical and experimental
values for the considered states are found. Our results
are at the lower margin of experimental error with one
exception: for the state 2@3/$3d5&2 [J= 1] our cross sec-
tion at collisional energy 5.69 keV is a few percent lower.
It should be noted that extraction of the cross section
from the experiment is the most ambiguous for this level.

Our results for cross sections of excitation of ¹-like
argon from the ground state are presented in Table IV.
The corresponding results for rate coefBcients are given
in Table V. As far as we know there is only scarce infor-
mation on electron-collision excitations of ¹ like argon.

TABLE V. Rate coefficients for electron-collision excitation of Ne-like argon at six values of electron temperatures T, .

Rate coefficients (cm'/sec)

(eV) 30 60 90 120 150

1-2
3
4
5

6

8

9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27

9.79[—14]
9.52[ —14]
1.82[ —14]
1.55 [—13 ]

1.48[ —13]
2.60[—13]
1.19[—13 ]
5.03[—14]
1.03 [ —13]
4.45 [ —14]
5.95[—14]
1.17[—13]
3.75[ —14]
9.07[ —13]

3.33[—14]
1.01[—13]
1.49[ —13]
1.09[—13]
7.78[ —14]
4.97[—14]
5.14[—14]
1.04[ —13]
3.93[—14]
5.21[—14]
4.16[—14]
1.44[ —14]

1.28[ —12]
1.46[ —12]
2.44[ —13]
2.58[—12]

2.29[—12]
3.95 [—12]
1.92[—12]
8.01[—13]
1.73[—12]
7.20[ —13 ]
9.21[—13]
2.00[ —12]
6.14[ —13]
1.72[ —11]

6.64[ —13]
2.03[—12]
3.00[ —12]
2.19[—12]
1.59[—12]
1.01[—12]
1.09[—12]
2.27[ —12]
8.16[—13]
1.11[—12]
8.67[ —13]
3.38[—11]

4.38[—12]
5.68[ —12]
8.43[ —12]
1.06[ —11]

8.56[ —12]
1.43[—11]
7.36[—12]
3.01[—12]
6.81[—12]
2.73[—12]
3.36[—12]
7.94[ —12]
2.35[—12]
7.23[ —11]

2.79[—12]
8.55[ —12]
1.27[ —11]
9.23 [ —12]
6.77[ —12]
4.28[ —12]
4.78[ —12]
1.02[ —11]
3.49[ —12]
4.89[—12]
3.71[—12]
1.59[—10]

1.38[—11]
2.19[—11]
2.69[—12]
4.36[—11]

2.95 [ —11 ]
4.66[ —11 ]
2.63[—11]
1.04[ —11]
2.54[ —11]
9.51[—12]
1.10[—11]
2.99[—11]
8.22[ —12]
2.88[ —10]

1.06[ —11]
3.29[ —11]
4.86[ —11]
3.53[—11]
2.64[ —11]
1.64[ —11 ]
1.97[—11]
4.39[—11]
1.35 [ —11]
1.99[—11]
1.44[ —11]
7.19[—10]

2.30[—11]
4.25[ —11]
4.50[ —12]
8.83[—11]

5.14[—11]
7.74[ —11]
4.73[—11]
1.80[ —11]
4.72[ —11]
1.66[—11]
1.83[—11]
5.58[ —11]
1.44[ —11]
5.52[ —10]

1.93[—11]
6.01[—11]
8.83 [ —11]
6.41[—11]
4.88[—11]
2.98[—11]
3.80[ —11]
8.83[—11]
2.45[ —11]
3.80[ —11]
2.62[ —11]
1.50[ —09]

2.99[—11]
6.27[ —11]
5.88[ —12]
1.34[ —10]

6.87[ —11]
9.98[—11]
6.50[ —11]
2.40[ —11]
6.67[ —11]
2.21[—11]
2.36[ —11]
7.91[—11]
1.92[ —11]
7.96[ —10]

2.63[—11]
8.25[ —11]
1.21[—10]
8.73[—11]
6.77[—11]
4.06[ —11]
5.48[ —11]
1.32[ —10]
3.34[ —11]
5.43[ —11]
3.57[ —11]
2.29[ —09]

28
29

30
31
32
33

34
35
36
37

5.89[—15]
1.08[ —13]

7.10[—16]
2.18[—15]
3.47[ —15]
4.70[ —15]

2.22[ —15]
3.72[ —15]
5.21[—15]
1.37[—14]

1.76[ —13 ]
3.26[ —12]

2.58[ —14]
8.01[—14]
1.27[ —13]
2.05[ —13]

