
COMPUTATIONAL METHODS FOR SCIENTISTS

INTRODUCTION TO PYTHON

Michael J. Ware

Department of Physics and Astronomy
Brigham Young University

COMPUTATIONAL METHODS FOR SCIENTISTS

INTRODUCTION TO PYTHON

Michael J. Ware

Department of Physics and Astronomy
Brigham Young University

© 2019 – 2024

Last Revised: April 4, 2024

Acknowledgements

This book is based on the book Introduction to Scientific Computing in Python, by
Lance J. Nelson and Matthew R. Zachreson at BYU Idaho. With their permission,
I’ve used parts of their material in creating this tutorial. In a sort of virtuous
cycle, Ross Spencer and I had previously allowed Lance and Matthew to borrow
material from our book Introduction to Matlab in the creation of their Introduction
to Scientific Computing in Python. I express sincere thanks and acknowledgment
to Ross, Lance, and Matthew for all of the work that has gone into development
this material.

iii

Preface

This book is a tutorial for physics students to get up to speed using Python for
scientific computing as quickly as possible. It assumes that the reader is already
familiar with the basics of scientific programming in another programming lan-
guage, and does not spend time systematically going through the fundamentals
of programming. This tutorial is designed to work hand-in-hand with the BYU
Physics 430 lab manual. Each chapter in this tutorial is designed to give students
enough understanding of the Python syntax and ecosystem to tackle a specific
scientific computing lab, and in doing so will sample from a range of different
topics.

Students in the class for which the book is designed have previously taken
a three-credit introductory programming class in C++, a one-credit lab courses
introducing them to Mathematica, and another one-credit lab course introducing
them Matlab. In this book, we build on that foundation, without trying to re-teach
(at least not too much) the material already covered in prior classes. We also
present material in the order needed to complete the associated labs rather than
as a systematic and complete treatment of each topic before moving to the next.

As you find mistakes or have suggestions, send them to me at ware@byu.edu.

iv

Contents

Table of Contents v

1 Numpy, Scipy, and Plotting 1
1.1 Get Anaconda Installed . 1
1.2 Your First Program . 1
1.3 The Python Console . 2
1.4 Variables and Data Types . 3
1.5 Integers . 3
1.6 Float variables . 4
1.7 Functions and Help . 4
1.8 Boolean variables . 5
1.9 String Variables . 5
1.10 Formatting Printed Values . 5
1.11 Functions and Libraries (NumPy) 6
1.12 Numpy Arrays . 7
1.13 Making x-y Plots . 11
1.14 Customizing the IDE . 11

2 Lists, Loops, Logic, and 2D Arrays 13
2.1 Lists . 13
2.2 The range Function . 14
2.3 For Loops and Shorthand Assignments 14
2.4 Logical Statements . 16
2.5 While Loops . 17
2.6 Two-Dimensional NumPy Arrays–Matrices 18
2.7 Solving a Set of Linear Equations . 20
2.8 NumPy Matrix . 20

3 Functions 22
3.1 User-defined functions . 22
3.2 Importing User Defined Functions 23
3.3 Writing Readable Code . 24

Index 27

v

Chapter 1

Numpy, Scipy, and Plotting

1.1 Get Anaconda Installed

Python is a popular general-purpose programming language that has become a
standard language for many areas of scientific computing. It is open source, and
there are many implementations of Python, many development environments
for it, and multiple versions of the programming language itself. We will use
the Anaconda distribution for Python version 3.7. The Anaconda distribution is
geared toward scientific computing, is available as a free download on all major
platforms, and comes with an integrated development environment (IDE) called
Spyder. You can obtain Anaconda Python for free at their website, anaconda.com.

1.2 Your First Program

Figure 1.1 The Spyder IDE win-
dow.

Launch the Spyder IDE. You should see a window similar to the one in Fig. 1.1.
The Spyder IDE interface is divided into three main windows:

• The code editor on the left is where you edit your Python code files (usually
with a .py extension).

• The top right pane has three default tabs: a variable explorer where you can
view current values stored in memory, a file explorer where you can browse
your files, and a help tab where you can ask questions

• The lower right pane is a console window where your output will be dis-
played and you can issue Python commands directly to be evaluated.

To write your first program, press the “New File” button on the toolbar, erase any
auto-generated text so you have a blank window, and then type

print('Hello World')

Save your program in a new directory (where you will save all your work for this
class) with the name hello.py, then click the green arrow above the editor to
run your program. Spyder may ask you in which console you’d like to execute
the program. Just accept the default values, and then look down at the console
window. There you will see some code that Spyder auto-generated to run your
program, and under it should be the output from your program:

Hello World

1

https://www.anaconda.com

1.3 The Python Console 2

Congratulations, you just executed your first Python program. Change the text
string 'Hello World' to something else, and then click the green arrow again.
Notice that Spyder saves your code and executes the program again. If you get
tired of clicking the green arrow, F5 is the keyboard shortcut to save and execute
the code shown in the editor.

1.3 The Python Console

Spyder’s console window is a powerful environment called Interactive Python
(or IPython for short) where you can directly enter Python commands. Put your
cursor in the console window at the In [1]: prompt, type

1+1

and press enter. You should see the answer, stored in a variable Out[1]. You can
use this output in later calculations by typing the following at the In[2]: prompt:

Out[1]+2

Notice that your new result is stored in Out[2]. IPython behaves a lot like Matlab’s
command window, with a series of inputs and variable values accumulating in
the workspace. When you run your Python programs, your variables are placed in
the console’s workspace and can be accessed from the command line afterward.
With your cursor in the command window, press the Up-Arrow key, and notice
that you can access your command history with the up and down arrow keys.

