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Electron paramagnetic resonance measurements near the tricritical point in BaTiO3

D. L. Decker, Ke Huang,* and H. M. Nelson
Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602

~Received 28 March 2002; revised manuscript received 19 August 2002; published 8 November 2002!

We report electron paramagnetic resonance measurements on BaTiO3, containing a dilute impurity of Fe31,
in its ferroelectric phase over a range of pressure and temperature near the paraelectric-ferroelectric phase
transition line. We have developed an algorithm to analyze the data, allowing us to determine the values of the
crystal field parameters and their temperature and pressure dependence required to reproduce the measured
spectra. Then, using the Landau free energy expansion to sixth order in the order parameter and noting that the
tetragonal distortion field D is proportional to the square of the order parameter, we determine the Landau
parameters and get a value for the tricritical point for BaTiO3.

DOI: 10.1103/PhysRevB.66.174103 PACS number~s!: 61.50.Ks, 64.60.Kw, 64.70.Kb
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I. INTRODUCTION

The series of phase changes in theABO3 family of per-
ovskites ranks among the most extensively studied of
structural phase transitions. BaTiO3, a member of this fam-
ily, is a prototype ferroelectric and has widespread appli
tions in nonlinear optics and electro-optics. Its transiti
from the cubic-paraelectric state to the tetragon
ferroelectric state results from a tetragonal distortion be
the transition temperatureTc . As discussed by Samara,1 this
first-order, cubic-to-tetragonal, transition in BaTiO3 changes
to second order above a certain pressure. The point on
phase line where the order of the transition changes is ca
a tricritical point.2 This transition, originally believed to be
purely displacive, may have some order-disorder charac
istics also.3

A displacive phase transition involves a shift of some
oms by small amounts from their symmetry positions in
higher-symmetry phase. The new positions change the s
metry and thus create a new crystal structure. Order-diso
transitions involve a disordered state, in the high-symme
phase, in which the atoms are dynamically distributed u
formly over a set of equivalent sites which average to a sy
metry position in the higher-symmetry phase, and at the tr
sition the distribution changes to favor a subset of
equivalent sites which results in a new crystal symmetry4

One can associate an order parameter with a change
ion’s position relative to the unit cell for a displacive trans
tion or the occupation of the various equivalent sites for
order-disorder transition. In the ferroelectric phase
BaTiO3 the Ti41 ion and its cage of O22 ions are displaced
relative to each other such as to create an electric dip
moment in each unit cell. This displacement can be use
the order parameter of the transition. Thus the order par
eter is zero in the cubic phase, but in the ferroelectric ph
the electric polarization vector, which is proportional to th
displacement, can be used as the order parameter. A p
transition is considered first order if the order parame
changes discontinuously at the transition.

It appears to be a general property of second-order st
tural phase transitions to involve a lowering in the frequen
of some vibrational mode, a ‘‘softening,’’ asTc is ap-
proached. As the mode frequency decreases, the amplitu
0163-1829/2002/66~17!/174103~8!/$20.00 66 1741
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vibration becomes larger and the anharmonic terms in
interatomic potential become more important nearTc . The
structure of the new phase is determined by the eigenve
of the soft mode and the parent phase. The eigenvector o
mode is the array of atomic displacements relative to
lattice sites and is equivalent to the order parameter of
transition.

In a pressure- (P-) temperature~T! thermodynamic phase
diagram, a critical point marks the end of a line of coexi
ence where two distinct coexisting phases become ident
If one considers a system with three thermodynamic v
ables, i.e., an electric fieldE in addition toP andT, then a
critical point in P-T plane will become a continuous line o
critical points in theP-T E space. These are lines of contin
ous phase transitions. Landau argued that a second-o
continuous coexistence line separating two phases of di
ent symmetry cannot end in a point and proposed that su
line would have to terminate by changing into a first-ord
transition line. This point is called a tricritical point.5 When
viewed in a space of suitable thermodynamic variables
tricritical point may be defined as the end point of a line
triple points at which three coexisting phases simultaneou
become identical. Indeed, the term ‘‘tricritical point’’ wa
originally introduced by Griffith to indicate the confluence
three lines of ordinary critical points.2