1.04[ —13]
1.74[ —13]
2.43[ —13]
7.12[—13]

9.09[—13]
1.71[—11]

1.47[ —13]
4.59[—13]
7.22[ —13]
1.37[—12]

6.68[ —13]
1.12[—12]
1.56[ —12]
4.99[—12]

4.28[ —12]
8.63[—11]

7.62[ —13]
2.43 [ —12]
3.77[ —12]
9.17[—12]

3.91[—12]
6.54[ —12]
9.16[—12]
3.39[—11]

8.66[ —12]
1.95 [—10]

1.62[ —12]
5.28[ —12]
8.04[ —12]
2.39[—11]

8.81[—12]
1.47[ —11 ]
2.06[ —11]
8.63[—11]

1.26[ —11]
3.24[ —10]

2.45[ —12]
8.10[—12]
1.21[—11]
4.27[ —11]

1.37[—11]
2.29[ —11]
3.21[—11]
1.49[ —10]
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For example, one can find theoretical and experimental
intensities for several lines of Ne-like argon and chlorine
in 0-pinch plasma at electron temperature -65 eV and
electron density -2.5 X 10' cm [38].

At this stage of our calculations the conclusion can be
drawn that remarkable population of 2p 3p levels can be
obtained at electron temperatures of 250—300 eV for iron
and 40—50 eV for argon. Note that at 40—50 eV the
abundance of Ne-like argon in a plasma is significant.
Thus we believe that the results of the present theoretical
investigation encourage once more the search for efticient
laser schemes using 3p-3s transitions of Ne-like argon.

The comprehensive theoretical analysis of plasma spec-
tra at diFerent values of electron density and temperature
also needs the special consideration of additional reaction
channels. The results of such work will be presented in a
future paper where the level populations and line intensi-
ties will be analyzed with their dependence on plasma pa-
rameters.

individual electron state satisfy the radial Dirac equa-
tions

f '= f(—tc+ l~l )/r gX—, ,

g'=g(tc —
ltcl )Ir+ fX, ,

X, =(s—U)Za,

X2=(c,+2(Za) —U)Za .

(Al)

(A2)

Here, K is the angular Dirac quantum number, U is the
bare potential, and E is the eigenenergy (positive for the
free-electron state). The main r dependence of f and g at
r ~0 has been factored out [22], so that as r ~0,
f—const, g-r for tc(0, and f -r, g~const for tc) 0.
To obtain the properly normalized cross section one must
(i) perform all the calculations with the arbitrary normal-
ized f;„,g;„, and f„,g„; (ii) multiply all the partial cross
sections by the normalization multipliers N;„, N„with

APPENDIX: NORMALIZATION OF
FREE-ELECTRON WAVE FUNCTIONS

X;„=Zarr(2j;„+1)lim
1

r QX,X2F(fg. ),
(A3)

When calculating corrections of the PT to the energy
of a stationary state one deals with the matrix elements
that depend on the individual quasiparticles states and
virtual bound and free-electron states. All the bound-
state functions must be normalized to unity; all the free-
electron-state functions to energy 6 function. The same
is true for the cross-section calculation. However, the
incident-electron-state function must asymptotically
coincide with the plane wave normalied to unit flow. We
expand this wave over spherical partial waves, each of
which satisfies the one-electron Dirac equation. The
norm of each partial wave is unambiguously defined by
the above asymptotic condition.

Radial components "f" (large) and "g" (small) of the

z . +XiX2N„= lim
r z'(f„,g„)

F(f g) —„ I l(X f +X g )

(A4)

(A5)

Two terms in (A5) are asymptoticallly proportional to
sin(cor ), and cos(cor ), that provides convergence of the
above expressions.

ACKNOWLEDGMENT

The authors would like to thank B. Peterson for his
careful reading of the manuscript and for his many help-
ful comments.

[1] P. Bogen, H. Conrads, and R. Rusbuldt, Z. Phys. 186, 240
(1965).

[2] R. A. McCorcle, Appl. Phys. A 26, 261 (1981).
[3]J. J. Rocca, D. C. Beethe, and M. C. Marconi, Opt. Lett.

13, 565 (1988).
[4] B. G. Peterson, K. J. Gray, G. W. Hart, and L. V. Knight,

Bull. Am. Phys. Soc. 34, 2095 (1989).
[5] C. Steden and H.-J. Kunze, Phys. Lett. A 151, 1534 (1990).
[6] J. J. Rocca, M. C. Marconi, B. T. Szapiro, and J. Meyer,

Proc. SPIE 1551,275 (1991).
[7] J. J. Rocca, O. D. Cortazar, B. Szapiro, K. Floyd, and F.