The console can be useful for quick calculations or for looking at data when
debugging, but you should do most of your programming in the editor. Add the
following line to your hello.py program

1+1

and run it again. Note that the answer to 1+1 is not displayed in the console when
you run the program. Now switch your program to read

print(1+1)

and run it again, and note that the answer displayed in all its glory. Python
evaluates each line of code, but will not display the result of a calculation in the
console unless you print it.

As we go through the remainder of the text, type all the indented example
code into a *.py file in the editor by hand (don’t copy and paste) and execute it
using the green arrow (or the F5 keyboard shortcut). This method of interacting
with the code will help you better process and understand what each command
does. It forces you to read the code like Python will: one line at a time, top to
bottom. Also, place each command on a separate line and don’t indent any lines
of code when you type them in. Python really cares about white space. We’ll learn
more about that in the next chapter.

1.4 Variables and Data Types 3

1.4 Variables and Data Types

Variables in Python don’t need to be declared before being used. You declare a
variable and assign it a value in one statement using the assignment operator (=),
like this

x = 20

(Did you type the line of code into your program and execute it? If not, do so now
and get in that habit.) This statement creates the variable x and assigns it a value
of 20. Python didn’t print anything since we didn’t include a print command. To
convince yourself that the variable x was defined, click on the “Variable explorer”
tab in the upper-right pane of Spyder to see that the variable exists, and has a
value of 20. Also type x in the console window and hit enter, and note that Python
displays its value. Now add the line

x = x + 1

to your program, execute it, and look at the new value of x to convince yourself
that the program executed correctly. Multiple variables are defined by putting the
assignments on separate lines, like this

a = 2

b = 4

c = a * b

Sometimes you may want your program to prompt the user to enter a value
and then save the value that the user inputs in a variable. This can be done like
this:

a = input('What is your age?')

When you run this line of code, you will be prompted to enter your age. When
you do, the number you enter will be saved in the variable a.

Variable names must start with a letter or an underscore and consist of only
letters, numbers, and underscores. Variable names are case sensitive, so watch
your capitalization.

1.5 Integers

The simplest type of numerical data is an integer. Python implicitly declares
variables as integers when you assign an integer value to the variable, as we did
above. You can perform all the common mathematical operations on integer
variables. For example:

a = 20

b = 15

c = a + b # add two numbers

1.6 Float variables 4

d = a/b # floating point division, single slash

i = a//b # integer division, double slash

r = a % b # the remainder of integer division

e = a * b # multiply two numbers together

f = c**4 # raise number to a power (use **, not ^)

T These lines introduce the
Python commenting syntax:
any text following the sym-
bol # on a line is ignored by
the Python interpreter.

Performing an operation on two integers usually yields another integer. This can
pose an ambiguity for division where the result is rarely an exact integer. Using the
regular division operator (as in the line defining d above) for two integers yields
a float, whereas the double slash (used in the line defining i) performs integer
division. Look at the variable values in the variable explorer and compare them
to your code to convince yourself that you understand the distinction between
these two types of division.

T In Python 2.x the single
slash between two integer
variables performs integer
division. If you are using
this older version of Python,
you should be sure to use
floats when you want regu-
lar division.

1.6 Float variables

abs(x) The absolute value
of x

divmod(x,y) The quotient and
remainder when
using long division.

x % y The remainder of x
y

float(x) Convert x to a float.

int(x) Convert x to an
integer.

round(x) Round the value of
x using standard
rounding rules

Table 1.1 A sampling of functions
commonly used with integers and
floats.

Most calculations in physics should be performed using floating point numbers,
called floats in Python. Float variables are created and assigned in one of two
ways. The first way is to simply include a decimal point in the number, like this

a = 20.

You can also cast an integer variable to a float variable using the float command

a = 20

b = float(a)

When a float and an integer are used in the same calculation, like this

a = 0.1

b = 3 * a #Integer multiplied by a float results in a float.

the result is always a float. Only when all of the numbers used in a calculation
are integers will the result be an integer. Floats can be entered using scientific
notation like this

y = 1.23e15

1.7 Functions and Help

Table 1.1 shows some common housekeeping functions that you can use with
float variables. Practice using one of these functions in your code. Then place
your cursor on the function name in your code and press Ctrl-I (think “I is for
information”) to display detailed information about this function in the help
panel. You can use this method for getting details of calling conventions and
function usage for all of the functions we use in this class.

1.8 Boolean variables 5

1.8 Boolean variables

Boolean variables store one of two possible values: True or False. A boolean
variable is created and assigned similar to the other variables you’ve studied so
far

q = True

Boolean variables will be useful when we use loops and logical statements.

1.9 String Variables

len(c) Get the number of
characters in the
string c

a.count(b) Count the number
of occurrences of
string b in string a

a.lower() Convert upper case
letters to lower case

a[x] Access element x in
string a

a[x:y:z] Slice a string, start-
ing at element x,
ending at element y,
with a step size of z

a + b Concatenate (join)
strings a and b.

Table 1.2 A sampling of “house-
keeping” functions for strings.

String variables contain a sequence of characters, and can be created and assigned
using quotes, like this

s='This is a string'

You may also enclose the characters in double quotes. This syntax is convenient
when there are single quotes in your string:

t="Don't worry"

Some Python functions require options to be passed to them as strings. Make sure
you enclose them in quotes, as shown above. Some commonly used functions for
strings are shown in Table 1.2

1.10 Formatting Printed Values

The print command will take pretty much any variable and dump it to screen in
a format of Python’s choosing, like this:

a = 22

print(a)

You can intermingle variable values with text like this:

a = 22

b = 3.5

print(f'I am {a} years old and my GPA is: {b}')

Notice the letter f right before the string constant in the print argument. This
f-string (think formatted string) syntax allows you to place any variable name
inside of curly braces within the string to be printed, and Python will replace the
variable in the braces with its value in the formatted output.

