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The orbit equations of Papapetrou are the basis for a study of spinning test bodies in a
Schwarzschild or Kerr metric field. The constant of the motion for a Killing vector of
an arbitrary metric field is given. An analysis of test-body equatorial motion suggests
that significant departures from the results of geodesic motion such as larger maximum
binding and orbits completely stable against capture may be expected for objects with
large intrinsic spin.

Currently much attention is focused on black
holes as possible underlying sources for large
energy production and/or gravitational wave
emission. ' ' In previous studies of the binding
energy available in capture of a test body by a
black hole, only geodesic motion has been con-
sidered. It is the purpose of this Letter to pre-
sent results of a study of spinning test bodies
which, as is well known, do not execute geodesic
motion.

Since a significant fraction of the stars ob-
served have intrinsic angular momentum, a study
of a spinning test body in the field of a black hole
may serve as a model for the possible star —black-
hole interactions. The simple act of endowing a
black hole with angular momentum has led to an
unexpected richness of possible physical phenom-
ena. It seems appropriate to ask whether endow-
ing the test body with intrinsic spin might not
also lead to surprises. ' Indeed, since in a weak-
field approximation the spin-spin interaction is
~ 1/r in contrast to the Newtonian attraction
which is o: 1/r', the possibility exists for spin
interactions to dominate completely for small
separation. "

The equations of motion for a spinning test
body most commonly used are those of Papape-
trou. ' " For extended bodies, alternative equa-
tions have been suggested with differing supple-
mentary conditions i2-i4 We will, however, con-
fine our attention to a model of point test bodies
and use the Papapetrou equations for a spinning
point mass as developed by Taub. " Our primary
interest is in those equations determining the
orbit and not the spin equations of motion. There

is general agreement, even for extended bodies,
that the spin undergoes Fermi-Walker transport
and it is just this spin behavior which has been
subjected to the most detailed examination. '"
Study of the orbit equations has been limited to
the Schwarzschild field. '7'

Ignoring radiation reaction, the equations de-
scribing the motion of a test body with mass rn,
four-velocity u, and spin four-vector S in a
metric field g„, with curvature operator B are

(mu+unu*S) + ~~"R(u, e„)(e nSnu) =0, (1a)

Snu=0, (1b)

S u=0; (1c)

Mn S=O.

Thus, tbe second term in Eq. (1a) vanishes and
one is left with

mu $ + -,' ~g(e n Sn u) V „(

e„(p, =0, ..., 3) denote the basis four-vectors. "
nz and S S are known to be constants of the mo-
tion. It can also be shown that for an arbitrary
Killing vector field $ the scalar

(mu+ Snunu) ~

$ + 2g"~(e nSnu) V„$

is a constant of the motion. " The proof is straight-
forward and relies only on Eq. (1a) and well-
known properties of Killing vector fields.

We choose that "specific internal energy" (e
of Taub's Eg. f1.5]) to be zero so that tbe test
body is characterized completely by giving its
mass and spin. This implies as a consequence
that
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as a constant of the motion. "
For an application with possible astrophysical

significance, we examine in detail these results
for the uncharged Kerr metric field written in
Boyer -Lindquist coordinates".

ds' = , (d—t—a sin'B dy)' ——dr' —p'dB '

2

[a df —(r'+ a') dip J', (5)
p

where 6 =x'+ a' —2A'f'x and p'= x'+ a'cos'6. We
will primarily be interested in the cases where
the source of mass I has angular momentum per
unit mass a = 0 (Schwarzschild field) and a = M
(maximal Kerr field).

The metric field (6) has Killing vectors 8/Bf
and 8/Bp. Restricting the analysis to equatorial
orbits and substituting into Eq. (4) gives the con-
stants of the motion

E ~ 2 M j a' 2Maj: tasy= —"=t 1-—+- — 1+—,s+ -- — --—, (6a)
m
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FIG. l. As a function of the angular momentum con-
stant j [cf. Eq. (6b)j, the radial position coordinate,
t = r/M, of the effective potential maxima and minima
for a spinning test particle executing equatorial motion
in a Schwarzschild field. The curves for negative val-
ues of j are obtained by letting j——j and & ——&.
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We have defined the dimensionless quantities
r =r/M, a=a/M, and s=S'/mM. S'is the spin of
the test body in the z direction and from Eq. (1b)
is readily shown to be constant for equatorial
orbits. Equation (Ia)., taking into account Eq. (3),
shows that equatorial orbits are stable, i.e.,
equatorial orbits remain equatorial when the
spin of the test body is entirely along the z direc-
tion. We readily recognize the nongeodesic
terms appearing in (6a) as spin-orbit and spin-
spin contributions to the specific energy constant.
Similarly the angular momentum constant has
contributions from the spin of the source and the
spin of the test body as mell as from the orbital
motion.