At atmospheric pressureTc is about 136 °C for pure
barium titanate but is lowered by impurities such as iron
the lattice. BelowTc , at room temperature, thec axis is
elongated about 0.6% and thea axes are shortened by abo
0.3%, changing the symmetry from cubic to tetragonal. T
tetragonal distortion alone does not produce the electric
larization but rather the rearrangement of the ions within
new unit cell. The Ti41 ion, which was in the center of an
oxygen cage, is displaced along the newc axis in a direction
opposite to the displacement of the oxygen cage, thus cr
ing a permanent electric dipole moment.6 There is strong
evidence that the transition is associated with the instab
of one of the optical phonon modes of the lattice. As t
frequency of the relevant mode decreases and finally
comes unstable at the transition, the crystal transforms to
tetragonal phase. Whether the transition is purely displac
or partly order-disorder has not been answered definitive

Several researchers have made measurements that
©2002 The American Physical Society03-1
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hinted at a tricritical point in BaTiO3. This was first sug-
gested by Polandovet al.7 who measured the effects of pre
sure to 10 kbar on the magnitude of the jump in the spon
neous polarization (Ps) at the ferroelectric transition. He
discoveredDPs

2 to decrease linearly with pressure and e
trapolated it to go to zero at 17 kbar. This was the fi
estimate of the tricritical point. Samara1 presented dielectric
constant measurements to 19 kbar and noted that the tr
tion still showed definite first-order behavior but a contin
ing trend toward becoming second order. From this he p
dicted the tricritical point to be in the range of 30–40 kb
Clark and Benguigui8 reported experimental measuremen
of a pressure-induced tricritical point at 34 kbar and 18 °
Their results were probably affected by the sensitivity of t
transition to nonhydrostatic stress. Decker and Zhao9 made
dielectric and polarization measurements in a hydrost
medium to 38 kbar and reported that the phase transi
appeared to go from first to second order near 35 kbar
240 °C. They looked at both pure BaTiO3 and butterfly
crystals which have different phase lines and tricritical poi
because of their impurity content.

The object of this work was to use a more sensitive pro
to observe the symmetry changes in the BaTiO3 crystal
structure. For this purpose we employed electron param
netic resonance~EPR!, which is a good technique to stud
phase transitions because of its sensitivity to local symm
changes in the crystal. This required the development o
apparatus which could make precision EPR measurem
on single crystals in a hydrostatic environment over a reg
of pressures and temperatures never before accomplis
This study will contribute to a better understanding of t
tetragonal-cubic phase transition and the tricritical point
BaTiO3.

EPR is carried out by introducing into the lattice a pa
magnetic probe ion in low concentration. Transition-me
ions such as Fe31 having a half-filledd shell are particularly
useful as probe ions. EPR studies of crystal symmetries
structural phase transitions have been pioneered by Mu¨ller
and others in his laboratory.10,11Hornig et al.12 made the first
study of barium titanate. Since the ionic radius of Fe31 is
0.64 Å, which is close to that of the Ti41, 0.68 Å, it was
assumed that Fe31 substitutes for Ti41 on the octahedral site
This assumption has been verified by Siegel and Mu¨ller13

using Newmann superposition theory.
We introduce here the spin HamiltonianH, in tetragonal

symmetry, to facilitate further discussion of EPR results:

H5bB•gJ•S1DSz
21aSz

41b~Sx
41Sy

4!, ~1!

whereb is the Bohr magneton,B is the magnetic field vec
tor, andS is the spin operator with componentsSx ,Sy ,Sz .
The gyromagnetic ratiogJ, is a 333 diagonal tensor which
has two independent elementsgi and g' for the directions
parallel and perpendicular to thec axis. D, a, and b are
crystal-field parameters. Because of the half filledd shell in
Fe31 the orbital angular momentum is quenched and t
becomes an exact Hamiltonian.14

Rimai and deMars15 showed thatD, measured with both
Gd31 and Fe31 probes in BaTiO3, was proportional to the
17410
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lattice distortion and the square of the electric polarization
the ferroelectric phase. Sakudo16 studied the change of th
crystal-field parameters of BaTiO3 at the phase transition an
also the effect of a dc electric field on the phase transition
BaTiO3. Müller and Berlinger17 measured the pressure d
pendence of the cubic-crystalline field-splitting parametea
to 3 kbar.@Note theira is 6 times larger than that defined i
Eq. ~1!.# They argued that the tetragonal-cubic transition
BaTiO3 is more order-disorder in nature than displacive.