Often you will want more control over how the variables are displayed. To
display the GPA to two digits of precision, you could modify the f-string like this:

print(f'I am {a} years old and my GPA is: {b:3.2f}')

1.11 Functions and Libraries (NumPy) 6

The syntax to display a variable with a specific format is a colon after the variable
name inside the curly braces, followed by format codes that indicate how you
would like the variable formatted when it is printed. The 3.2f indicates that
I’d like the number to be displayed with at least 3 digits and 2 numbers after
the decimal. The :d indicates an integer variable and :f indicates a float. See
Table 1.3 for a selection of other format examples.

{x:4d} Display integer with
4 spaces

{x:.4f} Display float with 4
numbers after the
decimal

{x:8.4f} Display float with at
least 8 total spaces
and 4 numbers after
the decimal

{x:1.2e} Scientific notation
with 2 digits after
the decimal

Table 1.3 Formatting options for
printing a variable x in an f-string.

1.11 Functions and Libraries (NumPy)

The syntax for calling Python functions is fairly standard: you type the name of
the function and put parentheses () around the arguments, like this

x = 3.14

y = round(x)

If the function requires more than one argument or returns more than one value,
you separate the arguments and outputs with commas, like this

x = 3.14

y = 2

b,c = divmod(x,y)

Pause a moment after executing this code to compare the values of b and c with
the code above, and convince yourself that you understand how function calls
work with multiple arguments and outputs in Python.

Python contains a set of standard functions, called native functions, that are
always ready to go whenever you run Python. All the functions we’ve used so
far fall into this category. While useful, these native functions are inadequate
for scientific computing. However, user communities have created extensive
collections of functions called libraries that you can import into Python to extend
its native capabilities.

For example, Python doesn’t natively include the sine and cosine functions.
However, virtually any mathematical function that you will need to perform a
scientific calculation can be found in a library called NumPy (say “num pie”, not
something that rhymes with grumpy). To use this library, we add an import

statement to the beginning of our program, and then reference the functions in
this library like this

import numpy

x = numpy.pi # Get the value of pi

y = numpy.sin(x) # Find the sine of pi radians

z = numpy.sqrt(x) # Take the square root of pi

After importing the library, the code “numpy.” before a function tells Python to
look in the NumPy library to find the function rather than in the native function
list. If you just type

1.12 Numpy Arrays 7

sqrt(x)

Python will look for a native function named sqrt and will give you an error. sin(x)

cos(x)

tan(x)

arcsin(x)

arccos(x)

arctan(x)

sinh(x)

cosh(x)

tanh(x)

sign(x)

exp(x)

sqrt(x)

log(x)

log10(x)

log2(x)

Table 1.4 A very small sampling of
functions belonging to the numpy
library.

A library can be imported and then referenced by a different name like this:

import numpy as np

x = np.sqrt(5.2) # Take the square root of 5.2

y = np.pi # Get the value of pi

z = np.sin(34) # Find the sine of 34 radians

This syntax tells Python “I’m going to call the numpy library np.” We recommend
that you use this syntax for the NumPy unless there is some compelling reason to
do otherwise. It is so common to do this, that in this manual we will usually omit
writing the code

import numpy as np

at the beginning of each example and just assume that you’ll include it whenever
you see functions with the “np.” prefix.

Virtually any mathematical function that you will need to perform a scientific
calculation can be found in the library NumPy or in another common library
called SciPy (say “sigh pie”, not “skippy”). These two libraries are designed to work
together. Here is an example showing how to use the J0 Bessel function:

import numpy as np

import scipy.special as sps

a = 5.5

b = 6.2

c = np.pi/2

d = a * np.sin(b * c)

e = a * sps.j0(3.5 * np.pi/4)

If numpy doesn’t have a mathematical function you need, then scipy.special

probably has it. Table 1.5 provides a small sampling of its functions. See SciPy’s
online help for a more extensive listing.

airy(z) Airy function

j0(z) 0th order Bessel
function of 1st
kind

j1(z) 1st order Bessel
function of 1st
kind

jv(v,z) Bessel function of
1st kind, order v

yv(v,z) Bessel function of
2nd kind, order v

kv(n,z) Modified Bessel
function of 2nd
kind of integer
order n

iv(v,z) Modified Bessel
function of 1st
kind of real order v

hankel1(v,z) Hankel function
of 1st kind of real
order v

Table 1.5 A small sampling
of functions belonging to the
scipy.special library.

1.12 Numpy Arrays

In scientific computing we often do calculations involving large data sets. Say you
have a large set of numbers, xi and you want to calculate the summation

N∑
i=1

(xi −5)3. (1.1)

You could use loops to calculate each term in this sum one-by-one, and then add
them up to compute the final sum. However, the Numpy library provides a much

https://docs.scipy.org/doc/scipy/reference/special.html
https://docs.scipy.org/doc/scipy/reference/special.html

1.12 Numpy Arrays 8

slicker method for making these kinds of calculation using something called a
NumPy array. For example, if x were a Numpy array containing all of the xi values,
the code to evaluate the sum in Eq. (1.1) is simply:

s=sum((x-5)**3)

This code subtracts 5 from each element in the array, cubes the result for each
element, and then sums the resulting elements all without a loop in sight. Let’s
explore the details of how to do calculations using Numpy arrays.

Array Creation

Our first task is to create a NumPy array. Here you have several options. You can
enter small arrays by providing a list of numbers to the NumPy array function,
like this:

a = np.array([1,2,3,4,5,6,7,8,9,10])

Another common method for creating arrays is to use the function arange (think
the two words “a range” not the one word “arrange” so you don’t misspell this
function). This function creates an array of evenly spaced values from a starting
value, and ending value, and a step size, like this:

b = np.arange(0,10,.1)

This code creates the following array:

[0,.1,.2,.3,.4,.5,.6.... 9.5,9.6,9.7,9.8,9.9]

Notice that this array does not include the value at the end of the range (i.e. 10).
Also, for those of you coming from a Matlab background, notice that the step size
(0.1 in this case) is the third argument, not between the two limits as is done in
Matlab.

logspace Returns numbers
evenly spaced on
a log scale. Same
arguments as
linspace

empty Returns an empty
array with the speci-
fied shape

zeros Returns an array
of zeros with the
specified shape

ones Returns an array
of ones with the
specified shape.

zeros_like Returns an array
of zeros with the
same shape as the
provided array.

fromfile Read in a file and
create an array from
the data.

copy Make a copy of
another array.

