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ABSTRACT

REPRESENTATIONS FOR UNDERSTANDING THE STERN-GERLACH

EFFECT

Jared R. Stenson

Department of Physics and Astronomy

Master of Science

The traditional explanation of the Stern-Gerlach effect carries with it several

very subtle assumptions and approximations. We point out the degree to which this

fact has affected the way we practice and interpret modern physics. In order to

gain a more complete understanding of the Stern-Gerlach effect beyond the standard

approximations and assumptions it typically carries, we introduce the inhomogeneous

Stern-Gerlach effect in which the strong uniform field component is removed. This

change allows us to easily identify precession as a critical concept. It also provides

us with a means by which to study precession and analyze it critically. By applying

and comparing several mathematical techniques to this problem we gain insight into

the applicability of precession arguments and the role of standard approximations

and assumptions in both analytic derivation and interpretation. This approach also

allows for a more general discussion regarding the use of representations in physics

and teaching.
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Chapter 1

Introduction

The early twentieth century was a defining time in physics. In fact, by the

mid-1900s a shift of ideas and methods had occurred on such a fundamental level

that the discipline of the late 1800s only vaguely resembled the discipline that would

close the next century. This shift was fueled by the wrestle between unexpected

experimental results and man-made theoretical notions. Amid all this, in 1921 Otto

Stern proposed one such experiment that not only validated the monumental shift

but helped give it form.

In the Stern-Gerlach experiment a beam of silver atoms was passed through

the poles of a magnet. Prior to this time the magnetic field may have been expected

to blur the beam into one continuous image due to the magnetic properties of the

atoms. However, a few years before the experiment was carried out the idea that the

magnetic properties of atoms would only manifest themselves in discrete values upon

measurement, not continuous ones, had been proposed. As a confirmation of this, the

observed trace was indeed quantized. That is, the single beam of atoms did not blur

continuously but split into two distinct parts. This was a verification of the emerging

doctrine of quantization and, later, of the property of atomic spin.

Because of its simplicity and clarity the Stern-Gerlach experiment has now

become exemplary of the axioms of modern physics. It is often discussed in textbooks

introducing modern ideas and is taken as the clearest demonstration of the quantum

measurement process. However, with this central role the Stern-Gerlach effect directs

our study to such a large degree that we seldom make it the object of our study.
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Because it so clearly demonstrates quantization, entanglement, measurement,

and spin - all of which are new quantum concepts - the canonization of the usual

description of the Stern-Gerlach effect (SGE) has also canonized their usual interpre-

tation.

The usual interpretation of the SGE has gained clout however for good reason.

It ties the classical and quantum systems of thought. It seems to explain a clearly

quantum result in terms of almost purely classical concepts. For this reason we say

it is clear. For this reason it is also approximate.

It was our struggle to understand the classical-sounding story of the SGE in

quantum terms that led to this thesis. In the textbooks forces, trajectories, precessing

vectors were all used to make the description clear while on another page we were

forbidden to speak of such things in quantum descriptions (see [1] for example).

Most of our difficulties seemed to be connected to the phenomenon of preces-

sion so our questions began with comparing its classical and quantum justifications.

This led to discussions of a more philosophical nature which in turn led to the in-

teresting discovery that sometimes a problem is too complex to solve singlehandedly.

We realized that a single problem could be presented, discussed, and solved in many

different ways. By comparing and contrasting these results we found ourselves using

a more experimental approach: we solved the same problem in various ways so as

to have a sufficient “sample” while only tweeking particular parts and maintaining

some “control” variables. After time, this lead to the formulation of our ideas on

representations.

Although they appeared last chronologically, we discuss these ideas on the

nature and value of representations in the next chapter. In our attempts to make this a

general discussion we use non-technical examples as well as technical ones. The former

we call Conceptual Representations and use them as examples of interpretational

pictures in physics. The latter we call Mathematical Representations which exemplify

several of the solution methods used in later chapters. We also relate representations

to the the Kuhnian paradigms of [2] and discuss the consequences, both good and

bad, of canonizing a given representation.

2



Chapters 3 and 4 use the SGE to show how one phenomenon can be repre-

sented in two very different ways. The account of Chapter 3 emphasizes the logical

ordering of the concepts that are necessary to understanding the SGE from a quan-

tum perspective. For this reason it is called a Thematic Account and is often the

preferred method of textbooks (see [1] or [3]). In contrast, we give a Historical Ac-

count in Chapter 4. Such an account is characterized by its emphasis on the ordering

of concepts and events chronologically. Because the events of history are not always

logical this is not as widely found in teaching literature. However, in what follows we

attempt to show that such accounts do give an accurate picture of process of problem

solving as the attempts of researchers are not always logically ordered either.

In the comparison of the approaches of Chapters 3 and 4 it will be seen how

taking either account as absolute can lead to problems. Chapter 5 discuss these prob-

lems first in terms of the complementary relationship between rightness and clarity.

We then show how most problems with descriptions of the Stern-Gerlach effect, both

technical and philosophical, seem to center on the phenomenon of precession and how

the nature of precession depends on the choice of magnetic field.

Having identified the source of most technical and interpretive problems in

Chapter 6 we outline a proposal to study the roles of both the magnetic field and

precession in the standard description of the SGE. This gives rise to what we call the

inhomogeneous SGE (ISGE). The remainder of this work is devoted to understanding

it.

Because of the tension between having a clear account and a right account for

the ISGE, in Chapter 7 we compare several different representations and techniques

for the problem. Among them are matrix representations (section 7.1), differential

calculus techniques (sections 7.2-7.6), Green’s functions (section 7.8), and alternative

representations for quantum mechanics such as the cliffor (section 7.7), and Dirac

(section 7.9) pictures. In section 7.11 we suggest further approaches that could be

used to arrive at a fuller understanding of the ISGE.

In order to place these numerous and varied methods in an appropriate and

unifying context we begin with a discussion of the general role of representations.

3
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Chapter 2

On Representations in Physics

Perhaps one of the most subtle aspects of learning to maneuver the physical

sciences is gaining an appreciation of and familiarity with representations. They

cannot be overly ostentatious or they would obscure the phenomenon of interest

while on the other hand if they are too vague they fail to adequately communicate

it. As these two extreme cases are somewhat at odds with each other effectively

using various representations is tricky. This is a difficulty we must address due to our

unavoidable use of representations.

2.1 The Necessity of Representations

In order to express a rational statement it must be presented in a particular

way. That is, it must be given a representation so that it can be grasped by the

mind in terms of a concrete language and based on a set of familiar concepts. For

example, when we think of cars we do not have actual cars in our heads. We only

represent the concept of cars to our minds as thoughts. So, we cannot just think but

we must think particular thoughts. In other words, because cars are not equivalent

to thoughts of cars a necessary process of translation takes place. We must therefore

constantly represent abstract concepts, either to our mind or to others’, in a particular

way. The specific manner in which a statement is expressed for its communication or

preservation in concrete form constitutes its representation. It is in this sense that

representations cannot be avoided.1

1The ideas on concepts assumed in this thesis were largely influenced by [4] in which a similar
though not identical epistemology is developed in detail. [5] shows how this epistemological system
fits with the more metaphysical questions of the physical sciences.

5



An analogous process occurs when translating between two languages. For

example, one might say,

(a) But look how the fish drink in the river.

or

(b) Pero mira cómo beben los peces en el ŕıo.

Using these two statements as different representations of the same idea we can learn

several things about representations in general.

(1) Representations are arbitrary in principle. Although (a) and (b) are very

different expressions they express exactly the same phenomenon.

(2) Representations make assumptions. (a) assumes a knowledge of the English

language while (b) assumes a knowledge of Spanish. Because assumptions can be

either more or less general, representations can also occur simultaneously on different

levels. Thus, representations can be “layered” with the more specific ones occurring

on top of more general ones.

(3) Representations imply certain things. (a) implies that valid responses are

expressible in English whereas (b) implies that Spanish should be used. For spoken

languages this may be no surprise but in certain mathematical or physical situations

there may be problems or answers that are not easily expressible in a particular

way such as explaining the process of electron capture in an ancient African dialect,

describing quantum phenomena with only classical concepts, or using a discretely

indexed series to express a continuous process.

(4) Representations depend on cultural or philosophic values.2 Thus, they are

context dependent interpretations. To an English speaker (a) is a completely random

and detached observation whereas to a Spaniard (b), although describing an identical

phenomenon, brings to mind memories and scenes of a religious nature as it is a line

from a well known Christmas carol. It is in this sense that the selection and use of a

representation or interpretation is an unscientific but direction-giving part of physics.

2Conversely, cultural and philosophic values often depend on commonly accepted representations
and interpretations, e.g. the effects of Newtonian determinism and Darwinian evolution on religious
discourse. For this reason, we must be careful about how we represent science in society.

6



(5) Representations change the communicated meaning of the phenomenon

they describe. By utilizing attributes (1)-(4) above, representations can be selected

to emphasize certain aspects, such as symmetries or biases, to our advantage. Un-

fortunately, they may also simultaneously and unintentionally obscure other aspects.

The ability to make wise choices that properly balance this tradeoff is easily demon-

strated but near impossible to teach. It seems to be the result of abstracting from

experience and not from a concrete or deductive process.3

These are only some of the characteristics of representations as we use the

term here. Others will be demonstrated shortly.

2.2 Two Types of Representations

Although there are many types of representations, perhaps as many as there

are languages, there are two that are of particular interest in physics. They might be

categorized as mathematical and conceptual representations. The former are typically

thought of when representations are mentioned in scientific discourse while the latter

also play a very important, though less emphasized, role. We will give a few examples

to illustrate these two categories.

2.2.1 Mathematical Representations

One of the earliest examples of a mathematical representation - after students

have mastered the ability to accept x as representing an unknown quantity - is the

use of the 2-dimensional Cartesian grid. By drawing two intersecting lines we gain

the ability to express quantitative relationships which we say are 1-dimensional. The

choice however of which two lines is a choice of representation.

We often make the choice of using an “orthogonal” basis, that is, we choose

two lines that not only intersect but that are perpendicular to each other (see fig.

2.1). The fact that they are perpendicular usually provides us with a great simplifi-

cation over non-orthogonal axes. Also, note that if the information we were trying to

3An example of this might be making a judicious choice of coordinates in a Lagrangian problem
or arranging charges in an image problem. As general processes these are never really explained but
only repeatedly demonstrated by those who have got the “hang of it.”
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x

y

),( yx
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Figure 2.1: On the 2-dimensional Cartesian plane any point can be represented as a pair of
numbers (x, y) specifying its relationship to a predetermined set of coordinate axes. Any set of
points can be written as a relation y(x).

represent were more complex we could choose a higher dimensional space, e.g. more

perpendicular axes, by which to represent them. If we were bound to only graphical

representations of coordinate systems such as in fig. 2.1 doing this for more than

2 or 3 dimensions would be impossible but because of the more abstract algebraic

representations of Descartes’ analytic geometry we can easily write functions in n-

dimensional spaces as functions of n variables. We will however restrict ourselves to

the simplest two-dimensional examples.4

Vectors and Rotations

Suppose we have a vector in a 2-dimensional Cartesian space. We often rep-

resent such an object as a directed line segment. The length of the line segment

quantitatively encodes the magnitude and its direction the orientation of the physical

quantity of interest.

Leaving the vector in this graphical form requires that any mathematical op-

eration involving that vector be done in a graphical manner as well (see attribute (2)

above). Thus, we speak of placing vectors, head-to-tail and forming parallelograms,

etc. (see fig. 2.2(a)). This is sometimes referred to as a coordinate free representation.

4Even when we discuss spin system we will restrict ourselves to 2-level systems for reasons dis-
cussed in section 3.2.1.
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A (b)

Ax

Ay

AAAAAA yyxxyx ˆˆ),( +==v BBBBBB yyxxyx ˆˆ),( +==v

(a) v

A
B (c)

Bx
By ϕ

Figure 2.2: (a) Vector v can be represented graphically as a directed line segment. In a graphical
manner we can add other vectors to v by forming parallelograms. (b) By imposing an orthogonal
coordinate system A we can give our graphical representation a more compact algebraic form v=
xAx̂A + yAŷA. (c) If we rotate A to form a new coordinate system B the representation of v has
changed to v= xBx̂B + yB ŷB but the vector itself has not changed at all. Thus, some changes arise
from the object itself while others arise only from the representation.

We can however use another layer of representation. If we create a set of

perpendicular coordinate axes with which to represent the vector (see fig. 2.2(b)) it

allows us to use a more compact and general algebraic method to sum or multiply

vectors. We are therefore released from the limitations of graphical methods.

If there were a reason to, we could and often do, arbitrarily rotate the coor-

dinate axes, perhaps to take advantage of a different symmetry (see fig. 2.2(c)). In

doing so the length and orientation of the vector with respect to the physical quan-

tity they express are unaffected while its specific mathematical representation in the

given basis would change since the axes are now tilted. Although the components
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have changed, the essential aspects of the vector have not and so any calculation of

physical results are the same regardless of the choice of coordinate system.

If the vector represents a quantity that is horizontal, such as the displacement

of a ball rolling to the right on a table, we often choose to orient the coordinate axes

such that the displacement vector lies along the “x”-direction because this direction

is typically associated with the horizontal. Such a choice may reduce the complexity

of the problem to that of 1-dimension (see attribute (5) above).

Coordinate Systems

Another example of a mathematical representation can be given which is of a

slightly different sort. Suppose we had two variables with a linear relationship. We

could represent their relationship in a Cartesian grid by writing

y = mx+ b, (2.1)

which is the familiar equation of a line with slope m and y-intercept b. This form

is simple and well known because it takes advantage of the linear symmetry of the

given relationship.

Likewise, if we were asked to represent a circle instead of a line we might have

chosen, based on the angular symmetry, a coordinate system that parameterized the

angle about the origin. In standard polar coordinates the circle is written as

r = a (2.2)

where a is the radius. Thus, taking advantage of the known symmetries allows us to

express relationships - lines and circles - in very simple ways.

However, if we weren’t as experienced with lines and circles or Cartesian and

polar coordinates we might have chosen, perhaps based on some biased fancy,5 to

express the line in polar or the circle in Cartesian coordinates. Although this can be

done it disguises the problem in a messy representation. Their algebraic representa-

tions become

a = ±
√
x2 + y2, (2.3)

5Like a religious devotion to the circular form.
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(a)

b
x

y

(b)

a
x

y

ϕ

r̂ϕ̂

Figure 2.3: (a) Within a coordinate system described by the Cartesian coordinates (x, y) a
line is easily described. However, when described by standard polar coordinates (r, φ) its simple
representation is replaced by a non-linear equation in r and ϕ. (b) Conversely, when a circle of
radius a is represented it is simple in polar coordinates whereas it is more complicated in Cartesian
form. See Table 2.1 and 2.2.

which is now a piecewise function, for the circle in Cartesian coordinates and

r =
b

sinϕ−m cosϕ
, (2.4)

which is now, ironically, a non-linear equation for a line in polar coordinates. Many

more examples of basis sets,6 vector spaces, algebras,7 coordinates systems, and rep-

resentations8 could be given.