Several years ago Ellwanger18 made the first EPR mea
surements in a pressure apparatus on BaTiO3 butterfly crys-
tals. The resonance peaks were very broad and the re
had large uncertainties. Part of this work was published19

Our measurements are the first precision high-pressure
studies on a good single crystal of this material.

II. EXPERIMENTAL MEASUREMENT

A detailed description of the apparatus is given in t
dissertation by Huang20 and has already been published21

Briefly, we directedX-band radiation from a klystron into a
right-circular-cylinder single-crystal sapphire of dimensio
such as to be resonant in the TM110 mode at;9.3 GHz. The
sapphire also served as one anvil of a high-pressure p
The other anvil was of titanium carbide. Between the tw
anvils was an Inconel 718 gasket of 0.3 mm thickness c
taining a hole of 1.1 mm diameter into which the sample a
a small ruby fragment were placed. This hole was filled w
petroleum ether to serve as a hydrostatic pressure med
The sapphire was enclosed in a thin-walled copper can w
openings to provide for coupling the microwaves to the c

FIG. 1. The positions in pressure-temperature space where
of data were taken. The different symbols show the data sets f
different runs. All measurements shown were in the tetrago
phase.
3-2
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ELECTRON PARAMAGNETIC RESONANCE . . . PHYSICAL REVIEW B 66, 174103 ~2002!
ity and optical access for directing an argon laser beam o
the ruby to measure the pressure in the cell.22

Modulation coils modulated the magnetic field at 1
kHz, and the dc magnetic field supplied by an electromag
was calibrated at the sample position with an NMR pro
The estimated field reproducibility was about60.4 G. The
EPR spectrometer recorded the derivative signal on a
file which could then be analyzed by computer.

We employed a small single-crystal of BaTiO3 doped with
0.03 at. % Fe2O3 which was grown by J. Albers using th
top-seeded solution technique.23 After orienting the crystal
we used a wire saw to cut off a thin plate such that ana axis
was normal to the plate and thus the plane of the plate c
tained thec axis and the othera axis. It was polished to a
final thickness of 0.1 mm, and circular disks of 0.9 mm
ameter were cut from the plate using a rotating ‘‘cooki
cutter and 600-grit SiC abrasive. The disk when placed in
high-pressure cell was easily oriented such that the magn
field could be pointed parallel to thea or c axis merely by
rotating the magnet through 90°. The pressure cell was
tached to the cold head of a Displex helium gas refrigera
and the system was surrounded by a vacuum chamber
tained between the pole faces of the magnet. In this man

FIG. 2. Resonance signals ofc3 anda4 spectral lines vs mag
netic field. Also shown is the least-squares fitting using a sin
Lorentzian derivative line shape and two slightly separated Lor
zian derivative spectra.
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it was possible to cool the entire cell to temperatures of
order of 40 K. We controlled the temperature by an Air Pro
uct temperature controller and a heating element attache
the cooling head of the refrigerator. Temperatures could
controlled and measured to an accuracy of60.3 K.

We made EPR measurements at several pressures
temperatures in the ferroelectric phase near the phase tr
tion; see Fig. 1. We tried to stay below the tetragonal-cu
transition because after passing the crystal into the cu
phase it would usually return to the tetragonal phase i
multidomain state, especially as one approaches the tric
cal point where there is very little difference between t
domains. The points shown in Fig. 1 came from four diffe
ent runs, each terminating after once crossing the phase
or when the sample was crushed by the deformation of
gasket under high pressure. Our measurements bel
230 °C were also unusable because the surrounding fl
became nonhydrostatic and the strains would create mult
mains in the sample. The results from the 30 sets of d
each set containing 1–5 resonances with the magnetic
along thec axis and 1–5 resonances with the field along
a axis, were collected on a computer and then analyzed
described in the following section. These data are noted
the figure, and the different symbols designate to which
each data point belonged.

III. ANALYSIS

The EPR spectral lines are derivatives of a Lorentzi
shaped signal, and ideally they should be represented by
expression below whereR(B) is the resonance signal as

e
t-

FIG. 3. Magnetic-field dependence of the eigenenergies of s
5/2 with the crystalc axis oriented along the magnetic field. Th
eigenenergies are labeled with the dominant spin component.
EPR resonances observed at a klystron frequency of 9.28 GHz
shown along with the way we labeled them.
3-3
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function of the magnetic fieldB:

R~B!52YppBpp
3 ~B2Br !Y S ~B2Br !