Table 1.6 A sampling of array-
building functions in numpy. The
arguments to the functions have
been omitted for brevity. See on-
line documentation for further
details.

The linspace function creates an array by specifying the starting value, end-
ing value, and the number of elements that the array should contain. For example:

x = np.linspace(0,10,10)

This will create an array that looks like this:

[0,1.111,2.222,3.333,4.444,5.555,6.666,7.777,8.888,10]

When you use the linspace function, you aren’t specifying a step size. You can
ask the linspace command to tell you what step size results from the array that
it created by adding retstep=True as an argument to the function, like this:

x,dx = np.linspace(0,10,10,retstep = True)

Note that since linspace is now returning two values (the array and the step

1.12 Numpy Arrays 9

size), we need two variables on the left hand side of the equals sign. Table 1.6
gives several other options for creating NumPy arrays.

Math with Arrays

Once a NumPy array object is created, a whole host of mathematical operations
become available—you can square the array and Python knows that you want to
square each element, you can add two arrays together and Python knows that you
want to add the individual elements of the arrays, etc. Here are some examples:

x = np.array([2,3,5.2,2,6.7,3]) # Create the array x

y = np.array([4,8,9.8,2.1,8.2,4.5]) # Create the array y

c = x**2 # Square the elements of x

d = x + 3 # Add 3 to every element of x

e = x * 5 # Multipy every element of x by 5

f = x + y # Add the elements of x to the elements y

g = x * y # Multiply the elements of x by the elements of y

In most respects, math with Numpy arrays behaves like the “dotted” operators
with Matlab matrices, where the operations are performed on corresponding
elements. However, NumPy arrays are objects, so assigning one array to another,
like this

x = np.array([2,3,5.2,2,6.7,3])

y = x

does not copy the values of x into a new variable y. Instead, it creates a new pointer
to the existing object x, so that x and y now refer to the same object. Try changing
a value of y and note that it also changes the value in x. To make a copy of an
array, do this

x = np.array([2,3,5.2,2,6.7,3])

y = np.copy(x)

Switch the values in x and y and notice that they are now independent variables.
Warning: This array copy business is important and often misunderstood.

This results in frustrated students when they use the wrong syntax. Please go back
and re-read the last paragraph and make sure you understand the distinctions to
save yourself some frustration.

Functions of Arrays

Mathematical functions like sin(x) and sinh(x) from the NumPy and SciPy li-
braries can accept arrays as their arguments and the output will be an array of
function values. However, functions from other libraries, such as the math library,
are not designed to work on arrays. Here is an example of this issue:

1.12 Numpy Arrays 10

import numpy as np

import math

x = np.array([2,3,5.2,2,6.7])

c = np.sin(x) # Works just fine, returning array of numbers.

d = math.sin(x) # Returns an error.

The math library is much less capable than numpy, so we don’t recommend using
it for scientific coding. We just introduced it here to emphasize that NumPy arrays
usually need to be used with NumPy functions.

Accessing Elements of Numpy Arrays

You can access individual array elements in a NumPy array using square brackets
to index the elements like this

a = np.array([1,2,3,4,5,6,7,8,9,10])

x = a[1]

Look carefully at the value of x after running this code, and convince yourself that
Python array indexes are zero-based. That is, the first element has index 0, the
second element has index 1, and so forth.

You can extract a contiguous range of values using the colon command in
square brackets like this

b = a[1:4]

c = a[0:6:2]

Note that there can be three numbers inside the brackets, each separated by the
: symbol, like this [x:y:z]. The extracted elements start at element x, end just
before element y (i.e. the element at y is not in the range), and steps in increments
of z. Note that the last number is optional, and if omitted a default value of 1 is
used for the step size. Python uses zero-based indexing, so a[1:4] starts at the
second element, not the first.

You can also use negative indexes in the colon command to count from the
end of the array toward the beginning:

b = a[-1]

c = a[1:-2]

The index -1 refers to the last element, index -2 refers to the second to last
element, etc. You can also omit one of the endpoint arguments to go all the way
to the beginning or end of the array, like this:

b = a[1:]

c = a[:3]

1.13 Making x-y Plots 11

1.13 Making x-y Plots

Plots of y vs. x can be made with a library called matplotlib. This library creates
plots using a syntax essentially the same as the plotting functions in Matlab using
NumPy arrays as data inputs. Here is an example of the basic syntax:

import matplotlib.pyplot as plt

import numpy as np

x = np.arange(0,10,0.01)

y = x**2

plt.figure(1)

plt.plot(x,y)

T Spyder uses IPython for its
console which automati-
cally shows plots. For other
consoles, you’ll need to add
the command plt.show()

after making a plot to dis-
play it on the screen.

If you want to see the actual data points being plotted, you can add the string
'ro' inside of the plot command

plt.plot(x,y,'ro')

The 'r' means make the data points red and the 'o' means plot circle markers.
All of the usual plot commands from Matlab work about the way you’d expect.
For instance, here is an example of overlaying two graphs

import matplotlib.pyplot as plt

import numpy as np

x = np.linspace(0,2.*np.pi,100)

y1 = np.sin(2*x)

y2 = np.cos(3*x)

plt.figure(1)

plt.plot(x,y1,'r.',x,y2,'b')

plt.legend(['Sine of x','Cosine of x'])

plt.xlabel('x')

plt.title('Two Trig Functions')

plt.figure(2)

plt.plot(y1,y2)

plt.title('Something Fancy')

1.14 Customizing the IDE

The Spyder development environment can be customized to suit your preferences.
We recommend at least the following changes, and you can also look around at
some of the other options while making these changes.