These examples not only demonstrate interesting behaviors that properly be-

long to the representation and not to the curves themselves, i.e. the piecewise nature

of eq. (2.3), etc., but also the fact that representations can be layered, that is, you

may have representations of representations. They also show that although the same

phenomenon can be given in various ways we often choose among the possibilities

in order to emphasize certain aspects.9 However, if we have no intuitive guide as to

6Basis sets can consist of many types of mathematical objects such as vectors, functions, matrices,
etc. In fact, even real numbers can be thought of as a 1-dimensional space of which the basis set is
the number 1. That is, all numbers can be written as a linear combination of 1’s. Basis elements
are also usually chosen to be mutually orthogonal and normalized though they need not be.

7A specific algebra, the Clifford algebra, will be mentioned in Chapter 7.
8Matrices, for example, require a particular representation.
9Even if nature were perfectly symmetric, we have no reason to disbelieve that our minds have a

preferred direction that can break the stalemate of symmetry.
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Relating Cartesian and Polar Coordinates
Cartesian Coordinates ⇔ Polar Coordinates

x = r cosϕ r = ±
√
x2 + y2

y = r sinϕ ϕ = arctan
(

y
x

)
−∞ ≤ x ≤ ∞ 0 ≤ r <∞
−∞ ≤ y ≤ ∞ 0 ≤ ϕ < 2π

Table 2.1: A table showing the transformation rules and other relationships between the Cartesian
and Polar coordinate systems.

Some Representations in Cartesian and Polar Coordinates

line: y = mx+ b r = b
sin ϕ−m cos ϕ

circle: a = ±
√
x2 + y2 r = a

Table 2.2: A table showing how a line and a circle may be represented in both Cartesian and
Polar coordinates.

what in the problem is worth emphasizing representations, even though they can still

be given, can be unnecessarily messy.

2.2.2 Conceptual Representations

Just as mathematical representations are utilized only when speaking math-

ematical languages, conceptual representations must be used whenever concepts are

used. Their difference is demonstrated in the fact that while mathematics presupposes

certain concepts, e.g. numbers, concepts do not obviously presuppose a mathematical

language. In this way, conceptual representations can be seen to be more fundamental

than mathematical ones. If this is the case then it follows that conceptual representa-

tions are of extreme importance in physics, for math is. It also follows that selecting

12



a particular mathematical approach does carry conceptual and/or pedagogical con-

sequences that may affect the approach and results of a problem.10 Indeed, specific

instances of conceptual representations are used when we employ such things as mod-

els and interpretations, without which science could not progress.11

A more suggestive term for all conceptual representations might be paradigms.

This is meant to allude to [2] which discusses at length the shaping role of paradigms

in science. We give shortly two specific examples of paradigm shifts.

Conceptual Systems and Orthogonal Concepts

Before giving some familiar examples of conceptual representations, or para-

digms, it is interesting to establish a paradigm of our own to show the similarities

in form with the mathematical representations given above. Just as in mathematics

great utility is found in representing objects in a coordinate system defined by cer-

tain basis elements, conceptual pictures are formed in terms of their own basic set of

components. In other words, when a given concept can be explicitly identified as a

particular weighted combination of a few defining and elementary concepts, much as a

vector can be described in terms of its components within a coordinate system, great

efficiency and progress can be made. In this light, forming a paradigm is the quali-

tative equivalent to selecting an appropriate basis in which to describe phenomena.

We will use this model in the examples that follow.

The Early Scientific Revolution

A canonical example of a scientific paradigm shift is the early scientific revo-

lution that began with Copernicus and was consummated with Newton. We will not

go into the historical details but we can see that the change that occurred during

this time was primarily one of perspective. The gods had not altered their course,

neither had the planets changed their motion, and yet physics was revolutionized

10There is a very common opinion to the contrary.
11Although many downplay the importance of interpretations in physics today that little progress

can be made without them is especially manifest in the concerted efforts that went into formulating
a consistent interpretation of quantum mechanics in the first half of the last century [6].
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and completely changed form. Simply put, before the revolution we operated in a

conceptual “space” - a conceptual “coordinate” system - that set the concepts of sim-

plicity, anthropocentrism, and the duality of the terrestrial and divine natures among

others as a basis whereas after Copernicus, Kepler, Galileo, and Newton had done

their work we saw different advantages and accordingly shifted our values so as to

enshrine objectivity, mechanism, reductionism, determinism, and mathematical rigor.

Our way of conceptualizing - of seeing problems - had been drastically altered. We

had effectively rotated or redefined our conceptual system so as to take advantage of

our new found values much as we did in section 2.2.1. As a result the way in which we

interpreted and categorized our problems, methods, results, and even values changed

as well.12

Wave-Particle Duality

There are more modern examples of paradigm shifts. One that has not resulted

in the final selection of one system completely at the expense of another, as did the

early scientific revolution, is found in quantum mechanics.13 Here we have come to

grips with the need to adopt at least two very different paradigms. We have learned

to constantly shift our view between the two based on the nature of the questions

asked. This is because, in the language of mathematical spaces, our concepts have

been reduced to not just any set of concepts but to what we might call an orthogonal

set of concepts. Bohr called these sorts of concepts “complementary” and developed

many ideas based on his principle of complementarity [7]. Similar to the definition

given in section 2.2.1 by orthogonal concepts we mean two concepts that are in no

way expressible in terms of each other. If we take light, for example, as our object of

description these two concepts are waves and particles.

12For an account of this period and an idea of the concepts that formed the conceptual “space”
in which these theories developed see [8] or [9].

13See [10] for an excellent discussion of the history and development of many quantum mechanical
concepts including wave-particle duality and Bohr’s complementarity which we mention here as well.
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(a) (b)

Figure 2.4: (a) If a very low intensity beam of light is sent through a set of narrowly spaced slits
a pattern of dots accumulates one-by-one on the detecting screen. This is what we would expect if
light were made up of particles. (b) However, if the beam is left for a long time or if the intensity
is increased so that several particles strike the screen we can see that the particles (photons) are
striking the screen in an orderly fashion, i.e. creating a series of bright and dark bands. Because
this is exactly what we observe with all wave phenomena, such as with sound or water waves, this is
what we would expect if light were a wave. Therefore, we see that while the path of light is wave-like
(shown in (b)) the way in which it collides with detectors is particle-like (shown in (a)).

Wave

Particle

Some quantum phenomenonSome quantum phenomenon

Some classical phenomenonSome classical phenomenon

?

Figure 2.5: Because the duality demonstrated in the 2 slit experiment of fig. 2.4 is so common
in fully describing quantum phenomena we have realized the necessity of using a 2-dimensional
conceptual system. Each of the basis elements are classical concepts so only a 1-dimensional system
is needed to describe a phenomenon classically. We will see in section 3.2.4 that any representation
in terms of these dual, or complementary, concepts is constrained to something like a circle, i.e. as
a system is more describable in terms of particles it is correspondingly less describable in terms of
waves. The question remains as to whether the phenomena themselves can evolve off the circle.
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Particle Concepts Wave Concepts

Mass Frequency
Trajectory Amplitude
Collision Phase
Position Wavefront
Force Peak
Spin Polarization

Volume Phase Velocity
Speed Interference

Table 2.3: A table of some concepts that we use to describe wave and particles. Particle concepts
are not well defined when applied to waves and visa versa. The set of concepts listed in either column
separately form a conceptual space or basis, much as the set (x̂, ŷ, ẑ) does, within which the overall
concept of “particle” or “wave” can be clearly used.

Some experiments show light to demonstrate the properties of waves while

others demonstrate particulate nature. Because there are at least these two orthog-

onal ways of representing light there are at least two completely different sets of

properties of which we can learn. As a particle, we can use the well-defined con-

cepts of position, speed, trajectory, and force as applied to light while as a wave we

may use wavefronts, interference, crests, troughs, frequency, and amplitude. It seems

that depending on the precise experimental questions we ask we may use either the

attributes and concepts of waves or particles in studying light.

It is interesting to note that we have effectively doubled the space in which

we describe quantum mechanics by doubling the the number of concepts that can

be applied to it. This is the reverse of the vector example in section 2.2.1 in which

we chose a mathematical representation so as to reduce the dimensionality of the

problem. Here we choose a conceptual representation that increases the conceptual

dimensionality of the problem in order to give it a more complete representation; the

problem can now be described as some combination of “waviness” and “particle-ness”

just as a vector might be describable in its x and y orthogonal components. This is

not only analogous to the introduction of spin into quantum mechanics into which the
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spin degree of freedom was added in order to account for observed phenomena but it

is the gist of the entire approach of this work. We attempt to expand the conceptual

space available to describing spin phenomena as manifest in the Stern-Gerlach effect.

This demonstrates the practical effects a shift in conceptual representation may have.

2.3 Representations as Standards

When the utility of a particular representation is demonstrated with respect

to a shared value system, whether mathematical or conceptual, they can become

standard, or axiomatic. As such, new hypotheses and results are compared against it

in order to gauge the validity and “truthfulness” of the hypothesis, not the standard.

If there is an inconsistency it is the nature of the hypothesis or result that is usually

questioned and not the standard.14 This can have several undesirable consequences

some of which are

(1) Their democratically-decided status as “standard” implies to many minds

the absolute status of unquestionable.

(2) Once considered standard the necessity and prevalence of representations

can easily be mistaken for complete objectivity.

(3) The characteristics of nature that representations assume are seen as nat-

urally or mathematically imposed.

(4) The implications and emphases of the representation become confused with

those of the original phenomena.

(5) The solution methods and interpretations natural to the representation are

seen as required.

(6) The value system used to determine it and that arises from it is mistaken

as absolute, etc.

In short, all unscientific aspects of the representation process can easily and

mistakenly be given scientific status. When they thus become axiomatic representa-

tions are often taken for granted and much valuable insight is lost.

14When enough discrepancies arise there may come a point when the standards themselves begin
to be questioned. This occurs at the onset of scientific revolutions (see [2]).
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On the other hand, standards and established norms - even to the hiding

of irregularities and messiness - are crucial to the communication and development

of any science. Therefore, sifting these subtleties out scientifically, not necessarily

abandoning them, is necessary for further progress.
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Chapter 3

A Thematic Account of the Stern-Gerlach Effect

Representations come in many forms. They may be qualitatively expressed

in everyday language or quantitatively expressed in mathematical form. In any case,

a particular representation is chosen in order to emphasize a particular aspect of

the phenomenon being described. In this chapter we choose to represent the Stern-

Gerlach effect (SGE) in a manner that will appear very similar to those given in

various textbooks (see [1], [3], or [11]). We will seek to emphasize the logical ordering

of the themes and concepts of the SGE in order to provide a clear and rational

account. For this reason we call it a thematic account. In the next chapter the same

story will be told but from a historical perspective.

3.1 A Classical Representation of the Stern-Gerlach Effect

We begin with a classical description of the SGE because it introduces the main

concepts with which students are usually familiar when the SGE is first presented.

It therefore provides an appropriate context for the quantum mechanical “textbook”

description we subsequently give.

In the classical picture of the atom we treat the electron as tracing a definite

orbit around the nucleus. This moving charge creates a current I that encloses a

vector area A, with direction n normal to the surface in a righthanded sense with

the orbital motion. We may thus use the familiar equation for magnetic moments µ

from classical electromagnetic theory

µ = IA. (3.1)

19



em
pv =

L

nucleus

electron

ra ˆ=r

Figure 3.1: In the classical picture of the atom the electron orbits the nucleus much as a planet
would orbit the sun. Because it has a continuous set of definite trajectories with velocity v and
momentum p= mev there is a definite and continuous orbital angular momentum L= mr×v.

More specifically, if we assume that charge e orbits κ times1 around a circular path

of radius a with velocity v such that the period T of the particle is T = 2πa/v we

may write I = κe/T = κev/2πa. Using A= πa2n we have

µ =
κeavn

2
. (3.2)

Multiplying and dividing by the mass m of the particle allows us to recognize the

total angular momentum L= amvn. We now have a general magnetic moment

µ =
κe

2m
L (3.3)

for electrons. In the classical picture we assume that the particle carries the charge

so, since in one period T the particle makes one complete revolution, so does the

charge. Hence, classically we take κ = 1. The reason for introducing κ will become

more apparent in section 3.2.1 (see footnotes 1, 5, and 6).

The energy of µ in a magnetic field B is

U = −µ ·B (3.4)

1Usually µ is derived classically without any mention of κ, since it is 1. Apart from demonstrating
how we can make some common assumptions mathematically explicit, the use of it here is intended
to emphasize two things. We leave this discussion however to section 3.2.1 and footnotes 5 and 6.
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and the dynamics are defined by

F = −∇U = ∇(µ ·B) (3.5)

and τ =
dL

dt
= µ×B. (3.6)

Using eq. (3.3) inverted for L and defining a characteristic frequency ω ≡ −κeB/2m

the second of these equations becomes

dµ

dt
= ω × µ. (3.7)

Thus, as can be seen in fig. 3.2, the particle’s magnetic moment precesses about B

at a frequency ω, which is proportional to the local magnitude of B.

Bω∝

μ
dt
dμ

0θ

Figure 3.2: Because of the torque implied by τ = µ×B the time rate of change of µ is in the
direction perpendicular to the plane of µ and B. This direction changes from point to point such
that overall µ rotates, or precesses, about the local field direction at a frequency ω proportional
to µ, B, and the sine of the angle θ0 between them. Without dissipation this continues forever. µ
would only align with B if the energy were somehow lost as in a compass by friction with the pivot
point.
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As this precession occurs the force equation also has an effect. Under the very

common though very subtle assumption that µ does not vary in space the gradient

operator in eq. (3.5) moves past µ giving the components, in index notation, Fj =

µk∂jBk. Therefore, the force felt by the particle will be very subtly dependent upon

both the magnetic moment µ, which is an inherent property of the particles, and the

field gradient ∇B. This means that in the SGE the particles will sift themselves out

according to the magnitude and direction of their respective magnetic moments as

they precess. In terms of experimentally controlled parameters, the fact of deflection

beam

Figure 3.3: A beam of atoms, whose magnetic properties can be represented as tiny bar magnets,
enters an inhomogeneous magnetic field from the left. Depending upon the orientation of the bar
magnetic in the field a net force will be exerted. This force causes a corresponding separation of the
trajectories.

arises from the presence of a field gradient while the particular direction of deflection

can be very subtly controlled by the chosen form of the field gradient according to

Fj = µk∂jBk.
2

2Note that the direction of F is only partly selected by the form of the field used. It is also partly
controlled by the inherent magnetic moments of the particles.
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In order to classically derive the SGE we imagine passing a beam of particles

each with a random magnetic moment µ through a magnetic field that incorporates

both characteristics of interest: a field gradient b that induces deflections and a clearly

defined direction that directs them a certain way. The usual choice is

B = (B0 + bz)ẑ. (3.8)

Note that in this particular form B0 is not necessary. The field bzẑ has a clearly de-

fined direction by itself. B0 is usually included though so as to allow the independent

adjustment of magnitude of the field, in this case |B0 + (bz)|, and magnitude of its

gradient b. This will become important later.