21
3

4
Bpp

2 D 2

, ~2!

whereYpp and Bpp are the peak-to-peak signal height a
peak-to-peak field width andBr is the center-field position o
the resonance.

The measured resonance shapes are slightly unsymm
and a nonlinear least-squares fitting of them to Eq.~2! re-
vealed that each was a combination of two strongly ov
lapped Lorentzian derivatives. Fitting the resonance to
overlapped peaks each with the shape in Eq.~2! gave ax2

value some 3–6 times smaller than for a single such line
all of these double resonances one of the peaks had 360.5
times the integrated intensity of the other. We chose the
sition of the resonance line as the weighted average pos
of the two individual resonances. Figure 2 shows two re
nance spectra and the computer fit to the data. The supe
ity of the two-peak fit as compared to a one-peak fit is ea
observed in the figure.
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We are not as yet prepared to discuss the cause of
peak doubling. It may be due to the presence of vacan
causing different environments surrounding the Fe31 EPR
probes or if the transition is order-disorder the Fe31 ions
may not be in sites of exact tetragonal symmetry.

We labeled the various resonances asBai and Bci where
the subscriptsa andc mean the data was taken with the fie
B along thea or c axis, respectively, andi goes from 1 to 5
for the five principal transitions between the respective
ergy levels. We refer to the transitions between the s
eigenstates labeled by their dominantz component of spin—
i.e., 2 3

2 to 2 5
2 , 2 1

2 to 2 3
2 , 1

2 to 2 1
2 , 3

2 to 1
2 , and 5

2 to 3
2 ,

respectively, as shown in Fig. 3. The transitions resul
when the energy difference between the eigenvalues equ
the klystron frequency, and these are shown by the vert
lines in the figure. We labeled the different resonances 1
as shown in the figure.

The spin Hamiltonian of Eq.~1! can be written in matrix
form using the standard representation of the spin-5/2 s
space as the basis vectors:
H5

¨

5

2
p1j A5q 0 0 A45b 0

A5q*
3

2
p1h A8q 0 0 A45b

0 A8q*
1

2
p1z 3q 0 0

0 0 3q* z2
1

2
p A8q 0

A45b 0 0 A8q* h2
3

2
p A5q

0 A45b 0 0 A5q* j2
5

2
p

©
, ~3!
st

n of
where

p5gibB, q50, for Bic axis,

p50, q5
1

2
g'bB, for Bia axis,

j525D/41625a/16165b/8, ~4!

h59D/4181a/161241b/8,

z5D/41a/161401b/8.

There will be six eigenvalues corresponding to the
spin statesm of the spin-5/2 manifold. The principal reso
nances result from the five dominant transitions betw
these eigenstates withDm561. The gyromagnetic ratiogi
x

n

can be calculated directly from the12 to 2 1
2 transition mea-

sured withB parallel to thec axis. The other parameters mu
be deduced from the spectra withB aligned along thea and
c axes.

A. First approach to extracting the crystal-field parameters

With the field along thec axis, whereq50, the spin
Hamiltonian can be diagonalized algebraically usingMAPLE

V to get the eigenenergiesEi . The subscripti orders them by
ascending energy at a large magnetic field, as a functio
gi ,B,D,a, andb. Then we solve Eq.~5! shown below, for
the resonance field,Bci whereh is Planck’s constant andn i is
the klystron frequency at thei th resonance line:

Ei 112Ei5hn i . ~5!
3-4
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This gives us the field positions of the five principal res
nances with the field along thec axis. This equation fori
53 can be solved forgi , i.e.,

gi5hn3 /bBc3 . ~6!

The other equations fori 51, 2, 4, and 5 give fourth-orde
equations and are not readily solvable. We therefore sub
tuted, into Eq.~5!, Bci5Bmi1hci , D5D01d, a5a01da,
andb5b01db, whereBmi is the measured value of the fie
at the resonance, andD0 , a0, andb0 are estimates for thes
crystal-field parameters for that particular data set. We t
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expanded Eq.~5! to lowest order inhci , d, da, anddb with
gi taken from Eq.~6! andn i being the measured resonan
frequency. Solving we gethci as a function of (d, da, db).