1. By default plots are displayed inline in the console. To have them pop
out in their own window go to the Tools menu in Spyder and select Prefer-

1.14 Customizing the IDE 12

ences → IPython Console → Graphics Tab and set the Graphics backend
to “Automatic.” The popup windows will allow you to zoom in on different
parts of the graph. The separate window will also allow us to make simple
animations by repeatedly redrawing plots in the same window. If you don’t
make this change, your animations will scroll by as separate plots in the
console window rather than displaying on the same axis.

2. By default, all the variables that you define by direct interaction with the
console and during the execution of your code remain in memory and avail-
able for subsequent use, both in the console and subsequent executions
of programs. Sometimes this can be convenient, but it can also cause de-
bugging problems. For example, if you define a variable using the console
and then write a program that depends on that variable, then the mode
of execution of your program depends on what you’ve manually entered
in the console. When learning to program, we recommend that you have
Spyder clear all variables before executing a program. To do this go to the
Tools menu in Spyder and select Preferences → Run and check the “Remove
all variables before execution” option.

Chapter 2

Lists, Loops, Logic, and 2D Arrays

2.1 Lists

You’ll encounter lists quite a bit in Python. In fact we already used some in the
previous chapter without telling you. Lists are ordered collections of values. To
create a list, put the elements inside of square brackets like this:

x = [5.6,2.1,3.4,2.9]

You can make a list of any variable type. Here is a list of strings:

a = ['electron','proton','neutron']

List elements don’t need to be the same data type, so this list is perfectly valid

a = ['Ben',90,'Chad',75,'Andrew',22]

You can even define a list of lists:

a = [[4,3,2],[1,2.5,9],[4.2,2.9,10.5],[39.4,1.4],[2.7,98,42,16.2]]

a[x] Access element x
in list a

a[x:y:z] Extract a slice of
list a

a.append(x) Append x to list a
a.pop() Remove the last

element of list a.
len(a) The number of

elements in a

a.insert(x,y) Insert y at loca-
tion x in list a

a.sort() Sort list a from
least to greatest.

filter(f,x) Filter list x using
the criteria func-
tion f(see lambda
functions).

a.reverse() Reverse the order
of list a.

a.index(x) Find the index
where element x
resides.

a + b Join list a to list b
to form one list.

max(a) The largest ele-
ment of a

min(a) The smallest ele-
ment of a

sum(a) The sum of the
elements of a

Table 2.1 A sampling of “house-
keeping” functions for lists.

When looking at the numerical lists above, you might be tempted to think of
lists as mathematical matrices. Please don’t. Lists are not designed for numerical
modeling. To convince yourself of this, add the statement

a[1][2] = 'george'

after the list of lists above and then examine a. You can’t calculate on elements
that aren’t numbers! As another example, execute this code

import numpy as np

x = np.array([1,2,3]) # x is a NumPy array

print(x+x) # adding two NumPy arrays adds the values

y = [1,2,3] # y is a Python list

print(y+y) # adding lists concatenates (joins) the lists

Study the output from this code and convince yourself that NumPy arrays are
the right object for doing math, not lists. However, lists are otherwise quite
useful in Python. Table 2.1 gives some common list functions. Note that lists
are objects with methods (e.g. a.sort()), but can also be used as arguments to
other functions (e.g. len(a). Like many things in Python, the reasons for the
different syntaxes are known only to those who developed Python. For example,

13

2.2 The range Function 14

why does len(a) work, but a.len() return an error? The organic nature of the
development of Python syntax results in some inconsistencies in syntax that just
need to be learned.

2.2 The range Function

Python’s range function represents a sequence of integer values that behaves a
lot like a list. The syntax of this function is

r = range(10,20,2)

This statement represents a sequence of integers that starts at 10, ends at 18,
and steps in increments of 2. The range function does not include the item at
the endpoint of the range. In Python 2.x, the range function returned an actual
list object, but in Python 3.x (which we are using) it returns an object called an
iterator. Rather than store a huge list of numbers, an iterator just stores the rule
for generating the number at any index. So, if you print the range variable

print(r)

Python will just tell you that the variable r represents a range, but if you execute
this code

r[2]

you can get an actual value.
The range function can also be called with one or two arguments and default

values will be assigned to the missing ones.

b = range(3,9) # starts at 3, ends at 8, steps of 1

c = range(10) # starts at 0, ends at 9, steps of 1

2.3 For Loops and Shorthand Assignments

The primary use for the range function is writing for loops. A for loop iterates
over each element in a list or range. Here is a for loop used to sum a list of values

T Usually you would just use
a sum function, but we are
learning about loops here.

s = 0

for x in [3,42,1,9.9]:

s = s + x

print(s)

This code iterates over the list [3,42,1,9.9], assigning the variable x each value
in the list, one by one, until it reaches the end of the list. Notice the required colon
at the end of the for statement that marks the beginning of the loop, and also that
there is no code indicating the end of the for loop. Python uses indentation to

2.3 For Loops and Shorthand Assignments 15

denote the lines of code that will be executed during each iteration. To see this,
indent the print(s) statement to the same level as the statement above it and
execute the code. Note that the print function now executes on each iteration of
the loop instead of just displaying the final value of s after the loop is finished.

You can also iterate over the values from the range function, like this

for y in range(5,50,3):

print(y)

The range function only produces integers, so the most common use case is to
use it with a for loop to index a separate array, like this

x = np.arange(5,10,.1)

for n in range(len(x)):

print(x[n])

You can also iterate directly over the values of an array, like this:

x = np.arange(5,10,.1)

for y in x:

print(y)

Operation Shorthand
a = a + 1 a += 1

a = a - 2 a -= 2

a = 5*a a *= 5

a = a/c a /= c

a = a % 10 a %= 10

a = a**3 a **= 3

a = a // 12 a //= 12

Table 2.2 A list of shorthand vari-
able reassignment notation.