Applying this to eq. (3.5) yields

F = µzbẑ =
eb

2m
cos θ0ẑ (3.9)

as the equation of motion. Thus, in the classical representation of the experiment

we expect each particle to move under a force that is proportional to µ and the field

gradient b in the direction of ẑ. Inasmuch as the orientation of µ is continuous and

the force has a constant direction in all point of space a continuous, linear distribution

of particles will register on a detecting plate placed some distance behind the magnet.

This is the classical description of the SGE (see fig. 3.5(a)).

3.2 Quantum Mechanics

The quantum description of this experiment is much different. Before going

into its derivation specifically a thematic approach requires that we introduce some

concepts that will be needed but that are not part of the classical intuition we have

built up. Together with the classical concepts, these will form a common conceptual

context from which students seeing the SGE for the first time will draw.

The governing equation of quantum mechanics is Schrödinger’s equation. In

general form it is

ih̄
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 (3.10)
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where Ĥ is the Hamiltonian operator and |Ψ〉 represents a general quantum state.3

In light of the previous chapter we note that by “general” we mean here only

that it is free of particular kinds of representations not of any kind of representation.

That is, |Ψ〉 is a general state in Hilbert space but has not yet been expressed in terms

of a more narrow space, such as position or momentum space. Once we move to one

such space this will be analogous to the example in section 2.2.1 when a vector’s

geometric, coordinate free representation as a directed line segment was made more

concrete and useful through the introduction of a particular basis.

Because Ĥ is the Hamiltonian operator we may write it in a more suggestive

form

Ĥ =
p̂2

2m
+ V̂ , (3.11)

where we now have the square of the momentum operator p̂2 and the potential energy

operator V̂ .

We can represent eq. (3.10) using eq. (3.11) in a familiar way by projecting the

states and operators into a coordinate basis defined by the triplet (x, y, z). We will call

this x-space.4 We also realize that |Ψ〉 may carry time-dependence so |Ψ〉 → |Ψ(t)〉.

This gives us the Schrödinger representation which is most commonly dealt with in

introductory treatments. With these choices5 we follow the prescribed formalism of

quantum mechanics for projecting into x-space and multiply everything on the left

with 〈x|. We get,

〈x|Ψ(t)〉 = Ψ(x, t) (3.12)

〈x|p̂2Ψ(t)〉 = −h̄2∇2Ψ(x, t) (3.13)

〈x|V̂Ψ(t)〉 = V̂ (x)Ψ(x, t). (3.14)

At this point we can see that it will be economic for us to suppress the explicit

listing of functional dependencies when it is convenient to do so. They will still be

included in the most general equations or when the meaning is unclear without them.

3We use ˆ to differentiate operators whether matrix, vector, or scalar from other mathematical
objects except in the case of ∇ for which it is obvious. Unfortunately theˆis also standard notation
for unit vectors. When the context doesn’t make this clear we’ll make it more explicit.

4We will work in p-space, which uses (px, py, pz) as coordinates, in chapter 7.
5Later we will demonstrate the usefulness of other choices of representation.
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Inserting these specified forms into eq. (3.10) we get

ih̄
∂

∂t
Ψ = − h̄2

2m
∇2Ψ + V̂Ψ. (3.15)

This is the time-dependent Schrödinger equation represented in x-space.

Because this is now represented as a familiar differential equation we can use

familiar differential solution techniques to proceed. If Ĥ is time-independent, which

implies that V̂ is as well, we can use the separation of variables technique to separate

the time behavior out. Assuming

Ψ(x, t) = ψ(x)T (t) (3.16)

and calling the constant of separation E yields the two equations

ET = ih̄
d

dt
T (3.17)

Eψ = − h̄2

2m
∇2ψ + V̂ ψ (3.18)

for the time and space parts respectively. Note that the spatial equation is an eigen-

value equation of the form

Ĥψn = Enψn (3.19)

with eigenvalues En corresponding to eigenfunctions ψn and also that the partial time

derivative in eq. (3.17) can become a total derivative because of the lack of spatial

dependence in T .

Solving the time piece gives

T (t) = T (0)e−
i
h̄

Et. (3.20)

A general solution of the full equation is then the linear combination

Ψ(x, t) =
N∑

n=0

ψn(x)e−
i
h̄

Ent (3.21)

where N , the dimensionality of the quantum space, could be either finite or infinite.

All constants have been absorbed into ψn(x).

Had we represented our operators as N -dimensional matrices instead of alge-

braic operators we could have arrived at the same result. This would be a useful

choice for systems of only a few dimensions such as many spin systems.
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3.2.1 Spin

Spin is a necessary form of angular momentum in the quantum description

of nature. It is analogous to the orbital angular momentum L̂ although it has not

yet been consistently associated with a conceptual picture of any spinning or orbiting

object. Orthodox interpretations of quantum mechanics take it to have no classical

manifestation and to be intrinsic to quantum objects such as photons and electrons.

As a measure of quantum angular momentum, spin Ŝ satisfies the same equa-

tions as L̂. In particular,

µ̂ =
κe

2m
Ŝ (3.22)

corresponding with eq. (3.3) but with an important difference. For quantum me-

chanical descriptions of electrons it has been found that there is a missing factor of

2. There are several ways to introduce this correction. One possibility is to assume

that κ changes values in moving from the classical to the quantum description.6 Our

picture also changes then. Based on the interpretation we gave with eq. (3.3) with

κ = 2 instead of 1 the charge apparently rotates twice for every single revolution of

the particle. Although there is no mathematical difference, only interpretive changes,

let us rename κ → g in order to connect with the literature at this point.7 If this is

the case then for one full revolution of the particle in its orbit, described by L̂, there

6Another possibility, the usual choice, is to arbitrarily introduce a new factor g = 2 that didn’t
have an appreciable effect in the classical description and whose interpretation is consequently un-
clear. The method we use is completely non-standard.

7We did not call κ g until this point precisely because we did not want to “connect with the
literature.” If we had initially equated the two those familiar with the Landé g-factor would have
immediately resisted associating it with our interpretation of κ because g is not usually given any
classical motivation. However, if one had never used the symbol g in this context, as most students
of a thematic classical picture haven’t at this point, that wouldn’t be possible. In order to create
this unbiased effect we chose to call it κ. Thus, what authors do or don’t do can lead the mind
and prepare it for what they want the student to accept in the future or associate with in the past.
The second reason for this is to demonstrate the arbitrariness of some interpretations. We could’ve
interpreted κ as the relative area of the orbits of the charge and mass as in describing allowed orbital
radii, the relative velocity of the charge and mass perhaps shedding light on the phase and group
velocities, or the relative periods of the charge and particle dynamics. This latter case might have
the same interpretation as our choice to associate κ with the number of rotations the charge makes
in time T . Respectively, instead of κe we would have introduced κa, κv, or T/κ all of which would be
be mathematically equivalent. Thus, while we have given a classical interpretation for κ, or in other
words g, we have not given the interpretation. g is treated more rigorously in Dirac’s relativistic
formulation of quantum mechanics.
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Figure 3.4: (a) Rotations of 180◦ in the familiar 3-dimensional, physical space correspond to (b)
rotations of only 90◦ in “spin” space. That is, the “up” and “down” directions in z are 180◦ apart
in physical space but because they can completely describe all the possible outcomes of a spin-z
measurement they completely span the space describing spin properties. Thus they can be thought
of as an orthogonal basis of this space.

is only half a rotation of the charge that determines µ̂ and corresponds to Ŝ. As it

turns out, the fact that one full rotation in physical space corresponds to just half a

rotation in spin space is exactly the result of other theoretical spin descriptions.

Also, in contrast with classical measures of angular momentum, Ŝ can take on

only 2s+1 discrete values where s is the quantum number defining the spin character-

istics of a system. For example, a measurement of the spin of the electron, for which

s = 1/2, in a given direction can only have two results: spin “up” or spin “down”
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in the given direction.8 Due to their two-valuedness, single electron spin systems

are two-level systems. These are extremely useful for modelling more complicated

systems of more states because they are the simplest systems that incorporate both

the properties of a single state with the phenomenon of transitions between states

(see section 2.2.1, footnote 4). Consequently, whenever we refer to our system it is

assumed to be a spin-1/2 system.

We can use these facts to define the operators corresponding to spin-1/2 sys-

tems. According to eq. (3.21) s = 1/2 means N = 2 so Ŝ can be expressed with 2×2

matrices. Taking experimental results as constraints on the theory we often define

the spin operator as

Ŝ =
h̄

2
σ̂ (3.23)

where

σ̂x =

 0 1

1 0

 , σ̂y =

 0 −i

i 0

 , and σ̂z =

 1 0

0 −1

 (3.24)

are the Pauli matrices in the standard representation that arbitrarily diagonalizes σ̂z.

We also represent Ĥ as a 2×2 matrix. This necessitates representing any spin

state |ψ〉 as a two component vector, or spinor,

|ψ〉 →

 ψ↑

ψ↓

 = ψ↑χ↑ + ψ↓χ↓ (3.25)

instead of as a scalar state as before. Also,

χ↑ =

 1

0

 and χ↓ =

 0

1

 (3.26)

are the eigenstates that diagonalize σ̂z. Thus the subscripts ↑↓ respectively denote

the spin as either “up” or “down” in the z-direction. Using eq. (3.21) we can write a

general spin state with both time and space parts

Ψ = ψ↑χ↑e
− i

h̄
E↑t + ψ↓χ↓e

− i
h̄

E↓t (3.27)

8Perhaps this is easier to understand as spin “right” and spin “left” in the x or y-directions.
Regardless of the direction we usually distinguish the two values as “up” and “down” (with quotation
marks).
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where E↑↓ are the energies, i.e. the eigenvalues of Ĥ, corresponding to the “up” and

“down” states χ↑↓.

3.2.2 Expectation Values

Important in any theoretical treatment of quantum measurements is the con-

cept of expectation values. For a given state |ψ〉 every operator Â has an expectation

value

〈Â〉 ≡ 〈ψ|Â|ψ〉. (3.28)

Using the specific case that Â = x̂ Griffiths [1] explains

[This] emphatically does not mean that if you measure the position of

one particle over and over again, [〈x̂〉] is the average of the results...Rather,

〈x̂〉 is the average of measurements performed on particles all in the state

ψ, which means you must find some way of returning the particle to

its original state after each measurement, or else you prepare a whole

ensemble of particles, each in the same state ψ, and measure the positions

of all of them: 〈x̂〉 is the average of these results (p. 14).

Discussing this further Griffiths [1] continues, this time in terms of velocity

d〈x̂〉/dt,

Note that we’re talking about the ‘velocity’ of the expectation value of

x, which is not the same thing as the velocity of the particle (p. 15).

With these statements we see that expectation values are averages of repeated mea-

surements on identical systems not of repeated measurements on a single system.

3.2.3 Measurement

As one can see, measurement plays a significant role in both our practice and

interpretation of quantum mechanics. There is however much ambiguity and debate

as to what exactly the process of measurement entails. In attempts by Bohr, Von
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Neumann, Wigner, and others to clarify the ontological and/or epistemological na-

ture of these issues some unfamiliar concepts such as the unpredictable “collapse” of

the wave function or the placement of a “cut” between the quantum and classically

described worlds have been introduced.9 In what might be called the orthodox opin-

ion “Observations not only disturb what is to be measured, they produce it...[When

measuring position] we compel [the particle] to assume a definite position.” (Jordan

in [1] p. 3) However, because of the proliferation of the ambiguous and unfamiliar

ideas of the “cut” and “collapse” there is only a quasi-standard conception of what

measurement is.

Because the Stern-Gerlach experiment so clearly demonstrates the discrepan-

cies between our classical and quantum expectations, with apparently simple and

intuitive theoretical descriptions, it is considered a canonical, or defining, example of

the quantum mechanical measurement process.

3.2.4 The Uncertainty Principle

Another characteristic of quantum mechanics that should be mentioned in the

discussion of measurement and the SGE is the uncertainty principle. It simply states

that for a set of non-commuting operators, say Â and B̂, whose commutator is

[Â, B̂] = ÂB̂ − B̂Â = Ĉ (3.29)

the relation can be given

∆Â∆B̂ ≥ |〈Ĉ〉|
2

. (3.30)

where the square uncertainty of the particular measurement represented by any op-

erator Â is

∆Â2 = 〈Â2〉 − 〈Â〉2. (3.31)

This is usually interpreted to mean that there is an irreducible uncertainty

associated with the simultaneous measurements of Â and B̂. In other words, when

applied to the non-commuting pair x̂ and p̂x the more confident we are of the result

9For a standard discussion of measurement see [12]. For an expression of some concerns involved
in these issues see [13] or [14].
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of a measurement of the position x of a particle, i.e. smaller ∆x̂, the less certain we

are of a simultaneous measurement of its momentum in that same direction p̂x, i.e.

∆p̂x increases. To what extent this is an ontological or epistemological principle is

still a matter of interpretation.10

Of particular interest to our discussion here is the realization that the opera-

tors, denoting measurements of the three orthogonal spin directions Ŝx, Ŝy, and Ŝz,

do not mutually commute

[Ŝi, Ŝj] = iεijkŜk. (3.32)

Their simultaneous existence as well defined mathematical quantities is therefore

constrained by

∆Ŝi∆Ŝj ≥ εijk
|〈Ŝk〉|

2
. (3.33)

More specifically, in any conceivable observation of the SGE it is assumed

that no two components of the spin will ever be specified with more certainty than

eq. (3.33) allows.

3.2.5 Stern and Gerlach’s Experiment

Now that we have built up concepts relevant to the quantum representation

of the SGE we can outline what might be its typical quantum derivation (see [1] or

[11]). Such a derivation usually proceeds with the intent of making as few changes as

possible to the classical account.

There are some stark differences however. For example, since the quantum

formalism is largely based on Lagrangian and Hamiltonian mechanics as opposed to

Newton’s, energy is given a more fundamental place than are forces. We therefore

begin by constructing a Hamiltonian operator from the interaction energy in eq. (3.4).

It is

Ĥinteraction = −µ̂ · B̂ (3.34)

10Again, inasmuch as [13] and [14] critique the measurement process they also raise several inter-
esting issues involving the uncertainty principle.
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where all objects are now operators. Using eqs. (3.22) with κ = g = 2 now, (3.23),

and (3.24) with the field of eq. (3.8) we can represent this interaction with a matrix

operator.

Ĥinteraction = − e

m

h̄

2
σ̂jB̂j = − e

m

h̄

2
(B0 + bz)

 1 0

0 −1

 . (3.35)

Deriving the results of the SGE is easiest if we express the full Hamiltonian in

the frame of the beam. This sets the kinetic energy terms to zero. For simplicity we

also treat the field as an ideally impulsive field of duration T . In this case Ĥinteraction

becomes the full Hamiltonian for 0 ≤ t ≤ T . The Hamiltonian for all times is

Ĥ(t) =



0 for t < 0

− e
m

h̄
2
(B0 + bz)

 1 0

0 −1

 for 0 ≤ t ≤ T

0 for t > T

. (3.36)

If we restrict ourselves to times such that 0 ≤ t ≤ T then Ĥ is constant in

time and we may solve for its eigenvalues which are the energies of the system. This

can be done to get

E↑↓ = ∓ eh̄

2m
(B0 + bz). (3.37)

There are two solutions labelled ↑ and ↓ because the system was describable by a

2 × 2 matrix. These are referred to as the spin “up” and the spin “down” states in

the basis which diagonalizes σ̂z. They then mean “up” and “down” in z.