For the spectrum taken with the field along thea axis one
must take a different approach since the Hamiltonian ma
cannot be diagonalized analytically. We first block diagon
ize the matrix into two 333 blocks using the unitary trans

formation which has1A1
2 along the three top elements o

the principal diagonal and all along the secondary diago

and2A 1
2 for the lower three elements of the principal dia

onal to get
H5S j A5~q13b! 0 0 0 0

A5~q13b! h A8q 0 0 0

0 A8q z13q 0 0 0

0 0 0 z23q A8q 0

0 0 0 A8q h A5~q23b!

0 0 0 0 A5~q23b! j

D , ~7!
n a
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with q,j,h, andz defined as functions ofB,D,a,b, andg'

by Eq. ~4!.
One then chooses initial values forD5D0 , a5a0 , b

5b0 , g'5gi5g0, wheregi is taken from the analysis alon
the c axis; andBai5Bmi , the measured values of the res
nance fields. This turns Eq.~7! into a numerical matrixH0 .
H0 is then diagonalized using the Jacobi method for each
its two blocks. Then we make the substitutionD5D0

1d, a5a01da, b5b01db, g'5g01g, and Bai5Bmi

1hai , into the Hamiltonian matrix, Eq.~7!, and proceed
using the same transformation matrices that diagonalizedH0.
We conclude with a second-order perturbation calculation
get the final eigenenergies. Putting these eigenenergies
Eq. ~5! and expanding to lowest order in the parametersd,
da,db,g, andhai , we solve for the five principal transition
fields hai(d,da,db,g).

Sincehci and hai are the differences between the calc
lated and measured resonance fields, we minim
S@(hci /dBci )

21(hai /dBai)
2# by varyingd, da, db, andg,

wheredBci and dBai are the uncertainties in the measur
resonance fields determined in the least-squares fitting to
line positions. This gives us a new set of valuesD0 ,a0 ,b0,
and g0 to start the iteration over again until convergence
attained.

In this manner we could determine a value of the crys
field parameters for 28 of the 30 sets of data which h
greater than 5 measured resonances. These results are
in Huang’s dissertation.20 However, 3 of these sets had on
6 measured resonances and thus only 1 degree of free
and 9 had only 2 degrees of freedom, so there was cons
able scatter or uncertainty in the results. It was also no
that plottinga andgi versusD along isotherms showed sys
of

o
to

-
e

he

s

l
d
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m,
er-
d

tematic variations with temperature. Thus we decided upo
more sophisticated analysis to allow us to use all the data
remove most of the scatter.

B. More sophisticated analysis of the data

At this point we consider the following. The parameterD
varies as the square of the order parameter15 jumping from
zero in the cubic phase to a finite value in the tetrago
phase where the transition is first order or rising with
initial infinite slope upon entering the tetragonal phase wh
the transition is second order. In the cubic phase the cry
field parametersa5b, but they separate discontinuously
with an initial infinite slope upon entering the tetragon
phase, depending on the order of the transition. The sam
true for gi andg' . Thus we assume thatg'2gi andb2a
are both proportional toD with the average value of (a
12b)/3 and (gi12g')/3 being simple functions of pressur
and temperature. According to the experimental results
Müller and Berlinger17 they may be taken as linear function
We let

ak5a01pPk1tTk22nDk ,

bk5ak13nDk

gik5g01rPk1tTk22 f Dk ,

g'k5gik
13 f Dk . ~8!

a0 andg0 are the values of̂a& and^g& at some chosen poin
in the P, T plane. We choose this point to be the tricritic
3-5
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point (Pc , Tc). To start the fitting, we initially make an in
telligent guess forPc and Tc . The k’s index each data se
wherePk andTk are its pressure and temperature relative
the tricritical point. We then did a least-squares fit to t
entire set of the 220 resonance lines simultaneously with
38 variable parametersa0 , p, t, n, g0 , r, t, f , andDk for
eachk from 1 to 30. This left 182 degrees of freedom.