To practice for loops, let’s build a loop to calculate the sum

1000∑
n=1

1

n2 (2.1)

s = 0

for n in range(1,1001): # use 1001 to go to 1000. Last value omitted

s += 1/n**2

print(s)

The code s += 1/n**2 is equivalent to s = s + 1/n**2, but runs a little faster
and is a little bit easier to read (once you get used to it). See Table 2.2 for more
shorthand notations. Here’s another example of a loop used to calculate the value
of p = 20! (20 factorial) using another shorthand notation

p = 1

for n in range(1,21): # use 21 to go to 20

p *= n # Multiply p by n

print(p)

Remember that the range function starts at the first argument (i.e. 1), and goes
up to, but not including the second argument, so our product will only go up to
n = 20.

2.4 Logical Statements 16

2.4 Logical Statements

Often we want to run a section of code only when some condition is satisfied.
This requires the use of logic. The simplest logic is the if ... elif ... else

construct, which works like this:

a = 1

b = 3

if a > 0:

c = 1

else:

c = 0

if a >= 0 or b >= 0: # If condition 1 met

c = a + b

elif a > 0 and b >= 0: # If condition 2 met

c = a - b

else: # If neither condition is met.

c = a * b

Note the locations of colons in these statements, and also note that indentation
again defines the regions of code that execute as a group. Table 2.3 lists the
standard elements for constructing logical statements.

== Equal

>= Greater than or
equal

> Greater than

< Less than

<= Less than or equal

!= Not equal

and True if both condi-
tions joined by and

are true

or True if either of the
conditions joined by
or are true

not True if the following
condition is false.

Table 2.3 Python’s logic elements.

A word of caution about comparing Python floats is in order here. Because
of the way floats are represented in a computer, the number that is stored in a
float is often not exactly the number that you think it is. For instance, execute the
following, and study the output:

a = 0.1

b = 3 * a

c = 0.3

print(b==c) # Are they the same number?

print(b) # It sure looks like they are the same.

print(c) # It sure looks like they are the same.

print(f' {b:.45f} ') #b, to 45 decimal places

print(f' {c:.45f} ') #c, to 45 decimal places

This can cause problems when you are comparing two numbers that you think
should be equal but actually aren’t equal in the computer. The take home here is
that comparing two floats directly to see if they are equal is a bad idea. A better way
to check to see if two floats are equal (or close enough that we can say they are
equal) is to check if the absolute value of their difference is very small, like this:

a = 0.1

b = 3 * a

c = 0.3

print(abs(b - c) < 1e-10)

2.5 While Loops 17

2.5 While Loops

A while loop iterates until a certain condition is met. This loop is a good choice
when you don’t know beforehand exactly how many iterations of the loop will be
executed, but rather what condition you want to be met before finishing. As an
example, let’s compute the sum ∑ 1

n2 (2.2)

by looping until the terms become smaller than 1.00×10−10.

term = 1 # Load the first term in the sum

s = term # Initialize the sum

n = 1 # Set a counter

while term > 1e-10: # Loop while term is bigger than 1e-10

n += 1 # Add 1 to n so that it will count: 2,3,4,5

term = 1./n**2 # Calculate the next term to add

s += term # Add 1/n^2 to the running total

This loop will continue to execute until term is less than 10−10. Note that indenta-
tion again defines the extent of the code that will execute each iteration. Unlike
the for loop, you have to do your own counting in a while loop. Be careful about
what value n starts at and when it is incremented (n+=1). Also notice that the
variable term must be assigned prior to the start of the loop. If it isn’t, the loop’s
first logical test will fail and the loop won’t execute at all.

The break statement

Sometimes while loops are awkward to use because you can get stuck in an infi-
nite loop if your check condition is never true. The break command is designed

T If you are stuck in a loop,
you can force your program
to stop by pressing Ctrl+C
or Cmd+C

to help you here. When break is executed in a loop the script jumps to just after
the end at the bottom of the loop. The break command also works with for loops.
Here is our sum loop rewritten with break

term = 1 # Load the first term in the sum

s = term # Initialize the sum

n = 1 # Set a counter

while term > 1e-10: # Loop while term is bigger than 1e-10

n += 1 # Add 1 to n so that it will count: 2,3,4,5

term = 1./n**2 # Calculate the next term to add

s += term # Add 1/n^2 to the running total

if n > 1000:

print("This is taking too long. I'm outta here...")

break

2.6 Two-Dimensional NumPy Arrays–Matrices 18

The continue statement

Another statement that is used with loops is the continue statement. When
continue is used, the remainder of the code for the current iteration is skipped
and the next iteration of the loop begins. If you wanted to do the sum in Eq. (2.2)
but only include those terms for which n is a multiple of 3, you could do this

term = 1 # Load the first term in the sum

s = term # Initialize the sum

n = 1 # Set a counter

while term > 1e-10: # Loop while term is bigger than 1e-10

n += 1 # Add 1 to n so that it will count: 2,3,4,5

if n % 3 != 0:

continue # Skip the rest of the code, start the next iteration

term = 1./n**2 # Calculate the next term to add

s += term # Add 1/n^2 to the running total

Now, when the value of n is not a multiple of 3, the last two lines of code in the
loop will be skipped.