Using our previous results for describing a general state in terms of the eigen-

states eq. (3.27) we may evaluate this state at t = T and, after some rearranging,

get

Ψ = ψ↑χ↑e
i e
2m

B0T e
i
h̄
( ebTh̄

2m
)z + ψ↓χ↓e

−i e
2m

B0T e
i
h̄
(− ebTh̄

2m
)z. (3.38)

for the general state of the beam after emerging from the field at time T . This is

valid then for all t ≥ T .

If we compare this to the familiar form for an infinite plane wave travelling in

the k=p/h̄ direction with momentum p

Ψ ∼ e
i
h̄
(p·x−Et) (3.39)
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Figure 3.5: (a) The classical description of the SGE leads us to expect the particles with the
largest spin components in the chosen direction to deflect the furthest up, the particles with the
largest spin component opposite the field direction to deflect the furthest down, and a continuous
range of deflections in between arising from the continuous range of possible spin projections on
the z-axis which is preferred by the B-field. (b) Using a quantum mechanical representation the
expected result suggests the experimental result. There is not a continuous range of possible spin
deflection but only two distinct possibilities. The particles that have collapsed as if undergoing a
upwards deflect likewise collapse to the spin “up” state while the particles that appear to be deflected
downwards have collapsed into the spin “down” state relative to the chosen direction.

we see that there are two distinct momenta both proportional to the field gradient b

and in the z-direction. Namely,

pz = ±ebT h̄
2m

. (3.40)

By comparing this with eq. (3.38) we note that the ± momenta are associated, or

entangled, with the spin “up” and “down” states respectively. Thus, the standard

interpretation of the quantum formalism tells us that regardless of specific initial spin

state of the beam particles in the SGE upon measurement the states will collapse to

only one of two states: either they are travelling upwards along the chosen axis with

a spin “up” in that direction or they are travelling downwards with spin “down.”

Inasmuch as the traditional SGE uses a field in which a single direction has been

deliberately selected upon detection an image will appear that shows the particles to

be collecting in two distinct and unconnected placed. This is in stark contrast to the

classically expected result in which a single continuous trace appears.

Apart from clearly showing the quantized nature of spin and the divergence of

quantum mechanical concepts from classical ones the SGE is taken as the canonical

33



example of the quantum process of measurement. This gives it an important place in

the history and development of quantum mechanics.
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Chapter 4

A Historical Account of the Stern-Gerlach Effect

In the previous chapter we built up a description of the SGE from fundamental

concepts. This is not the only way to represent the story however. Just as we can

represent a function in terms of different coordinates systems (see Table 2.2) we can

also portray the development of the SGE in different ways. Each will emphasize a

different aspect of the story. The historical account of the SGE, which is given here,

though perhaps not found as universally in textbooks, is extremely valuable on its

own.

The historical account given in this chapter does not present all the detail

that could be given due to practical constraints.1 We give here only enough detail to

capture, in the end, the general nature of historical representations and, in particular,

the divergence of this account of the SGE from the thematic one given previously.2

4.1 Atomic Models

Prior to 1900 classical mechanics was the prescribed methodology for progress

in physics. It provided the most universally accepted and powerful paradigm in

physics. It had begun in embryonic form with the revolution of Copernicus but was

carried on by others such as Kepler, Galileo, Descartes, and set in full motion by

1The careful reader will realize that this statement implies that the historical account here, and
in fact historical accounts in general, are really specific types of thematic accounts. This is similar to
our previous note that mathematical representations are a subclass of the more general conceptual
ones. In other words, we select in chronological order only those events which we determine as
appropriate to the historical themes we want to convey.

2For more detailed historical accounts of the original Stern-Gerlach experiment see [15] or [16].
For a historical development of quantum mechanics in general see [17].
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Newton. To a large degree, since that time, physics has consisted of the working

out of the implications of Newton’s laws of motion. In the Kuhnian terminology of

chapter 2 and [2], in Newton had culminated a shift of paradigm and most subsequent

physics consisted of casting observed data in the paradigm-provided mold and not in

creating the mold itself.

One phenomenon of interest during this period of “normal” science was the

description of the atom. In the late 1800s a debate existed between those that thought

nature was fundamentally continuous and those that considered it fundamentally dis-

cretized. These latter proponents were the atomists. But Einstein’s work on Brownian

motion in 1905 provided the groundwork for the first experimental demonstration of

atomic behavior. Up to this point talk of atoms had been only theoretical and based

on macroscopic secondary effects. Under the classical regime, atomic behavior, as

every other phenomenon, was thought to strictly follow Newtonian laws. With the

connection of Brownian motion to the discreteness of atomic particles, and other de-

velopments including but not confined to Einstein’s other 1905 paper concerning the

photoelectric effect and an earlier purely theoretical description of black body radi-

ation by Max Planck in 1900 in which a completely ad hoc factor h was introduced

the paradigm of discreteness, or quantization, gained widespread acceptance [18].

Accordingly, under the extant models had anyone proposed the SGE at this

time, the theoretical description would have been similar to that which was given in

section 3.1. It is important to realize however that the SGE was not even conceived

of until much later, after other developments had occurred.

4.1.1 1913: The Bohr Model

From extensive spectroscopic measurements it was concluded that atoms of

a particular type always seemed to emit the same definite and distinct amounts of

energy. For example, when observing the light emitted from a tube of gas that had

been excited with an electrical voltage the same spectrum of colors always appeared.

Even more interesting was the fact that this spectrum was discrete.
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In 1913 Niels Bohr developed a model of the atom that mathematically and

conceptually captured this discrete behavior. It resembled, though not exactly, the

familiar picture of the solar system with particles moving around the nucleus in various

coplanar, circular orbits of discrete radii (see fig. 4.1(a)). These radii determined the

energies of the atom as gravitational potential energy does in a solar model.

The discrete nature of the orbital radii also discretized the magnitude of the

angular momentum L because of its dependence on the radius. More specifically, in

order to agree with experimental findings Bohr asserted that

L = nh̄, with n = 1, 2, 3, ... (4.1)

where h̄ is related to Planck’s recently introduced constant.

Because of its now outdated quantization rules and picture Bohr’s scheme is

known today as the “old quantum theory.”

4.1.2 1916: The Sommerfeld Model

As with any model however the Bohr model of the atom did not fully describe

the details of observed atomic phenomena. In 1916 Arnold Sommerfeld aided in

extending the Bohr atomic model to other cases including relativistic effects and

the quantization of all three components of L [19]. In doing so Bohr’s conceptual

representation was altered in a few ways.

The circular coplanar orbits that were visualized in the Bohr atom were re-

placed with orbits that could be distorted to elliptical shapes and could take on various

orientations. They did not have to be coplanar (see fig. 4.1(b)). As a result Bohr’s

makeshift quantization of L in magnitude was extended to include the possibility of

quantizing the direction of L as well.

4.2 1921-1922: Stern and Gerlach’s Experiment

We stop here with the story of atomic models because this is the environment

in which Otto Stern and Walther Gerlach found themselves in 1921. This was the

model - or paradigm - with which they were working.
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Figure 4.1: (a) In the Bohr atom the electron has a definite trajectory that can only occur at
certain, discrete coplanar distances from the nucleus. Thus the magnitude L is likewise discrete or
quantized. (b) In Sommerfeld’s extension of Bohr’s ideas the electron paths can occur in different
planes though they were still constrained to quantized radii. Because this allowed for the additional
quantization of L in its spatial orientation this is referred to as space quantization.

It was Stern and Gerlach’s intent to either verify or discount the Bohr-Sommerfeld

model of the atom by measuring the quantized states of L.3 As we have seen, based on

their “old” quantum intuition Stern and Gerlach assumed that the atom possessed

angular momentum made manifest in the orbit of the electron about the nucleus.

This implied the presence of a magnetic moment µ which could be manipulated via

a magnetic field B as described in section 3.1. There were several considerations that

3Ironically, although Stern is thought to have experimentally verified the Bohr model of the atom,
he is reported to have said along with Max von Laue,“If this nonsense of Bohr should in the end
prove right, we will quit physics!” [15]
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would have been either explicitly confronted or unknowingly passed by. We list a few

of these based on what seems appropriate for our purposes.4

4.2.1 Magnet Type

The first consideration may have been of the particular magnetic field con-

figuration that would be used. As we saw in the classical picture of section 3.1 if

Stern and Gerlach wanted to observe the magnitude of µ in a particular direction

there were two essential components to the field. They needed (1) a non-uniform

component to B so as to cause the force differential needed to sift the particles by

an observable amount. And (2) Stern and Gerlach needed a preferred direction to B

in order to define the component of µ being measured. In section 3.1 this was done

with the introduction of B0.

Spatial variations of the field had to be considered as well. Once generated

with an appropriate momentum towards the detector, the particles had to enter and

exit the field. Considered in the frame of the particles this would introduce the same

effects as a time-dependent field. Thus maintaining the desired uniformity along the

beam as well as avoiding unwanted dynamic effects would have to be considered in

order to make the results clear.

4.2.2 Particle Choice

One way of avoiding several issues with the fringe field effects was to chose

a very specific type of particle. Following Maxwell’s equations this changing B-field

would create an electric field that could exert Lorentz forces on particles carrying

charge. These forces would easily blur the beam in unintended directions disguising

the outcome and interpretation of the experiment.

Stern had worked with beams of silver atoms before so this was the natural

choice [16]. They are electrically neutral but still possess a magnetic moment. That

is, in their neutral state they carry as many protons as electrons but only have one

4The following may or may not have been exactly how these issues played out in the minds of
Stern and Gerlach. It only represents how those issues may have been resolved in the given historical
context.
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Figure 4.2: After being collimated into a long, narrow cross section, the Stern-Gerlach beam,
made up of silver atoms, enters the evacuated space between two vertically oriented magnet poles,
one with a notch cut into it and the other with a point. The resulting non-uniform magnetic field
was 3.5cm long and .1T in strength with a 10T/cm field gradient. This caused the beam to separate
in different directions due what is now thought of as spin. The beam was then detected on a cold
plate of glass [16].

valence electron so that, while all charge cancels out, there is an “extra” electron with

a magnetic moment orbiting the nucleus overall. Thus, a beam of silver atoms was

used.

4.2.3 Beam Width

The atoms of the beam were accelerated from a vapor towards the magnets

for measurement. This process imparts a random distribution of both momenta

and magnetic moment to the particles of the beam. The magnetic moments were

considered random only in direction. This is exactly what the experimenters wanted
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Figure 4.3: (a) The cross section of the Stern-Gerlach beam in the y-direction was long and
narrow in the xz-plane. (b) The actual images taken from the post card Gerlach sent to Bohr
announcing his results. He writes, “Attached [is] the experimental proof of directional quantization.
We congratulate [you] on the confirmation of your theory.” Taken from [20].

in order to measure the nature of the distribution of directions. However, the atoms

had to be selected according to their momenta in order to carefully direct them at

the appropriate location in the measuring apparatus. This was done by collimation.

Stern and Gerlach chose to collimate the beam using a long narrow slot ori-

ented perpendicularly to the axis along which the measurement was to be taken (the

z-axis in fig. 4.3(a)) and the beam axis. This gave them a very narrow beam in

the direction of interest but yielded a more diffuse beam in the perpendicular direc-

tion. As they were only concerned with one direction - the direction selected by the

magnetic field - this was sufficient.

4.2.4 Results

After sending the beam through the poles of the chosen magnet it proceeded

to a glass plate for detection some distance away where it left a deposition. After

several attempts at fine tuning the apparatus, particularly the vacuum system, and

the intervention of a cheap cigar [15] a trace was recovered that gave Stern and
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Gerlach exactly what they had predicted from theory - a definite separation into two

distinct traces oriented along the direction of the uniform field (see fig. 4.3(b)).

4.3 1925-1926: Quantum Mechanics

To this point the SGE had been spoken of in terms of mostly classical concepts

and equations. At most it participated only in substantiating the old quantum the-

ory of the Bohr-Sommerfeld atom. The fundamental equations of modern quantum

mechanics had not even been developed yet. It wasn’t until 1925 that Heisenberg

developed his matrix formulation for the fundamental characteristics of quantum me-

chanics with his equation

ih̄
d

dt
Â = [Â, Ĥ] + ih̄

∂

∂t
Â (4.2)

in which the arbitrary operator Â and the Hamiltonian Ĥ are the relevant objects.

The next year Schrödinger proposed his more widely recognizable wave mechanics

formulation using the then still mysterious wave function Ψ.5 His famous equation

ih̄
∂

∂t
Ψ = − h̄2

2m
∇2Ψ + V̂Ψ (4.3)

is the time-dependent Schrödinger equation. It is typically found in textbook discus-

sions of quantum mechanics and was also used in the previous chapter.

4.4 1925: Spin

The development of these two formalistic systems, the Heisenberg and Schrödinger

pictures, signaled our entrance into a new era of physical science. We were undergoing

a shift of paradigm. With each new unexpected result - and there were many - we

were having to define and redefine the conceptual basis upon which we could build

our theories and against which we would push off when we once again felt equipped

to return to “normal” science.

One such result that required the introduction of a new concept for its proper

placing in the framework arose from atomic physics. The spectral lines of a given

5Max Born later gave Ψ its present interpretation as a probability amplitude.
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element could be observed to bifurcate into two closely spaced identical lines when

the element was placed in an extremely strong external magnetic field. This was the

Anomalous Zeeman effect. The word that expressed the concept that was needed to

connect this behavior to others in the quantum framework was coined by two graduate

students, Samuel Goudsmit and George Uhlenbeck, in 1925. It was spin.

It appears that the quantum mechanical concept of spin wasn’t associated

with the SGE of 1922 until 1927 [21].

4.5 1935: Measurement

During the years under discussion here not only was the scientific community

working out the technical implications of the new quantum regime but they were

simultaneously attempting to define its conceptual foundations. As we have pointed

out, one of the difficult phenomena to translate was that of measurement.

The exact timing of the designation of the SGE as the clearest experimental

demonstration of the measurement problem is not well defined. From a historical

perspective the phenomenon of measurement didn’t force itself into the forefront

of scientific philosophical discussion until 1935 when Einstein, Podolsky, and Rosen

published a paper attempting to salvage some familiar, classical notions from the

broadening quantum conceptual revolution.6 Ironically, their proposal instead gave

rise to the EPR paradox which, along with some later theoretical and experimental

verification, was a clear and fundamental repudiation of some of the very ideas they

attempted to save. It placed the quantum concepts of entanglement and measure-

ment in the forefront of our framework. Perhaps because these two concepts are

easily and clearly represented in a discussion of the SGE, as we have shown in the

previous chapter, simultaneously with a clearly distinct classical analogue, the SGE

has consequently been given important status as well. For this reason it is important

to address the problems in our descriptions of it.