This analysis was done by creating anotherMAPLE V pro-
gram in a manner similar to the algorithm explained abo
Beginning with an initial set of values for theDk’s and for
a0 ,p,t,n,g0 ,r,t, andf, we again did the least-squares fittin
of the spin Hamiltonians in both thea andc directions for all
sets of resonance-field values. The least-squares fitting
gram also determined a statistical error for each of the v
able parameters. There was one other correction that
made to the data. The resonances along thea-axis measure-
ment seemed always to disagree slightly from those al
thec axis. We therefore assumed that the process of rota
the magnet may give an offset to the field measurement.
the field calibrations were taken with the magnet align
along the direction where we positioned thec axis of the
crystal. We therefore subtracted a small amount from
resonance field values for thea axis measurements and va
ied the amount subtracted to give a minimum in thex2 of the
fit discussed above. This amounted to a 2.3 G correction

IV. RESULTS

The results of the analysis are given in Table I. With t
high precision of the measurement and the method of an
sis the values ofD, at each point, are accurate to60.006 to
60.014 GHz (2s), for all points except the point neare
the transition whereD50.067(26) GHz. From the results i
the table one can calculatea andb, as well asgi andg' at
any pressure and temperature whereD is known using Eqs.
~8!. For example at room temperature and zero press
where D.2.7 GHz, we calculategi52.007060.0006 and
g'52.009660.0006 which are in good agreement wi
Hornig et al.12 who reportedgi52.0060.01.

We now turn to an analysis of the temperature and p
sure dependence ofD. SinceD is proportional to the squar
of the order parameter, we begin with the Landau expans
of the free energy near the phase transition in the tetrag
phase:

G5G01APs
21BPs

41CPs
6 , ~9!

whereG0 is the Gibbs free energy of the cubic phase, andPs
is the polarization, which can be considered the order par
eter. This is a mean-field analysis. The coefficientA must
vary with temperature and pass through zero at the ph
transition. In a like manner it must also be a function
pressure. Huibregste and Young24 showed a significant tem
perature dependence ofB and we would include pressur
dependence. The parameterC must be everywhere positiv
for stability.

The minima ofG(Ps) define the physical states of th
system. If the minimum is atPs50, then the cubic phase i
the stable state, but if the minimum is atPsÞ0, then the
tetragonal-ferroelectric state is the stable state. There
17410
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root of G8[dG/dPs50 at Ps50 and other roots found
from G8/Ps50. SinceG, G8/Ps , andG9 are all functions
of Ps

2 , we will defineQ5Ps
2 . We now calculate the value o

Q at the minimum ofG to get the result

Q52
B

3C
1AS B

3CD 2

2
A

3C
. ~10!

As we mentioned above,D is proportional to the square
of the order parameter; thusD is proportional toQ. In the
neighborhood of the tricritical point we letA andB be linear
functions of pressure and temperature andC be a constant, so
from Eq. ~10!

D52e@T2Tc1s~P2Pc!#

1Ae2@T2Tc1s~P2Pc!#
22a@T2Tc1r ~P2Pc!#,

~11!

wherea, e, r , ands are constants whileTc and Pc are the
temperature and pressure at the tricritical point.

To justify the above arguments we refer to a paper
Íñiguezet al.25 They made a first-principles study of BaTiO3
and found that the sixth-order potential expansion prope
accounts for the system over a large range of temperat
but the temperature dependence of the coefficients was n
trivial function. However, an examination of their figur
showing the explicit temperature dependence of the coe
cients from 0 to 350 K reveals that a linear dependence oA
and B and a constantC is a very good approximation ove
the range of temperatures in this experiment.

The measured values for the tetragonal distortionD were
fitted to Eq.~11! by least squares analysis with aC11 non-
linear least-squares program, witha, e, Tc , Pc , s, andr as
variable parameters to get the following results:

a50.04002~46!, e50.00312~23!,

Tc5232.6~5.8! °C, Pc536.8~1.6! kbar, ~12!

r 53.684~41! K/kbar, s58.09~60! K/kbar.

These results of the fitting are shown in Fig. 4 where
compare the values ofD measured along isotherms vers

TABLE I. The parameters, determined in the fitting, for calc
lating gi andg' anda andb as shown in Eqs.~8!. D in GHz and the
tricritical point Pc536.8 kbar andTc5232.6 °C. Other values for
]^a&/]P and]^a&/]T are also shown.

g0 t(K21) r(kbar21) f (GHz21)

2.00 627~15! 0.000 393~61! 0.000 126~11! 0.000 330~38!

a0 ~GHz! t ~GHz/K! p ~GHz/kbar! n
0.068 28~15!a 0.000 0059~56! 0.000 523 9~87! 0.000 593~48!