G. Tomasel, Phys. Rev. E 47, 1299 (1993).
[8] A. Zigler, M. Kishenevsky, M. Givon, E. Yarkoni, and B.

Arad, Phys. Rev. A 35, 4446 (1987).
[9] N. Edison, P. E. Young, N. Holmes, R. W. Lee, N. C.

Woolsey, J. S. Wark, and W. J. Blyth, Phys. Rev. E 47,
1305 (1993).

[10]L. V. Knight, A. M. Panin, B. G. Peterson, and E. P.
Ivanova, in Proceedings of the International Conference
Laser 92 (STS, McLean, VA, 1993), p. 113.

[11]E. P. Ivanova and A. V. Gulov (unpublished).

[12]J. Lin, M.S. thesis, Brigham Young University (1992) (un-
published).

[13]I. P. Grant, B. J. McKenzie, P. H. Norrington, D. F.
Mayers, and N. C. Pyper, Comput. Phys. Commun. 21,
207 (1980).

[14] D. H. Sampson, H. L. Zhang, A. K. Mohanty, and R. E.
H. Clark, Phys. Rev. A 40, 604 (1989).

[15]E. P. Ivanova and A. V. Gulov, Phys. Lett. A 140, 39
(1989).

[16]R. R. Haar, L. J. Curtis, N. Reinstad, C. Jupen, and I.
Martinson, Phys. Scr. 35, 296 (1987).

[17]M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).
[18]Yu. Yu. Dmitriev, G. L. Klimchitskaya, and L. N.

Labzovskii, Relativistic Effects in Spectra of Atomic Sys-
tems (Energoatomizdat, Moscow, 1984).

[19]M. N. Driker and I. N. Ivanov, Sov. J. Opt. Spectrosc. 49,
209 (1980)~

[20] E. R. Davidson, Rev. Mod. Phys. 44, 451 (1972); E. R.
Davidson and D. Feller, J. Chem. Phys. 74, 3977 (1981).

[21] A. V. Glushkov and L. N. Ivanov, Phys. Lett. 70A, 33
(1992).



4378 L. N. IVANOV, E. P. IVANOVA, AND L. V. KNIGHT 48

[22] L. N. Ivanov, E. P. Ivanova, and E. V. Aglitskii, Phys.
Rep. 164, 315 (1988).

[23] E. P. Ivanova and A. V. Gulov, At. Data Nucl. Data
Tables 49, 1 (1991).

[24] E. P. Ivanova, L. N. Ivanov, A. V. Glushkov, and A. E.
Kramida, Phys. Scr. 32, 513 (1985).

[25] L. N. Ivanov and T. V. Zueva, Phys. Scr. 43, 368 374
(1991).

[26] V. V. Tolmachev, Adv. Chem. Phys. 14, 421, 471 (1969).
[27] A. P. Yutsis, I. B. Levinson, and V. V. Vanagas,

Mathematical Apparatus for Angular Momentum Theory
(Mintis, Vilnius, 1960) (in Russian).

[28] B. R. Judd, Second Quantization in Atomic Spectroscopy
(Johns Hopkins, Baltimore, MD, 1967).

[29] L. N. Ivanov and V. V. Tolmachev, Sov. Phys. J. 12, 199
(1969).

[30] A. Bar-Shalom, M. Klapish, and J. Oreg, Phys. Rev. A 38,

1773 (1988).
[31]A. K. Bhatia and G. A. Doschek, At. Data Nucl. Data

Tables 52, 2 (1982).
[32] P. L. Hagelstein and R. K. Jung, At. Data Nucl. Data

Tables 37, 121 (1987).
[33]R. E. Marrs, M. A. Levine, D. A. Knapp, and J. R. Hen-

derson, Phys. Rev. Lett. 60, 1715 (1988).
[34] A. E. Kramida, Kandidate thesis, Lebedev's Institute of

Physics of Russian Academy of Sciences, Moscow (1983)
(unpublished).

[35] C. Jupen and U. Litzen, Phys. Scr. 30, 112 (1984).
[36] H. Zhang, D. H. Sampson, R. E. H. Clark, and J. B.

Mann, At. Data Nucl. Data Tables 37, 17 (1987).
[37] K. J. Reed, Phys. Rev. A 37, 1791 (1988).
[38] R. C. Elton, R. U. Datla, J. R. Roberts, and A. K. Bhatia,

Phys. Rev. A 40, 4142 (1989).