6Although the EPR paper was published in 1935 debates and controversy regarding other aspects
of the proper interpretation of quantum mechanics had carried on for as many as 10 years. The
discussions of the Solvay conference of 1927 are particularly interesting [6].
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Chapter 5

Problems With Accounts of the Stern-Gerlach Effect

We have given both a thematic, or textbook, account of the SGE and a his-

torical account of the same. The former is based on the logical ordering necessary

to systematically construct appropriate concepts and the latter by the chronological

ordering of human experience. As representations both accounts emphasize different

aspects. They also obscure other characteristics either inadvertently or because those

characteristics are explicitly deemed less valuable. In the following we discuss the

assumptions and inconsistencies that are hidden in the two previous accounts but

that are rashly dismissed either because of tradition, practicality, or misunderstand-

ing. Before considering the limitations of these two accounts however we will consider

some limitations that apply more generally to quantum mechanics, and even science,

as a whole.

5.1 Problems from Quantum Mechanics

In section 2.2.2 we introduced wave-particle duality as an example of orthogo-

nal concepts. We called such concepts “orthogonal” because, like orthogonal vectors

or functions, the concepts implied by one cannot in any way be represented in terms

of the concepts implied by the other. In the language of logic the two are mutually

exclusive. In this sense orthogonal concepts are also describable in terms of Bohr’s

principle of complementarity in which two disparate but complementary concepts are

used in order to fully describe a single phenomenon.
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5.1.1 Rightness and Clarity

Among the many sets of concepts that can serve as an effective conceptual

basis for describing any scientific representation of a phenomenon are the concepts of

rightness and clarity.1 They are an effective basis because they are “orthogonal” or

complementary. As applied to representations we can see that the more effort that

Some Orthogonal Concepts

Wave Particle
Position Momentum

Theoretical Experimental
Quantitative Qualitative
Historical Thematic
Abstract Concrete

Form Function
Creativity Conformity
Constancy Flexibility
Humility Confidence
Patience Ambition
Justice Mercy

Table 5.1: A listing of some orthogonal concepts. Bohr applied his principle of complementarity
to ideas such as these [7]. Perhaps Kuhn’s description of “normal” and “revolutionary” science could
be added as well. Just as with coordinate axes it is precisely because of their orthogonality that
these sets of concepts are useful in describing other, more complicated, ideas.

is put into making a presentation simple, clear, and accessible the more idealization,

approximation, and artificiality are in it. Whereas if a strenuous effort is made to

represent all the facts in their proper context so much complication and technicality

are introduced that a useful understanding of them becomes near impossible. In

short, the more clear a representation is made to be the less right it is whereas the

1Bohr is sometimes attributed with the recognition of this complementary relationship between
“rightness” and “clarity.” However, the most relevant discussion that we can find by Bohr is in [7]
in which he speaks of the complementary relationship between the “use” and “meaning” of words.
See also [22] for some of his related writings.
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more right it is the less clear it can be. Thus there is a fundamental tension between

the rightness and clarity of a statement.

5.1.2 Representations as a Map

This relationship between the rightness and clarity of a statement can be

demonstrated by considering a map. Maps are representations of regions of space.

The more detailed the map the bigger and bulkier must be its pages with expanded

scaling and legends whereas the more compact and simple the map the less detail

can be described by it. To maximize its correspondence to reality at the expense of

user-friendliness would make the map no different than the terrain it describes while

increasing its immediate and efficient use would surely omit some detail that could

become important.

5.1.3 Communication

The simultaneous maximization of both the clarity and rightness of a state-

ment is the aim of effective representation and communication. However, in quantum

mechanics this discrepancy between what is and what we understand is manifest in

even stronger terms than in other fields. It was a common opinion among the archi-

tects of quantum theory that although quantum phenomena were incompatible with

classical concepts, due to the classical nature of the equipment, i.e. its compatibility

with humans on the macro-scale, only these concepts could be used to describe them.

For example, Bohr [22] has said that

In this context, we must recognize above all that, even when the phe-

nomena transcend the scope of classical physical theories, the account of

the experimental arrangement and the recording of observations must be

given in plain language. (p. 72)

and Heisenberg [23] has written that
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Any experiment in physics, whether it refers to the phenomena of daily

life or atomic events, is to be described in the terms of classical physics.

(p. 44)

In other words, the common opinion is that although nature fundamentally behaves

quantum mechanically humans can only understand it in terms of classical concepts

because we can only interact with this level.2 Unfortunately for us, classical concepts

are also inadequate.

Thus, it is a frustrating axiom of the modern paradigm that clear commu-

nication is exactly opposed to correct communication. As one aspect is refined or

improved the other is helplessly compromised. This may be suggestively expressed in

the schematic form

∆Clear∆Right ≥ constant, (5.1)

reminiscent of eq. (3.30).

When students find this out for themselves it is not unlike entering hell in the

Divine Comedy.3

5.2 Problems with Historical Accounts

In historical accounts some details might be missed - either deliberately or

ignorantly. However, of more concern for us here is their lack of clarity. Consequently

we will not spend time here to discuss the problems of historical accounts as regards

to facts but we will only emphasize their pedagogical limitations.

Kuhn [2] tells us of some of the concerns common to these sorts of accounts.

More historical detail, whether of science’s present or of its past, or

more responsibility to the historical details that are presented, could only

give artificial status to human idiosyncrasy, error, and confusion. Why

dignify what science’s best and most persistent efforts have made possible

to discard? (p. 138)

2For a related discussion see also [24] (p. 127-130).
3In Dante’s classic The Divine Comedy the inscription above the doorway leading to hell read

“Abandon hope, all ye who enter here.”
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Indeed, including all the facts associated with each “dead end” pursued by each

researcher is impractical and surely confusing to students at an introductory level.

At that point students need a clear, linear progression that builds the concepts in a

logical way so as to make them as graspable as possible. Unfortunately this is not

how history typically unfolds. The development of science is often more messy than

it is linear. We usually run into several problems and backtrack several times before

making a small but successful advance. Sometimes paths are vigorously pursued

only to show they don’t yield the anticipated result.4 Thus, in the attempt to make

an explanation of the SGE correspond to the reality of the events, which for some

purposes is a worthy goal,5 for instructional purposes clarity is lost.

5.3 Problems with Thematic Accounts

On the other hand, the strength of thematic accounts of scientific events is

precisely their clarity. However, according to the dual relationship hinted at in eq.

(5.1) this implies only a crude correspondence to fact or reality. As the bulk of this

work will assess the accuracy of thematic accounts with a special emphasis on their

technical aspects (see the next chapter, in particular) we will spend the remainder of

this chapter developing these ideas.

5.3.1 An Artificial History

First, in a general sense opposite to historical accounts discussed in section

5.2 the thematic accounts of textbook or classroom discussions are very linear and

cumulative in their presentation and use of concepts. That is, before a particular

concept is needed in the description of an event that concept is either motivated or

derived from previous concepts. This of course removes concepts out of their historical

context and therefore assigns them an artificial and unscientifically acquired meaning.

This also necessitates the eventual acceptance of certain axioms which ultimately have

4While such a path may be fruitless as regarding the desired result, inasmuch as an understanding
of what definitely will not work is gained this is a vital step forward in producing progress.

5Since section 5.3.1 outlines problems with artificial histories it also indirectly discusses the
benefits of historically accurate accounts.
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no justification but are deemed useful. However, convenience is too often confused

with correctness. These considerations lead us to the conclusion that there is little

that necessarily corresponds to reality in these accounts. Their final justification is

only that they are clear and that they posses an accurate predictive power. This says

little, however, about the accuracy of the conceptual structure that had to be built

up.

From contrasting the thematic account in Chapter 3 with the historical one

of the Chapter 4 we can surmise that there are several misconceptions that students

could have after having been taught the SGE.

(1) The original SGE was observed several years prior to the development of

the quantum theory and spin. Hence, although it is often used as a confirmation or

demonstration of modern quantum concepts such as spin and measurement it was in

no way motivated by or intended for this purpose.

(2) The observation of the SGE actually confirmed the historically prevalent

theory of the time - the Bohr-Sommerfeld model of the atom - which is now considered

false. It did not surprise the experimenters for this is exactly what Stern had predicted

previously [25]. It did not signal the opening of an as yet unknown door in physics or

philosophy. Those doors had either already been open, such as with the Bohr model’s

quantization, or would not be open for years, such as the incorporation of spin into

the quantum framework. Instead it reinforced the relatively unexciting continuance

of the prevalent paradigm.

(3) It is interesting to note that the SGE clearly demonstrates how the right

results6 - even experimental results - can be used to justify an erroneous account

of the phenomena. They then can also be given canonical and defining status in a

completely new conceptual system [26]. This demonstrates well the subjectivity of

representations in science well.7

6This is clumsy language. Results can never be wrong especially in experimental physics; only
our questions or our interpretations of the results can be difficult.

7This is similar to the researcher who can always seem to get the answer he’s looking for precisely
because he’s looking so hard for it.
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Because it is the primary purpose of textbooks and all thematic accounts to

communicate a paradigm rather than to communicate facts they necessarily disguise

the process of paradigm formation and selection, which is the process of scientific

revolution.8 Kuhn [2] writes

The result [of the thematic approach of textbooks] is a persistent ten-

dency to make the history of science look linear or cumulative... The text-

book tendency to make the development of science linear hides a process

that lies at the heart of the most significant episodes of scientific develop-

ment. (p. 137-140)

Hiding the “significant episodes” in science is a general deficiency of thematic accounts

but the main strength of historical ones.

5.3.2 Misunderstanding the Practical Aspects of the Stern-Gerlach Effect

Related to misconceptions as to the historical ordering and significance of

events are the practical experimental considerations which we included in sections

4.2.1-4.2.3. They concern (1) the species of particle in the beam, (2) selection of

beam cross section, and (3) the type of magnetic field used.

The usual de-emphasis of these three points in thematic accounts of the SGE

has some interesting consequences.

(1) (See section 4.2.2) Because all the talk of the SGE is couched in terms of

spin-1/2 particles the idea, if not the word explicitly, of the electron is used. It is

considered the canonical spin-1/2 particle. However, this practice hides a whole field

of very interesting research. Students don’t realize that there is a time-dependence to

the magnetic field due to its approaching speed relative to the particle which exerts a

transverse Lorentz force on it. Because this phenomenon is dependent on the presence

of charge the SGE has never been observed with electrons. In fact, Bohr and Pauli,

among others were of the opinion that the electron SGE could never be observed [27].

8Kuhn asserts that this is shown by the fact that textbooks must be rewritten at the completion
of each paradigm shift, or revolution.
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It is awkward to use electrons as a canonical example of spin-1/2 particles when they

cannot display the SGE as do other spin-1/2 particles like silver.

Despite this, there is much research going on to overcome these blurring effects

with fruitful results (see [28]). Because this whole field opens more questions than it

answers, which compromises clarity, it is often neglected in thematic accounts.9

(2) (See section 4.2.3) The astute textbook reader might find an inconsistency

between what is said and what is shown. Typically when the idealized SGE is dis-

cussed in textbooks it is spoken of in terms of either a point-like or infinite plane wave

beam, if it is spoken of at all. However, when accompanied by an image of the original

trace of the experiment (see fig. 4.3(b)) it is confusing. If both the discussion and the

trace are taken as accurate then it can appear that there was a continuous blurring in

the horizontal direction as well as the discrete separation in the field direction. If this

is not explicitly dealt with it is inconsistent with the communicated interpretation

whereas if it is pointed out it can incorporate many unnecessary experimental details

making the account bulky and difficult.10

The previous point is especially important when considering the SGE as a

demonstration of quantum measurement because it is accepted that the entire exper-

imental context defines the phenomenon. In other words, if this is not made clear

then it is unclear as to what we are really measuring. Students may be left wondering

if a point-like SGE has ever been attempted and if not, why not? This is difficult to

determine from thematic accounts because so little is ever said about the specifics of

the collimation.

(3) (See section 4.2.1) As a discussion of the misconceptions regarding the

specifics of the magnetic field introduces the more technical aspects of thematic ac-

counts and has lead to numerous questions it is treated in its own section.

9This statement carries the implication that inquiry-based teaching is a tricky practice.
10Regardless of the beam cross sectional shape there is a “broadening” of the beam caused by “the

thermal distribution of velocities in the beam” mentioned in [16] (p. 176). This thermal blurring
would have occurred in both the parallel and transverse directions of the field but it is not due to
the SGE and spin. Careful students may confuse the broad transverse collimation (x-axis in fig.
4.3(a)) with thermal and spin blurring neither of which are deemed to have a significant effect in
the traditional SGE.
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5.4 The Choice of Magnetic Field

As we saw in section 3.1 the magnetic field

B = (B0 + bz)ẑ (5.2)

is the field typically used to theoretically represent the question that Stern and Ger-

lach asked. It is usually given in this form in many discussions of the SGE. It is

rarely mentioned however, especially in explicit terms, that there are other physical

constraints on the field.

Maxwell’s equations for all electromagnetic fields in vacuum specify that B

must satisfy

∇ ·B = 0 (5.3)

∇×B =
1

c2
∂

∂t
E (5.4)

where E is the electric field and c the speed of light. Because of eq. (5.3) B must be

inhomogeneous in at least two directions

∇ ·B =
∂

∂x
Bx +

∂

∂y
By +

∂

∂z
Bz = 0. (5.5)

So a better choice for the field would be

B = −bxx̂+ (B0 + bz)ẑ (5.6)

because
∂

∂x
Bx = − ∂

∂z
Bz. (5.7)

As a fortunate consequence ∇ × B = 0 so in accordance with eq. (5.4) there are

no dynamically changing fields. This is the simplest magnetic field that satisfies

the conditions of Stern and Gerlach’s question - it has an inhomogeneous part and

a clearly defined direction via B0ẑ - as well as Maxwell’s physical constraints. For

reasons of clarity the field is often not treated this way. This is however the difference

between a description of the SGE that is consistent with the fundamental equations

of electricity and magnetism. and one that is unphysical.
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It should also be pointed out that there is another constraint on the field.

It may prove important later to require the field to remain finite at all distances

r =
√
x2 + z2. As it is now, the field linearly blows up with increasing r away from

the origin. That is,

lim
r→∞

B = ∞. (5.8)

To get around this we can either append the field with an exponential factor that

enforces the required asymptotic fall off or merely truncate our range of interest to a

finite region. The second of these is more artificial than the first. These considerations

will be taken up in more detail in sections 7.5.7 and 7.8-7.9.

5.5 Precession Arguments

Notwithstanding the inaccuracies in the field of eq. (5.2), as we have shown,

it can still yield correct results. This indicates that there must be some physical

justification for neglecting it. When the necessary complication of the full field eq.

(5.6) is used it is the phenomenon of precession that is said to justify the neglect of

the transverse inhomogeneity. We will consider how this is done in both the classical

and quantum regimes.