20.000 020b 0.0013
20.000 21c 20.0010

aThis paper.
bReference 17.
cReference 19.
3-6
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the results calculated from Eq.~11! using the values ofa, e,
Tc , Pc , r, ands shown above. We show in Fig. 5 theP, T
phase plane of the region near the ferroelectric-paraele
transition. Shown in this figure are the calculated lines wh
the Landau parametersA50 and B50, and the transition
line where the Gibbs free energies of the cubic and tetrag
phases are equal. The point where bothA andB are zero is
the tricritical point. The transition extrapolates to 10
6(6) °C at atmospheric pressure which is reasonable fo
sample with iron impurities. There is a strong correlati
betweenTc and Pc in the fitting so the minimum ofx2 lies
along a trough as shown in the figure.

V. CONCLUSIONS

We have presented a unique analysis of high-precis
EPR data which allows a precise study of the pressure
temperature depence of the crystal-field parameters
BaTiO3. The analyses of former EPR measurements
BaTiO3 have approximated the spin Hamiltonian by assu
ing D@a,b, a5b, and g'5gi . The only former results
with narrow enough resonance lines to get precision m
surements are those by Mu¨ller and Berlinger.17 It is impor-
tant to use single crystals with the smallest amount of st
possible to achieve sufficiently narrow resonance lines to
termine the line positions accurately. We have shown tha
is possible to determine individuallya and b as well asgi
andg' using such a BaTiO3 crystal, with careful calibration
of the magnetic field and precision measurements of the

FIG. 4. The measured values ofD vs P along the temperature
isotherms and the least-squares fitted curves. The temperatu
each curve is indicated in degrees Celsius.
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stron frequency. In this manner we were able to determ
the crystal-field parameters by fitting the resonance meas
ments to the exact spin Hamiltonian without approximati
the eigenvalues or ignoring differences between small ter
The average value ofa and b is ^a&5(a12b)/3 and ofgi
and g' is ^g&5(gi12g')/3. Then by making a linear ap
proximation for the temperature and pressure dependenc
these average values along with the proposition that the
ferencesb2a andg'2gi are proportional toD; we are able
to analyze all the data simultaneously. The assumption ob
2a being proportional toD seems reasonable sinceb2a
andD both depend upon symmetry breaking from the cu
phase. The dependence ofg'2gi on D was also assumed t
be linear, but the measured resonances could be fitted eq
well if the dependence was quadratic.

The temperature and pressure dependence of^a& does not
agree with the results of Mu¨ller and Berlinger,17 but in order
to compare with the values given in that paper we must r
ognize that the term which they labela is 6 times larger than
the parameter which we labeleda. However, even after di-
viding their values by 6 to compare with our results, th
results are still a factor of 2–3 times larger than ours. Th
pressure range, however, was so small that the discrep
could be within their scatter, but their temperature range w
much larger, and we do not know why their results differ
much from ours. Their values ofa were measured in the
cubic phase and showed a negative temperature depend
Our values were measured in the tetragonal phase and
nearly zero-temperature dependence. They refer to the v

of

FIG. 5. The phase diagram of BaTiO3 showing lines that sepa
rate regions of positive and negative Landau parametersA and B
and the phase line between the tetragonal and cubic phases
region of the tricritical point is also indicated by a solid bar.
3-7
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of a given by Hornig et al.12 at room temperature in th
tetragonal phase. This value agrees well with the result
would have at room temperature and atmospheric pres
but Müller and Berlinger’sa versus temperature measur
ments do not extrapolate to that value.

Using Eqs. ~8! we calculate a50.0461 GHz, b
50.0509 GHz, and̂ a&50.049360.0005 GHz. Horniget
al. reported the value at room temperature of 12a19b
50.9560.21 GHz. We get 1.01160.010 GHz, which is in
very good agreement.

Müller and Berlinger used their large values of the te
perature and pressure derivatives ofa for BaTiO3 as com-
pared to those measured for other cubic oxides to argue

*Present address: Fairchild Semiconductor, West Jordan,
84088.
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