2.6 Two-Dimensional NumPy Arrays–Matrices

We introduced one-dimensional NumPy arrays in the last chapter. The syntax for
two-dimensional arrays (matrices) builds on this foundation. Small matrices can
be built by giving the array function an argument that is a list of lists, like this

a = np.array([[1,2,3],[4,5,6],[7,8,9]])

which could be interpreted as this matrix: 1 2 3
4 5 6
7 8 9

 (2.3)

Once you have a 2D array, single elements can be extracted with this syntax:

b = a[0,2]

This code extracts the number 3, the element in the first row and third column in
the array a. If you wanted to slice out the following 2×2 sub-matrix:(

5 6
8 9

)
(2.4)

you could do it like this:

b[1:3,1:3] # Slice out a sub-array

If you want all of the elements in a given dimension, use the : alone with no
numbers surrounding it. For example, the following:

2.6 Two-Dimensional NumPy Arrays–Matrices 19

b[:,1:3]

would extract all of the rows on columns 1 and 2: 2 3
5 6
8 9

 (2.5)

This kind of slicing can’t be done with lists.

Creating Larger Matrices

You can create larger arrays using several functions from NumPy (see Table 1.6).
For example, to create an array full of zeros, you use this syntax:

A = np.zeros((100,200))

This creates an array with 100 rows and 200 columns, completely full of zeros. The
argument that you provide to the zeros function, a set of numbers surrounded
by round parentheses, is a data type called a tuple. Tuples behave a lot like lists,
except they are immutable (i.e. after you create a tuple, you can’t change the item
values). We won’t use tuples much in scientific computational, but you should be
aware of what they are since you periodically need to create them as arguments
for functions. You can also ask a NumPy array what size it is using the array’s
shape property, like this

s = A.shape

Notice that the shape property returns a tuple.
To create an array full of ones, you use this syntax:

B = np.ones((100,200))

You can also create an identity matrix like this

I = np.identity(100)

Since identity matrices must be square, it only requires one number as an argu-
ment rather than a tuple.

Math with Matrices

Once a 2D array is defined, it behaves as a matrix and you can perform all the
standard linear algebra operations with SciPy’s linear algebra module. The matrix
multiplication operator is the @ symbol. Here are a few examples illustrating
matrix operations:

import numpy as np

import scipy.linalg as la

2.7 Solving a Set of Linear Equations 20

a = np.array([[1,2],[3,4]]) # Create 2 x 2 matrix

b = np.array([[5,6],[8,9]]) # Create 2 x 2 matrix

col = np.array([[3],[4]]) # Create 2 x 1 column vector

c = a.T # Transpose the matrix

e = a.conj().T # Find conjugate transpose of matrix

f = a @ b # Matrix multiplication

g = b @ col # Multiply matrix b to column vector

d = la.inv(a) # Find inverse of matrix

The linalg name space within SciPy provides lots of matrix functions. Pretty
much anything you learned about in your linear algebra class is available there.

T NumPy also has a linear al-
gebra module. The SciPy
version can do all that the
NumPy version can, plus it
has more advanced func-
tions. In addition, the SciPy
linear algebra package
has some optimizations
to make it run faster. We
recommend you always
use the SciPy linear algebra
package.

2.7 Solving a Set of Linear Equations

To illustrate the use of matrix computations, let’s solve a set of linear equations.
Here is an example of a set of two linear equations, with two unknowns:

3x + y = 9 x +2y = 8 (2.6)

This problem can be represented in matrix form like this:

Ax = b (2.7)

where

A =
(

3 1
1 2

)
, (2.8)

b =
(

9
8

)
, (2.9)

and

x =
(

x
y

)
. (2.10)

SciPy has a function called solve that will solve this problem as follows:

import numpy as np

import scipy.linalg as la

a = np.array([[3,1],[1,2]])

b = np.array([[9],[8]])

x = la.solve(a,b)

2.8 NumPy Matrix

NumPy provides another object called a matrix that has been widely used for
linear algebra to represent matrices. The matrix object is a subclass of the NumPy

2.8 NumPy Matrix 21

array and provides a little cleaner syntax for manipulating matrices than the array
syntax. However, as of Python 3.5, the developers of NumPy have indicated that
they plan to deprecate the usage of the matrix type, so we haven’t taught it here.
But you may still see it in existing code bases. It is essentially a wrapper around
the NumPy array object to make some linear algebra syntax cleaner. All of the
functionality of the matrix object is available with NumPy arrays with some minor
syntax changes.

Chapter 3

Functions

3.1 User-defined functions

Python’s ecosystem is extremely rich, and you can usually find a pre-made library
to do common manipulations. But you will also need to write your own functions.
User-defined functions are created like this

def myFunction(a,b):

c = a + b

d = 3.0 * c

f = 5.0 * d**4

return f

The function above performs several simple calculations and then uses the
return statement to pass the final result back out of the function. User-defined
functions must begin with the keyword def followed by the function name (you
can choose it), then a list of arguments enclosed in parentheses, and finally end-
ing with a colon. Python does not use an end statement to signal the end of a
function. Rather, it looks for indentation to determine where the function ends,
just like it did with loops and logic.

You can integrate this function into a larger program like this

This code just defines the function.

The function is not executed until it is called below.

def myFunction(a,b):

c = a + b

d = 3.0 * c

f = 5.0 * d**4

return f

#The rest of this code is not part of the function.

r = 10

t = 15

x = myFunction(r,t)

In this case, when the function is called, the input variable a in the function
definition gets assigned the value of 10 and input b gets assigned the value of 15.
The result of this calculation (the variable f in the definition) is passed out of the
function and stored in the variable x.

A word on local and global variables is in order here. In the example above, the
variables a, b, c, d, and f are local variables. This means that these variables are
used internally by the function when it is called and then immediately forgotten.

22

3.2 Importing User Defined Functions 23

To see what I mean, add the following print statement at then end and observe
the results

x = myFunction(r,t)

print(c)

The print statement just causes an error since Python does not remember that
inside the function we wrote c=a+b.