5.5.1 Classical Precession

We have shown in section 3.1 and it has been more rigourously demonstrated

in [29] and [30] that the presence of the homogeneous field component B0 controlls

precession of the classical vector µ. From the torque equation

d

dt
µ = ω × µ (5.9)

µ can be found and substituted into the force equation eq. (3.5). [29] and [30] show

how when the time average of the force is calculated only the force in the z-direction

turns out to be non-zero. From this fact it is argued that the inclusion of precession

in the right way justifies the neglect of all x-oriented dynamics.
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It is interesting to consider what the “right way” consists of. Even in this clas-

sical picture the approximations are crude. As [30] explicitly points out the required

relation is not just that there is a homogeneous component to the field but that

|Bhomogeneous| � |Binhomogeneous| (5.10)

or, in the case of eq. (5.6)

|B0| � |br|. (5.11)

What is more subtle is that [30] then applies this particular criterion with the ap-

proximation that

B ≈ B0ẑ. (5.12)

In other words, the inequality eq. (5.11) is only useful if it justifies the complete

neglect of the inhomogeneity. So, in the classical treatment of [29] and [30], the field

necessary to induce adequate precession, i.e. a strong uniform field, is exactly the

field that prohibits the separation of spins by a net force, i.e. an inhomogeneous part.

This is crude at best and inconsistent at worst.

There is one further condition on the experimental set up that is required for

practitioners of classical physics to invoke the precession argument. Conditions must

be chosen such that the time of interaction, or the time it takes the particle to pass

through the region of space in which the field is significant, must be much greater

than the period of precession. This was assumed in performing the time averaging

integrals mentioned above. This condition allows the x-directed forces to adequately

“wash out.” Without this the average x-force would tend to favor one side or the

other (see fig. 5.1).

5.5.2 Quantum Precession

In thematic accounts in which the quantum version of the precession argument

is used to justify the use of a non-Maxwellian field configuration we realize that it is

the only the expectation value of the spin that precesses. Based on the discussion in

section 3.2.2 the interpretation of this statement is very subtle.
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(b) nT

(a)

3T

(n=3)

Figure 5.1: (a) If the time of interaction nT is roughly equivalent to or less than the period of
the precession frequency T , that is n ≤ 1 where n is the number of cycles is a given time, then
the net area between the precessing curve and the axis, i.e. the shaded region, is large. (b) If
n � 1 such that several precession cycles occur during the time of interaction nT then the portion
of the shaded region that does not cancel out is much smaller. In other words, for the same total
time of interaction the net shaded region for a slowly precessing spin is much larger than that for
a rapidly precessing spin. Inasmuch as the shaded region corresponds to the accumulated effect of
the transverse force in time, i.e. its time-average (see eq. (5.24) in the next section), the transverse
deflection of the beam only washes out in (b). For (a) we would still expect a significant transverse
deflection.

Note that in the present context we use “spin” Ŝ instead of “magnetic mo-

ment” µ̂ according to their relation

µ̂ =
ge

2m
Ŝ. (5.13)

Recall also that

Ŝ =
h̄

2
σ̂ (5.14)

where

σ̂x =

 0 1

1 0

 , σ̂y =

 0 −i

i 0

 , and σ̂z =

 1 0

0 −1

 (5.15)

as before.
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Precessing Expectation Values

In order to show this we consider a spin-1/2 particle in a uniform B-field

B = B0ẑ. (5.16)

Using this in the Hamiltonian

Ĥ = −µ̂ · B̂ (5.17)

we can find the energies

E↑↓ = ∓eB0h̄

2m
(5.18)

and general states

Ψ = ψ↑χ↑e
− i

h̄
E↑t + ψ↓χ↓e

− i
h̄

E↓t (5.19)

as we did in section 3.2.1

With these states, the expectation value of Ŝ, or more specifically 〈Ŝx〉, 〈Ŝy〉,

and 〈Ŝz〉, can be evaluated. For Ŝx we have

〈Ŝx〉 = 〈Ψ|Ŝx|Ψ〉 =
h̄

2

(
ψ∗↑ψ↓e

i
h̄
(E↓−E↑)t + ψ∗↓ψ↑e

i
h̄
(E↑−E↓)t

)
. (5.20)

Note that all the time-dependence is carried by factors that depend on the difference

of the energy of the two states, more specifically ±(E↑ − E↓).

Applying this procedure to Ŝy and Ŝz as well we get

〈Ŝx〉 =
h̄

2
sin θ0 cos

(
eB0

m
t

)
(5.21)

〈Ŝy〉 = − h̄
2

sin θ0 cos

(
eB0

m
t

)
(5.22)

〈Ŝz〉 =
h̄

2
cos θ0 (5.23)

where θ0 is the constant angle the spin vector makes with the field direction (see

fig. 3.2). Thus, as time progresses 〈Ŝz〉 is constant and 〈Ŝ〉transverse = 〈Ŝx〉x̂ + 〈Ŝy〉ŷ

rotates, or precesses, in the xy-plane.

To clearly see the effect of this precession on quantum expectation values

we take the time average. In general if we wanted to find the time average of some
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oscillating function f(t) where the frequency of oscillation is ω = 2π/T over n periods

T . We would evaluate

f(t)avg =
1

nT

∫ nT

0

f(t)dt (5.24)

Applying this averaging formula to the expectation values above we see that

〈Sx〉avg = 0 (5.25)

〈Sy〉avg = 0 (5.26)

〈Sz〉avg =
h̄

2
. (5.27)

Thus, over significant time intervals the expectation values 〈Ŝx〉 and 〈Ŝy〉 “wash out,”

or go to zero, whereas 〈Ŝz〉 is constant.

Problems with Precession

In the standard description of the SGE this “washing out” effect of the ex-

pectation values is referred to in order to justify the neglect of the transverse inho-

mogeneity of eq. (5.6) and the use of the divergenceless field eq. (5.2). Some merely

cite the classical case of the phenomenon as justification (see [3]) while others refer

to the fully quantum demonstration given above (see [1] and [11]). Even in the latter

case however, when the demonstration is explicit, it is inconsistent for at least three

reasons.

(1) The averaging procedure used above was only valid “over significant time

intervals” as compared to the precession period T (see discussion of fig. 5.1). This

was critical in justifying the precession arguments we used above. However, inasmuch

as the period depends on the various energy states E↑↓ as

T =
2π

ω
=

2πh̄

∓(E↑ − E↓)
(5.28)

this can only be rigorously justified after having an understanding of the energies of

the system. Because we use the precession argument to enable us to find the energies

we cannot also use the energies to justify the argument. This is circular reasoning.

Although intuitively easy, which is valuable, it is logically invalid and probably glosses

over several interesting questions.
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(2) The precessing solutions found in the homogeneous field of eq. (5.16) were

rigourously obtained but then subjectively applied to a completely different problem

- one involving the field of eq. (5.6). This assumes that the interaction of these

phenomena - the uniform and non-uniform parts of the field - is linear and can be

naively superposed. However, it will be seen in Chapter 7 that solving only the non-

uniform part is not at all trivial. This suggests that more than just a linear interaction

is occurring.

(3) Finally, just because the expectation value time-averages to zero doesn’t

mean the measured value is zero or even that it is close to zero! According to the

interpretation discussed in section 3.2.2 what we have shown here only implies that

the average of several measurements all performed on identical systems will be zero

but any one could be arbitrarily large. This says nothing about one measurement in

particular.11

From all these considerations it is obvious that at best the precession argu-

ment that is traditionally invoked in thematic accounts of the SGE disguises several

interesting questions and at worst is invalid and inaccurate.

5.5.3 Precession and the Uncertainty Principle

If there is a possibility that the precession argument is misapplied in the stan-

dard interpretation of the SGE then there is also a possibility of other misinterpreta-

tions. One of these has to do with the uncertainty principle.

We saw in section 3.2.4 that for any two non-commuting operators there is a

corresponding uncertainty relationship which is typically interpreted as a constraint

on the physical process of measurement. That is, as a quantity is measured to a

given degree of precision the quantum state of the system being measured is altered

in such a way as to limit the precision with which another conjugate quantity can be

simultaneously measured.

11Exactly how much it says about the distribution of a collection of many measurements is dictated
by eq. (3.31).
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Because the three components of the spin operator Ŝ do not mutually commute

they satisfy an uncertainty relationship as well

∆Ŝi∆Ŝj ≥ εijk
|〈Ŝk〉|

2
. (5.29)

We interpret this to mean that we cannot simultaneously measure two components

of the spin to an arbitrary degree of accuracy. It is precisely the phenomenon of

precession that allows this interpretation.

If for some reason precession could not be invoked as a valid occurrence then

in the SGE our classical intuition would lead us to believe that the particle would

arrive at the detection screen purely due to spin forces. If the particle were found

at a 45◦ angle from the location of the localized y-directed beam in the field then

we would assume the particle felt an equal force in both the x and z-directions. The

formalism tells us that these forces, and thus deflections, arise in proportion to the spin

component in the corresponding direction. Therefore, we would classically interpret

such a result as a simultaneous measurement of both the x and z-components of the

magnetic moment.

In a quantum context the same arguments apply but with more at stake. It

is the relative strength of one direction to the other that justifies the presence of

precession and it is this precession that gives the “washing out,” or ambiguity, of the

transverse spin components necessary to the standard interpretation of the SGE in

terms of the uncertainty principle. From this it seems that if the preferred direc-

tion were removed for the Stern-Gerlach measurement of a single particle, precession

would also be removed and there would be nothing to rescue us from simultaneously

measuring, or assigning definite values to, two orthogonal spin components of a sin-

gle particle. Thus, it is possible that our present understanding of the uncertainty

principle only follows from our choice of field and not from the nature of the particles

themselves.

We accordingly will use the problems outlined here as a motivation and guide

to the work and questions of the next chapter. In addition to the broad problems

outlined so far there are many other smaller and more specific problems that arise

60



in discussions of the SGE. These will be brought up in the appropriate places in the

next chapter as we investigate the nature of the SGE in several contexts and in more

depth. This offers us several interesting possibilities for not only gaining a deeper

understanding of the SGE but, more generally, of our interpretations of physics.
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Chapter 6

The Proposal

The SGE is widely thought to have a description that is not only conceptually

very clean with relatively few mathematical technicalities but that clearly demon-

strates some fundamental characteristics of quantum behavior. Yet despite its clear

break from classical expectations as we saw in the previous chapter our justifications

for the SGE description have yet to break free of classical traditions. Consequently,

there are few, if any, fully quantum descriptions that do not make reference to out-

dated notions.1

As an example of this, we see that in order to motivate the use of a magnetic

field which clearly violates Maxwell’s equations many authors cite and/or derive the

classical phenomenon of precession. When particular experimental conditions are

met, i.e. n � 1, this causes an averaging away of spin components transverse to

the magnetic field so that the transverse behavior can be ignored from the begin-

ning. However, as we saw in section 5.5 this is an ad hoc assumption and has not

been shown to easily follow from rigorous solutions. We are therefore unaware of

its implications. In addition, while this approach may be sufficient classically when

applied to quantum mechanical descriptions of nature only expectation values can

be expected to precess. Invoking this argument then in reference to the SGE blurs

the distinction between classical and quantum conceptual systems which, because of

their stark differences and the necessity of clear and consistent conceptual represen-

tations for rational communication (see section 2.1), leads to further confusion. If

1[31] and [32] are interesting papers that make reference and attempt to correct this dearth of
quantum treatments of the SGE so work in this area is mounting.
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the quantum formalism is complete it should provide us with an appropriate basis

for describing the SGE.2 Not only will this demonstrate consistency but it will allow

us to uncover questions that have previously remained unasked merely because of

self-enforced conceptual boundaries.

6.1 Motivation: Positivist and Realist Representations

The formulation of a specific question that attempts to reveal the true nature

and applicability of the SGE with its precession arguments can be motivated by

contrasting two opposing conceptual, or representational, systems. We will call these

the positivist and realist views (see [1] and [10]).

The positivist position, which most closely resembles the orthodox or main-

stream position, has become known as the Copenhagen interpretation. It states that

prior to the measurement of a particular quantum property that property ontologi-

cally3 did not have a well defined value. It is the act of measurement that compels

the particle to assume a definite value. In terms of a spin measurement via a Stern-

Gerlach apparatus, spin is not considered definite, i.e. it is not considered to take

on one orientation or one magnitude, until the particle strikes the detection plate.4

Prior to this, the most that can be said of the particle’s “spin” is that it was in an

ontological superposition of spin “up” and “down” states. In terms of position the

particle was in a superposition of deflecting “up” and deflecting “down”.

2Because we have spoken of the SGE as an axiom of modern physics there could be an interesting
discussion here on the applicability of Gödel’s Incompleteness Theorem.

3This is the most controversial word in the debate between interpretive schemes in physics. As we
will see shortly realists would replace it with “epistemologically.” Although we will use these concepts
here it should be realized that the specific identification of the content of the realist and positivist
positions is difficult because there is so little consensus as to particulars. There are intermediary
positions in which existence is still independent of measurement but completely unapproachable due
to its effects. Philosophically this might correspond to variants of Kant’s discussion of noumena and
phenomena. We choose to use these basis concepts in their orthogonal form so as to increase the
clarity of the discussion.

4This statement emphasizes clarity at the expense of rightness. Exactly when measurement
occurs is an open question contributing to the quantum problem of measurement summarized in
section 3.2.3. Does it occur upon collision of the particle with the plate, with the gaze of a conscious
observer, or somewhere in between (see [13] and [14])? In an ironic twist of quantum fate because
we cannot measure measurement it seems we will never quite have a definite answer.
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In the realist opinion, these properties exist independent of the measurement

process but are affected in complicated ways by it. In other words, the existence of

these properties is independent but their specific value is not.5 As applied to spin,

in this view there is always a spin property to a particle, perhaps with value zero,

though its particular orientation and magnitude are changed in ways that are heavily

dependent upon the entire experimental arrangement, i.e. the distance to the screen,

the orientation of the field, etc. [14].6

Because in the positivist view the spin is not said to be an element of reality

until measurement occurs it seems inconsistent to invoke the precession argument to

justify the neglect of part of the field. Its neglect must be attributed to something

other than the property of spin. The realist view has no such problem. In this sense,

the SGE could help direct our interpretations of physics along either more realist and

positivist lines.

6.2 The Necessity of Precession and the Magnetic Field

Because developing a deeper understanding of the SGE depends critically on

the precession argument we must ascertain the true effect of precession, its validity,

and its range of applicability. This can be done by considering its interaction with the

spin or magnetic moment and its dependence on the homogeneous field component.

Is there any reason to apply this homogeneous field component? Its only

purpose classically seems to be to induce precession about the direction of interest

so that only components in that direction will be clearly observed. As mentioned in

section 5.5.3 the question becomes more interesting when we consider its implications

in the quantum picture.