Equations (6) can be inverted to obtain j and
t in terms of y and j provided the quantity D
=—(r —8'/r')(I —2/r +a'/r') does not vanish. In
order that the results of a test-body analysis not
become meaningless, we require that (I/M) & 1
and s & 1 which implies that D @ 0 outside the
event horizon. " The expressions for j and t
when substituted into the relation u M = 1 lead to
an effective radial potential which is just the
value of y when i =0. Here y satisfies ny —2py

+ 5 =0 where

2 2sa@=A t +a 1+—+ 3+—

2+ —,a' —,+ —+r(2 —r) (Va)

2a 3 2a' as' 1p=iA ——s 1 — —
3 + g 1+—

-A)+ g ——
2

S5=A —,- a+—

and A =1 —2/r+ a'/r'.
Modeled after Fig. 19 of Ref. 6, Figs. 1 and 2

present the radial position coordinate for poten-
tial maxima and minima as a function of the
angular momentum constant

II
for selected values

of s. Figure 3 plots the minimum value of the
specific energy for a stable circular orbit versus
test-body spin. All plots were obtained numer-
ically.

VVe point out some of the interesting features:
(i) For test-body spin aligned opposite to the
spin of the Kerr source and having an optimum
value of s =—S'/mM= 0.92, approximately 76'k of
the rest mass-energy may be radiated away be-
fore reaching the stable circular orbit of min-
imum energy. (ii) Furthermore, such an orbit is
superstable in the sense that a test body in such
an orbit will never undergo capture because of
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The effects of intrinsic spin become dramatic
just when the test-body analysis begins to become
suspect. " A convincing demonstration of the
existence or nonexistence of superstable orbits
awaits an analysis not based on a perturbative
approach. Nevertheless these results suggest
that, in considerations of energy release by
gravitational capture of orbiting bodies, signif-
icant departures from the results of geodesic
motion are possible if 8/mM differs significantly
from zero.

It is a pleasure to thank P. B. Pipes, R. F.
O' Connell, R. Ruffini, and B. K. Harrison for
discussions.

FIG. 2. As a function of the angular momentum con-
stant j [cf. Eq. (6b)], the radial position coordinate,
t = t/M, of the effective potential maxima and minima
for a spinning test particle executing equatorial motion
in a maximal Kerr field. The curves which are open
to the left are for negative I values.
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FIG. 3. Value of the effective potential minimum for
the last stable circular orbit as a function of test body
spin, s = S /~M . Values of s & —1 are only included
for display purposes.

the existence of an infinite potential barrier out-
side the horizon. The existence of these super-
stable orbits may be qualitatively understood as
the culminating effect of the spin-spin interaction
force which is repulsive for oppositely aligned

spins and equatorial motion. " (iii) For the
Schwarzschild source, not only is the amount
of rest mass=energy radiated altered but the co-
ordinate position of closest approach before cap-
ture takes place is also significantly changed.
(iv) For the Kerr case, inclusion of test-body
spin moves the maximum in the potential off the
horizon much like the Schwarzschild case.
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ERRATA

LOCALIZED STATES IN AMORPHOUS TELLU-
RIUM. L. D. Laude, R. F. Willis, and B. Fitton
[Phys. Rev. Lett. 29, 472 (1972)].

The vertical scale on Fig. 1 is too low by a
factor of 10 as a result of a scale error. We are
indebted to Professor W. E. Spicer for bringing
this to our attention and providing comparison
data. This correction does not affect the point
of this Letter, which is to show the behavior of
amorphous- Te yields compared to trigonal- Te
yields, i.e. , the nonmonotonicity of the amor-
phous- Te curves at about h v = 5.0 eV.

EVIDENCE FOR THE MOTT MODEL OF HOP-
PING CONDUCTION IN THE ANNEAL STABLE
STATE OF AMORPHOUS SILICON. Adam Lewis
[Phys. Rev. Lett. 29, 1555 (1972)].

In the discussion on p. 1557, the sentence
"Brodsky and Gambino' ~ ~ ~ criticized Mott's mod-
el because they obtained reasonable numbers for
y and N" should read "Brodsky and Gambino' ~ ~ .

criticized Mott's model because they obtained
unreasonable numbers for y and V."

O(4) TREATMENT OF THE ELECTROMAGNET-
IC-WEAK SYNTHESIS. A. Pais [Phys. Rev. Lett.
29, 1712 (1972)],

The following misprints occur: On the second
line of page 1712, rea.d v„p for v„v. In Eq. (2),
(W„'(t, —p, )+H.c.] should read (g „'(f,—p, )
+ W„'(t, + p,)+H.c.). On the second line of Eq.
(5), read —a[JI —A+row 2] for 2[+—A+roe 2]; and
Q~' for Q~' on the second half of that line. In
Eq. (7), f'f' f f should —read f'f' f f . In-
Eq. (11), g+A, ' should read TI+X,'. Seven lines
below Eq. (11), (M», ) should read (M», )'.

Further, nine lines from the end of page 1714,
read "options" (u, v)=(t, t), (p, p)" for "options"
(u, v}=(t,t), (p, p}, (t, p), (p, t)." The lines be-
tween Eqs. (12}and (13) should read as follows:
"(p, p'I interchanges x' —e in Eq. (12). If H(a, a')
is a self-adjoint scalar quartet, then g = g', so
that then (t, t ) yields a = a ' = b, hence'—~ ~ ."
On page 1715, line 11, read (p, p) for (t, p); on
line 12 read iy', ey for —jy', —ey .