In contrast, the variables r, t, and x are global variables, which means that
Python remembers these assignments anywhere, including inside of functions.
So, technically, you could do the following:

g = 9.8 # <--- g defined to be a global variable

def myFunction(a,b):

c = a + g # <--- Notice the reference to g here

d = 3.0 * c

f = 5.0 * d**4

return f

#The rest of this code is not part of this function.

r = 10

t = 15

x = myFunction(r,t)

and there would be no error. Notice that g has been defined as a global variable,
and the function myFunction knows its value and can use it in a calculation.
Using global variables inside functions is usually considered bad practice and
can confuse those reading the code. In general, every variable used in a function
ought to be either passed in or defined inside of the function.

3.2 Importing User Defined Functions

If you write some functions that you find yourself using over and over again, or if
you’ve written so many functions for a program that it makes your program hard
to read, you can save your functions in a separate file and import them just like a
Python library.

As an example, create a blank python file and type a couple of functions to
calculate some of the parameters of projectile motion that you learned about in
Newtonian physics:

import numpy as np

def maxRange(v0,theta):

R = v0**2 * np.sin(2*theta) / 9.8

return R

def maxHeight(v0,theta):

vy = v0*np.sin(theta)

h = vy**2 / (2*9.8)

3.3 Writing Readable Code 24

return h

Then you save the code above in a file called projectile.py. Now create another
file in that same directory, and practice importing your projectlie functions using
the following four methods (just use one method at a time):

import numpy as np

#Method #1

import projectile

projectile.maxRange(10,np.pi/4)

#Method #2

from projectile import maxRange

maxRange(10,np.pi/4)

#Method #3

import projectile as pf

pf.maxRange(10,np.pi/4)

#Method #4

from projectile import *

maxRange(10,np.pi/4)

Using these methods, you can organize your functions into neatly divided units
that you can reuse in multiple programs. By default Spyder doesn’t give you great
hints about user-defined functions. You can change this by going to Tools→
Preferences→Help, and clicking the boxes under “Automatic connections.”

It is possible to save your user-created libraries in a different folder, and then
map to them during your import, or even make your functions available to any
program using Python on your computer. When you are ready to work on larger
projects where these techniques are important, you can learn about modules and
default search paths online. However, to keep things simple in this course, just
keep your files together in the same folder.

3.3 Writing Readable Code

You likely have had several programming courses before this one, so I’ll spare you
the lecture about commenting your code. For your own sake, and for the sake
of those who may someday need to read your code, comment your code a little
more than you think is necessary at the time you write it.

Comments

Any text written after the # symbol is ignored by Python as a comment:

A full line of commenting

E=m*c**2 # comments after a short line of code

3.3 Writing Readable Code 25

Docstrings

Python also has an environment like a comment that is called a docstring, delim-
ited by a triple quote (either single or double):

"""

This is a docstring. It can be automatically parsed to generate

documentation. It is not the same as a comment.

"""

Docstrings are placed immediately after the beginning of a module or a function
definition, and can be used to automatically generate documentation for your
code. You’ll see some people use them as a multi-line comment, but this is
considered bad practice. If you just want to comment your code, use the # symbol
in front of multiple lines. Docstrings are important when writing a large codebase
to keep things well documented, but we won’t use them much in this course.

Line Continuation

To keep your lines of code from becoming too long, Python provides two ways of
continuing a logical line of code on the next physical line. The preferred method
is an implicit continuation which happens when you put a line break in your code
before closing all parentheses, like this:

x = (a + b

+ c)

Normally you wouldn’t wrap lines of code this short, but this is just an example.
You should indent the continued line of code so that it starts right after the
unclosed opening parenthesis. You can almost always wrap lines of code this way
simply by added parentheses. You can also use the backslash “\” to continue a
line of code, like this

x = a + b \

+ c

if you don’t like adding parentheses.

Code cells

Spyder will allow you to split your code into individual cells that can be run
separately, without executing the whole program like this

#%% This is the start of a cell

x=5

y=6

print(x*y)

#%% This is the start of another cell

a=3

3.3 Writing Readable Code 26

b=4

print(a/b)

If you place your cursor in one of the cells and press Ctrl+Enter (or push the
button to the right of the green arrow), Spyder will execute just the code in the
current cell. We generally discourage writing code using cells. When you do, the
current state of your program depends on which cells you’ve previously executed.
This situation can be painful to debug and it is usually best to just avoid it for
the type of coding we do in this class. However, there are times that cells can be
useful.

Index

2D arrays, 18

Anaconda, 1
arrays, 7
assigning values, 3

boolean variables, 5

case sensitive, 3

data types, 3

floating point variables, 4
for loops, 14

help, 4

IDE, customizing, 11
integers, 3

linear algebra, 20
lists, 13
logic, 16

matrix operations, 19

NumPy, 6

plotting, y vs. x, 11

range function, 14

SciPy, 20
shorthand notation, 15
spyder console, 2
strings, 5
strings, formatting, 5

while loops, 17

27

	Table of Contents
	1 Numpy, Scipy, and Plotting
	1.1 Get Anaconda Installed
	1.2 Your First Program
	1.3 The Python Console
	1.4 Variables and Data Types
	1.5 Integers
	1.6 Float variables
	1.7 Functions and Help
	1.8 Boolean variables
	1.9 String Variables
	1.10 Formatting Printed Values
	1.11 Functions and Libraries (NumPy)
	1.12 Numpy Arrays
	1.13 Making x-y Plots
	1.14 Customizing the IDE

	2 Lists, Loops, Logic, and 2D Arrays
	2.1 Lists
	2.2 The range Function
	2.3 For Loops and Shorthand Assignments
	2.4 Logical Statements
	2.5 While Loops
	2.6 Two-Dimensional NumPy Arrays–Matrices
	2.7 Solving a Set of Linear Equations
	2.8 NumPy Matrix

	3 Functions
	3.1 User-defined functions
	3.2 Importing User Defined Functions
	3.3 Writing Readable Code

	Index