Although it seems it was introduced historically only to label the direction of

interest it seems it has been preserved through the quantum revolution only because

our conceptual picture, the prevailing positivist view, requires it. Put differently,

whereas in the old paradigm it was justified by our desire to measure only a single

5[5] outlines both the realist metaphysics and epistemology that has most influenced this thesis.
6[33] is a more technical development of the ideas and interpretation in [14].
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component of the magnetic moment, it has now become the justification for our belief

that measuring only one component is possible, via the uncertainty principle.

This demonstrates the little noticed effect of paradigm on experimental prac-

tice. Kuhn [2] explains that

consciously or not, the decision to employ a particular piece of ap-

paratus and to use it in a particular way [as with the homogeneous field

component] carries an assumption that only certain sorts of circumstances

will arise. (p. 59)

In addition to the usual theoretical expectations these instrumental expectations

“have often played a decisive role in scientific development.”

6.3 Proposal: The Inhomogeneous Stern-Gerlach Effect

The most direct way that we propose to discover the true nature and effect

of the precession argument on not only the measurement of spin but on our theoret-

ical description and general interpretation of measurement as well is to theoretically

remove the homogeneous field component B0 which selects a universally preferred

direction and which is largely the precession inducing agent. More explicitly, we

propose to solve the SGE with a beam travelling in the y-direction by replacing the

typically studied field configuration

B = (B0 + bz)ẑ (6.1)

with the its more natural choice

B = −bxx̂+ (B0 + bz)ẑ. (6.2)

Here B0 is only included so that by it the phenomenon of precession can be explicitly

shown as opposed to its usual imposition. We can then either set B0 = 0 in order to

solve the inhomogeneous SGE (ISGE) or leave it as a large non-zero constant to test

the known Stern-Gerlach limit.

Note that either choice is physically consistent with the requirement that

∇ ·B = 0. (6.3)
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The field does however blow up linearly far away from the origin.

6.3.1 The Experimental Arrangement

If we consider the physical realization of this field we can perhaps avoid this

difficulty. If we set B0 = 0 the field eq. (6.2) may be considered an approximation

to a configuration of four parallel wires carrying current I located at the four corners

of a rectangle of sides 2x1 and 2z1 (see fig. 6.1(a)). With the origin in the xz-plane

equidistant from each wire the field may be described by the column vector

B =

 Bx

Bz

 = (6.4)

=
µ0I

2π

 z1−z
(x1+x)2+(z1−z)2

− z1−z
(x1−x)2+(z1−z)2

+ z1+z
(x1+x)2+(z1+z)2

− z1+z
(x1−x)2+(z1+z)2

x1+x
(x1+x)2+(z1−z)2

+ x1−x
(x1−x)2+(z1−z)2

− x1+x
(x1+x)2+(z1+z)2

− x1−x
(x1−x)2+(z1+z)2


where the coordinate origin is naturally chosen at the field center.

At (0, 0) there is absolutely no field only a gradient b which can be arbitrarily

large. For us it would be ideal to send a point beam along the y-direction. This is

however impossible. Practically, the beam must have some non-zero width. However,

1x

1z
x

z

(a)
(b)

Figure 6.1: (a) An arrangement of 4 long, parallel wires lying in the y-direction. The dots
represent current flowing out of the page and the crosses represent current flowing into the page.
(b) A plot of the vector field produced by the four wire set up in (a) near the origin.
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if we merely restrict ourselves to behavior near the origin we can drop all orders of x

and z that are second order or greater. For simplicity we will also take x1 = z1, i.e.

the wires arranged in a square. Doing this arrives at precisely the field of eq. (6.2)

with B0 = 0. In our search for solutions we must remember that any solutions we

find are only valid for small x and z. Sending a beam of neutral spin-1/2 particles,

i.e. neutral silver atoms, along the y-axis in such a field will exhibit the ISGE.

(a) (b) (c) (d)

Figure 6.2: There are at least four possible outcomes of the ISGE. They are: (a) The beam
splits in both x and z-directions, (b) the beam splits in the radial direction only, (c) the beam splits
into two angular directions only, and (d) the beam does not split but blurs in all directions. Some
blurring will arise from collimation so in this last case it would be important to note whether the
observed blurring was attributable to spin separations.

6.3.2 Possible Outcomes

In the case that B0 = 0 what beam trace can we expect? Fig. 6.2 shows four

possibilities. If we choose the experimental conditions, i.e. the time of interaction

nT and the strength of the field gradient b, so as to further invalidate precession

arguments any result would be instructive. Moreover, because of the absence of

precession, if the experiment is performed with only a single particle its deflection

and detection anywhere on the plate would naively define 2-components of the “force”

or, consequently, 2-components of the spin. For reasons discussed in section 5.5.3 this

is of extreme interest.
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Chapter 7

A More Complete Study of the Stern-Gerlach Effect

In accordance with the proposal of the previous chapter we seek here to find

solutions and insights into the Stern-Gerlach Effect (SGE) via the Inhomogeneous

Stern-Gerlach Effect (ISGE). Because of the difficulty and nature of the task we will

represent this problem using several solution methods, formalisms, and pictures in an

attempt to fully understand this effect in a quantum context along with its theoretical

and philosophical implications.

7.1 A Matrix Representation in an Inertial Frame

In order to gain an initial familiarity with the full SGE, and in particular the

ISGE, we can follow the method used in Chapter 3 only with the slightly modified

field eq. (6.2). We begin with a Hamiltonian operator describing the ideally impulsive

interaction of duration T as

Ĥ(t) =



0 for t < 0

− e
m

h̄
2

 (B0 + bz) −bx

−bx −(B0 + bz)

 for 0 ≤ t ≤ T

0 for t > T

. (7.1)

7.1.1 The Assumptions

This is a special representation of the Stern-Gerlach Hamiltonian. As was

stated, but not discussed, in Chapter 3 it treats the dynamics from the frame of the

particles in the beam which we take to be inertial. As this assigns the definite value
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of zero to the operators p̂x and p̂z it correspondingly limits the possible definition of

the position according to eq. (3.30). The incoming beam is therefore a plane wave

travelling purely in the y-direction with infinite extent in the x and z-directions. As it

was shown in Chapter 3 the y-behavior can be separated off without any assumption

on p̂y.

For completeness we should also consider the effects of the idealization in-

volving the impulsive field. In reality no field can be turned on infinitely quick or

confined perfectly to a given region of space without some variation. In our case,

in the rest frame of the beam particles, this would be manifest as a time-varying

B-field, which via Maxwell’s equation eq. (5.4) sources electric fields. This could

cause some complicated effects as the particle enters and exits the field. However, a

numerical treatment of the ISGE involving charged particles and using a field with

a non-zero “turn-on” and “turn-off” time showed no significant differences from the

idealized case [28]. Because of this and because we have chosen to work only with

neutral particles we think that the idealization of an impulsive field is adequate.

7.1.2 The Eigenstates

The energies can be found in the same manner as in section 3.2.5 with a similar

result. We get

E↑↓ = ∓ eh̄

2m

√
(bx)2 + (bz +B0)2. (7.2)

where the ↑↓ refer to two possibly resultant states as represented in the z-basis. We

should also point out the apparent spatial dependence of the energies. This was also

present in the treatment in Chapter 3. In order to make sense out of these spatially

dependent eigenvalues the factors of x and z in eq. (7.2) should be thought of as

parameters and not as spatial coordinates. If the beam were localized enough they

might refer to the coordinates of the peak of the beam packet in the xz-plane. But for

a beam that is extended compared to the region of interest as we have, (x, z) could

be thought of as the initial position of the particles within the beam as in a realist,

or pilot-wave-type visualization (see section 7.9.1 for further discussion). Either way,

they should be thought of as parameters and not variables.
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Although we will not need them we point out that the eigenvalues eq. (7.2)

correspond respectively to the non-normalized eigenstates

|ψ↑↓〉 =

 1

− p2
↑↓

eh̄bx
+ B0

bx
+ z

x

 (7.3)

with p2
↑↓ = 2mE↑↓.

For t < 0 the field is off so we have a free particle at rest since Ĥ = 0 (E = 0).

At t = 0 the field is switched on and as we found earlier the states are describable as

Ψ = ψ↑χ↑e
i e
2m

√
(bx)2+(bz+B0)2t + ψ↓χ↓e

−i e
2m

√
(bx)2+(bz+B0)2t. (7.4)

This persists until t = T after which the particle is again unaffected so the final states

can be found by merely evaluating eq. (7.4) at t = T .

Before moving on we’d like to explicitly point out three very subtle assumptions

that are made in the approach used here and in section 3.2.5.

(1) Before entering the field region we assume the particle is at rest, or we

consider the system from the rest frame of the particles. However, after emerging

from the field we have supposedly shown how the particle has picked up a momentum

that cause separation of the spin components. In general we cannot neglect the kinetic

energy any longer and should append a propagating factor e−ip2t/2h̄m. Therefore, in

this we have assumed that somehow the acquired energy is negligible.

(2) We said our results in Chapter 3 corroborated the experimentally observed

result because it clearly showed two distinct momenta entangled with the spin prop-

erties of the particles. It was actually two infinite plane waves moving with equal

and opposite momenta. Thus, based on our treatment in Chapter 3 we would expect

nothing but an infinite blur upon measurement because of the infinite uncertainty in

the position of the particles in the beam. Two distinct traces will not occur.

(3) Finally, in Chapter 3 but even more so here the interpretation of the ↑↓

is unclear. As far as we can tell it references the eigenstates of the Hamiltonian

operator. In the present context that is eq. (7.3).
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7.1.3 Demonstrating Precession

If we take the limit that ε is small where ε = b/B0 such that |B0| >> |br| for

all relevant values of r =
√
x2 + z2 we can demonstrate the effect of the precession

argument but without reference to the classical or quantum concept of precession.

If we expand the squares in the phase ϑ of eq. (7.4) acquired after time T we

can write

ϑ = ±i e
2m

√
B2

0 + 2B0bz + (br)2T. (7.5)

Since we take B0 to be large let us factor it out of the radical

ϑ = ±ieB0

2m

√
1 +

2bz

B0

+

(
br

B0

)2

T (7.6)

Expanding the radical for small ε we get

√
1 + 2εz + ε2r2 = 1 + εz +

ε2

2
x2 + ... (7.7)

So to first order the phase is

ϑ = ±i e
2m

(B0 + bz)T (7.8)

which is exactly the phase of the solutions we found in Chapter 3 (see eq. (3.38)).

This is a purely mathematical demonstration of what is happening in the standard

derivations of the SGE. It shows that despite the logical and mathematical heuristics

that often go into making a thematic discussion of the SGE intuitive there is a more

mathematical and clearly demonstrable reason the physical picture works. Whether

precession accounts for this is a matter of interpretation.

7.1.4 The Inhomogeneous Stern-Gerlach Effect

Now that we can clearly see how B0 justifies the precession picture and the

neglect of the x-directed field we can let B0 → 0 to solve the ISGE. This should

clarify the role of precession even further.

Returning to eq. (7.4), but with B0 = 0, we can write the final inhomogeneous

Stern-Gerlach states

Ψ = ψ↑χ↑e
i
h̄
( ebTh̄

2m
)r + ψ↓χ↓e

− i
h̄
( ebTh̄

2m
)r. (7.9)
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t

rp+

(a)

(b)

spin “up”
moves “out”
spin “up”

moves “out”

rp−
spin “down”

moves in
spin “down”

moves in

Figure 7.1: As time progresses (to the right) the spins separate radially “up” or “down” depending
on their spin orientation relative to the radial direction.

Using the same arguments as in section 3.2.5 we may interpret this as two circular

waves travelling either radially outward or inward with a momentum

pr = ±ebT h̄
2m

(7.10)

depending on its spin’s projection along the r-axis. Relative to this axis the spin

“ups” move radially outward while the spin “downs” move towards and through the

center of the field.

7.2 Position and Momentum Representations

With an idea of what the solutions might behave like we can now attempt a

more rigorous solution that involves fewer assumptions and compare. We begin this

process with the time-dependent Schrödinger equation with operators in x-space

ih̄
∂

∂t
|Ψ〉 = − h̄2

2m
∇2|Ψ〉+ V̂ |Ψ〉, (7.11)
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where

|Ψ〉 = Ψ↑χ↑ + Ψ↓χ↓ =

 Ψ↑

Ψ↓

 (7.12)

is a spinor. In our case the potential energy arises from the interaction of the magnetic

moment µ̂, or spin Ŝ, with the field B̂. That is,

V̂ = −µ̂ · B̂. (7.13)

If we use the previous definitions of µ̂ in terms of the Pauli spin matrices σ̂j we have

ih̄
∂

∂t
|Ψ〉 = − h̄2

2m
∇2|Ψ〉 − e

m

h̄

2
σ̂ · B̂|Ψ〉. (7.14)

We can easily separate off both the time and y-dependence using the same

procedure as in section 3.2. Assuming |Ψ〉 = T (t)Y (y)|ψ(x, z)〉 we get the three

equations

T (t) = T (0)e−iEt/h̄ (7.15)

Y (y) = Y (0)eikyy (7.16)

k2|ψ〉 = −∇2|ψ〉 − e

h̄
σ̂ · B̂|ψ〉, (7.17)

where E and ky are separation constants and k2 = 2mE/h̄2 − k2
y. Using the full field

of eq. (6.2) and standard representation for the Pauli matrices σ̂j we can write the

matrix equation for |ψ〉 as two, coupled differential equations for the spin “up” and

“down” components1

k2ψ↑↓ = −∇2ψ↑↓ +
eb

h̄

[
xψ↓↑ ∓ zψ↑↓

]
∓ eB0

h̄
ψ↑↓. (7.18)

Here and throughout the remainder of this work this compact notation is used in

which the top (bottom) signs in ∓ correspond to the first (second) subscript of ψ↑↓.

In order to arrive at analytic solutions of this equation the “up” and “down”

components must be decoupled. To do this would require applying the laplacian

operator, ∇2, to both equations. Although this decouples the “up” and “down”

1Recall that “up” and “down” are in quotes only because they are terms relative to the basis by
which we represented their spin operators. In our case, “up” and “down” in z.
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behavior it also yields two fourth order partial differential equations (PDEs). This

effectively prohibits us from using familiar differential equation solution techniques

because they are typically only formulated for second order equations.

We conclude that although x-space is an intuitive space to work in this context

it requires techniques that we do not have. We can then transform eq. (7.18) into an

“orthogonal” representation in hopes that the tradeoff between intuition and technical

detail will be in our favor.

As it turns out, this is precisely what happens when mapping these equations

to p-space. When making this change from x to p-space, via a Fourier transformation,

we make the following changes

xj → ih̄
∂

∂pj

(7.19)

−ih̄ ∂

∂xj

→ pj, (7.20)

that is, the coordinates become operators and the operators become coordinates. We

also realize that

ψ↑↓(x, z) → φ↑↓(px, pz). (7.21)

Making this change eq. (7.18) becomes

h̄2k2φ↑↓ = (p2
x + p2

z)φ↑↓ + iebh̄2

[
∂

∂px

φ↓↑ ∓
∂

∂pz

φ↑↓

]
∓ eB0h̄φ↑↓, (7.22)

in the momentum representation.

For convenience we write this in dimensionless form

∂

∂px

φ↓↑ ∓
∂

∂pz

φ↑↓ = −i
[
ξ − α(p2

x + p2
z)± β

]
φ↑↓ (7.23)

where ξ ≡ k2h̄/e∆b is a unitless energy, α ≡ h̄/e∆3b, and β ≡ B0/∆b is the ratio of

the homogeneous to the inhomogeneous field. ∆ is a characteristic length scale of the

system. Note also that the pj are now dimensionless momentum variables.

The utility of this particular representation is that the derivative properties

of x-space are replaced with algebraic properties in p-space. Thus, the fourth order

PDEs with quadratic terms in x and z that would arise from decoupling in x-space
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+f

−f
↑φ

↓−φ

↓+φ

Figure 7.2: f± can be thought of as a set of vectors in the imaginary plane with components
±φ↑↓. It is easier to decouple eq. (7.23) when it is rewritten in terms of f±.

now yields a simpler result. We get second order PDEs that are now quartic in the

coordinates px and pz. Applying well known solution methods for PDEs therefore

becomes much more straightforward.

7.3 Rotated and Unrotated Representations: Decoupling

As it turns out, in the present form the decoupling process is quite messy. We

can however rotate the basis in which they are represented in the complex plane and

simplify the process.

It is useful to note that this is the same approach that we used in section

2.2.1 in which we rotated the coordinate system with which we described an object

in order to simplify it algebraically except that now our objects are complex. Thus,

this rotation can take place in the complex plane.

For simplicity, instead of dealing with the functions φ↑↓ we now choose to

introduce the functions f± where

f± = φ↑ ± iφ↓. (7.24)

76



Because the function f± is a linear combination of the φ↑↓ it can be thought of as

a simple 2-dimensional complex vector represented in the 2-dimensional φ-basis (see

fig. 7.2).2

Rewriting eq. (7.23) we get

L̂±f∓ = ∓
[
ξ − α(p2

x + p2
z)

]
f± (7.25)

where L̂± is an operator of the form

L̂± ≡
∂

∂px

± i
∂

∂pz

± β (7.26)

Keep in mind that these equations are actually a set of two equations written in a

compact form.

With the introduction of f± the decoupling of these equations is simpler. By

applying L̂∓ to eq. (7.25) we can decouple to get

A2L̂±L̂∓f± + AL̂±AL̂∓f± + f± = 0 (7.27)

where A is the function

A(px, pz) ≡
1

ξ − α(p2
x + p2

z)
. (7.28)

Eq. (7.27) is two decoupled second order PDEs.

7.4 Cartesian and Polar Representations: Separation

If the px-dependence can be separated from the pz-dependence then this equa-

tion can be treated as two ODEs instead of two PDEs which is a great simplification.

Unfortunately in the Cartesian representation such separation is not possible.

However we have noted that by transforming our coordinate system from a

Cartesian to a polar form we can simplify the function A. Instead of being a function

of 2 variables, with the polar substitutions

ρ2 = p2
x + p2

z (7.29)

ϕ = arctan

(
pz

px

)
(7.30)

2It is also interesting to note the similarity of f± to right and left circularly polarized light. What
this exactly means in the context of spin, for example, what sort of apparatus would filter these spin
polarizations, is an interesting, and open, question.

77



in momentum coordinates the function A becomes a function of only one variable.

Due to this symmetry the equations simplify. In fact, in the limit that β → 0, which

is the ISGE case, they become separable. In particular, the equations for f± become

0 = (ξ − αρ2)
(
ρ2f±ρρ + f±ϕϕ

)
+ ρ(ξ + αρ2)f±ρ

∓ 2iαρ2f±ϕ +
(
α3ρ8 − 3α2ξρ6 + 3αξ2ρ4 − ξ3ρ2

)
f±, (7.31)

where each occurrence of the ρ or ϕ in the subscripts denote a partial derivative with

respect to the corresponding variable.

For purposes of greater economy we let

ρ→ +

√
ξ

α

√
ρ (7.32)

giving eq. (7.31) the form

(1− ρ)
(
4ρ2f±ρρ + f±ϕϕ

)
+ 4ρf±ρ ∓ 2iρf±ϕ +

ξ3

α
ρ
(
ρ3 − 3ρ2 + 3ρ− 1

)
f± = 0. (7.33)

We can now see that

f±(ρ, ϕ) = R±(ρ)P±(ϕ) (7.34)

is a suitable separation ansatz if we choose

P±(ϕ) = ein±ϕ (7.35)

as the solution to the angular part. By the single-valuedness requirement we know

n± can take on only integer values, n± = ...,−2,−1, 0, 1, 2, .... With ζ = α/ξ3 the

radial momentum equation then becomes

R
′′

± +
1

ρ(1− ρ)
R

′

± −

[
ρ4 − 3ρ3 + 3ρ2 −

(
1 + ζn±(n± ± 2)

)
ρ+ ζn2

±

]
4ζρ2(1− ρ)

R± = 0, (7.36)

an ODE in standard form with primes representing total derivatives. It is interesting

to note that R± is real valued and that P+(ϕ) is unchanged from P−(ϕ) except for

the particular integer n+ or n−. Also, the appropriate free particle solutions can be

recovered in the limit as the entire field is turned off, i.e. ζ → 0.
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7.5 Series Solution Representation

One of the most familiar solution techniques for a second order ODE such as

we have is the Frobenius method. We first consult Fuchs’ theorem for the applicability

of this method.

7.5.1 Singularity Structure and Fuchs’ Theorem

Fuchs’ theorem states that

...we can always obtain at least one power-series solution, provided we

are expanding about a point that is an ordinary point or at worst a regular

singular point [34]. (p. 527)

Expansion about any other type of point may yield a solution. This theorem dictates

only when obtaining a solution is guaranteed.

Following the methods of [34] (p. 516-517) it can be shown that eq. (7.36) has

regular singluar points at ρ = 0, 1 and an irregular singular point at ρ = ∞. Choosing

to do a Frobenius expansion about ρ = 0 is then the most straightforward choice.

7.5.2 The Indicial Equation

Using a series form3 for R±

R±(ρ) =
∞∑

j=0

(a±)jρ
λ±+j (7.37)

we can arrive at the indicial relation for λ±

λ± = ±n±
2
. (7.38)

Note that eq. (7.38) actually expresses four equations: the λ+ = ±n+/2 correspond

to R+ and the λ− = ±n−/2 correspond to R−. In both cases we will take λ± to be

the larger of the two roots, i.e. the + solutions. Therefore, λ± = +n±/2, which are

half-integers.

3Parentheses have been placed around the coefficients (a±)j to avoid associating the ± with the
index j. They refer respectively to R±.
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7.5.3 Recurrence Relation

With the roots of the indicial equation we obtain a 5-term recurrence relation

indexed by j

(a±)j =
(a±)j−4 − 3(a±)j−3 + 3(a±)j−2 −

[
1 + 4ζ

[
n±(ε± − j)− j(j − 3)− 2

]]
(a±)j−1

4ζj(j + n±)
(7.39)

where

ε± =

2 for +, corresponding to R+

1 for −, corresponding to R−

(7.40)

If we allow n± to range over negative values the coefficients blow up. This may give

us a physical constraint on n±.

Following a promising comment by [35] (p. 532) we make every attempt to

reduce the number of terms in this recurrence relation from 5 to 3, perhaps even 2.

7.5.4 Extracting Asymptotic Behavior

Often the structure of the recurrence relation can be simplified if by some

informed guess the asymptotic behavior can be extracted. This method is often

employed when solving the quantum simple harmonic oscillator as in [1] and [36].

Unfortunately employing the same method here in various ways yielded no

simplified result. In fact, in many cases by extracting the behavior complicated the

structure of the recurrence relation giving us 8 or 9 terms.

This suggests that we have hit some “critical mass” or “local minimum” of

mathematical sophistication in eq. (7.36) beyond which the problem increases in com-

plexity. This is typical of non-linear systems as it seems that a simple combination of

more basic parts can’t be trivially assembled to describe the full behavior. Neverthe-

less, this is how many standard discussions proceed. The precession or quantization

behavior is superposed with the classical description and concepts in order to achieve

some understanding. There may still exist however some more obscure choice in the

extraction method by which the recurrence relation is simplified. This is suggested

by [35].
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7.5.5 Series Truncation

Another common method also used in [1] and [36] to solve the quantum simple

harmonic oscillator involves the truncation of the series. If a set of conditions can

be found so as to force an appropriate set of consecutive coefficients in the series to

go to zero then, by the recurrence relation, all succeeding coefficients will be zero as

well. This truncates the infinite series into a finite polynomial. In the case of the

simple harmonic oscillator this choice also provides the quantization condition on the

energies.

However, because eq. (7.39) is a 5-term recurrence relation there are 4 inde-

pendent conditions that must be made to go to zero in order to ensure all succeeding

terms vanish as well. Four consistent conditions could not be found.

Although this is not a definitive proof it is evidence that in studying the ISGE

we should not expect a quantization similar to that of the quantum simple harmonic

oscillator. This realization can serve as a guide as to which systems we can model our

solution methods and intuition after. For example, scattering and unbound systems

might be preferred.

7.5.6 Radius of Convergence

Despite the comments of [35] there remains no obvious way of reducing our

recurrence relation to two or three terms. In order to rigorously test the convergence

of the series a more compact form for the recurrence relation is needed. However,

from numerical testing of convergence and from the location of the regular singularity

at ρ = 1 we conclude that the radius of convergence for the solutions to eq. (7.36) is

ρ = 1.

This tells us that the solutions we seek, if we could find them, are not normal-

izable for −∞ < px <∞ and −∞ < pz <∞. By Parseval’s theorem this implies that

the solutions are also not normalizable for −∞ < x < ∞ and −∞ < z < ∞ in the

x-representation. This suggests that whatever solutions we are looking for are either

unphysical or require some subtle normalization procedure as in the delta-function

normalization of plane waves. This may either be a result of the nature of the ISGE
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or of our crude and approximate field eq. (6.2) which we noted is unphysical since it

blows up as r → ±∞.4

7.5.7 Near-Origin Approximation

In replacing the four wire field of eq. (6.4) with the approximate field of eq.

(6.2) with B0 = 0 we limited ourselves only to a study of the system’s behavior near

the spatial origin. The solutions we have generated are therefore only valid in this

region. It is reasonable to assume then that if in eq. (7.36) we keep terms only up

to first order in x and z, so as to focus on solutions for small values of x and z, i.e.

near the origin, that we are actually only excluding insignificant behavior.

There is one complication however that should be considered. While this ap-

proximation is straightforward in x-space we are now operating in p-space which intro-

duces other subtleties. For example, in the transformation from the x-representation

to the p-representation we know that

xn
j → (ih̄)n ∂

∂pn
j

(7.41)

which can be seen by a Fourier transformation. So higher powers of xj become higher

order derivatives with respect to pj. In other words, the behavior of the solutions

near the origin in x-space is encoded in the curvature of the solutions everywhere

in p-space. Thus, in the process of keeping only near-origin behavior we will drop

all second order derivative terms from eq. (7.36). Although this seems to make the

appropriate restriction the neglect of derivatives in an ODE typically changes the

nature of the equation completely. Thus, the question remains open as to how crude

this is as an approximation.

Perhaps the neglect of second order derivatives is no more crude than it was in

the x-space method used in Chapter 3. There we assumed we could derive a solution

in the rest frame of the particles. Since a reasonable result was obtained there it didn’t

seem to be too restrictive although it involved dropping the second order derivative

operator ∇2. This effectively defined the particle momentum in x and z as exactly

4It is unknown why both Fuchs’ theorem and the comment in [35] have not been substantiated.
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zero, which by the uncertainty relation eq. (3.30), completely blurs its position in the

corresponding plane. Thus, it was equivalent to describing the beam as an infinite

plane wave.

In the context we use it here the approximation is not so clearly understood.

It is however mathematically equivalent so we have good reason to believe that it has

a similar although much less familiar interpretation.

Having said this we make the approximation and our second order ODE of eq.

(7.36) reduces to first order. This can be easily integrated. Combining again with

the angular solutions with n+ = n and n− = m, we get

φnm↑↓ =
ε↑↓
2
e

ρ
16ζ (ρ3−4ρ2+6ρ−4)

[
Anmρ

n2/4e−ρ n
2
(n
2
+1)einϕ ± Bnmρ

m2/4e−ρ m
2

(m
2
−1)eimϕ

]
(7.42)

where

ε↑↓ =

1, for ↑

−i, for ↓
(7.43)

These are the stationary state wave functions for the “up” and “down” components

near the origin in p-space for the ISGE. A general solution would be a linear com-

bination of these with the appropriate py and t behaviors appended since they have

been separated off.

The probability density (PD) of either the “up” or “down” components for a

particular choice of n and m is found using

PD = φ∗↑↓φ↑↓. (7.44)

Applying this to our solutions for a particular choice of n and m we get

φ∗↑↓φ↑↓ = ±1

4
e

ρ
8ζ (ρ3−4ρ2+6ρ−4)

[
|Anm|2ρn2/2e−ρn(n

2
+1) + |Bnm|2ρm2/2e−ρm(m

2
−1)

± ρ(n2+m2)/4e−ρ(n
2
(n
2
+1)+m

2
(m

2
−1))

{
AnmB

∗
nme

i(n−m)ϕ + A∗nmBnme
−i(n−m)ϕ

}]
(7.45)

where Anm and Bnm are constants of integration.
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Realize that Anm and Bnm relate to R±(0). This in turn relates to f±(0) which

relates to both φ↑↓(0). Furthermore, eq. (7.45) is a probability density for a given

spin in p-space. Thus, it is not trivial to correlate Anm and Bnm to the initial spin

states or give eq. (7.42) or eq. (7.45) a clear physical interpretation.

7.6 The Confluent Heun Equation

We could also take advantage of the fact that eq. (7.36) has a similar singu-

larity structure as the Heun equation (see [37], [38])

y
′′
(x) +

[
a1

x
+

a2

x− 1
+
a1 + a2

x− x0

+
a3

x2
+

a4

(x− 1)2
+

a5

(x− x0)2

]
y(x) = 0. (7.46)

This is in normal form. It has one regular singularity at each of four points x =

0, 1, x0,∞.

By conflating the singularities x = x0 and x = ∞ we get the confluent Heun

equation (CHE)

y
′′
(x) +

[
ã0 +

ã1

x
+

ã2

x− 1
+
ã3

x2
+

ã4

(x− 1)2

]
y(x) = 0 (7.47)

which has the same singularity structure as eq. (7.36) at least in terms of number

and location.

As it turns out this is not enough. Although the CHE has an irregular sin-

gularity at x = ∞, as does eq. (7.36), it is not of the same rank. In other words,

the singularity at infinity for the CHE does not blow up as fast as the corresponding

singularity in eq. (7.36). We have tried to extract at least a portion of the asymptotic

behavior as discussed in [37] and [38] in an attempt to rectify these two singularities

but we have not been successful. Thus, we have learned that a discrepancy in the

rank of the singularities is enough to prohibit our use of the CHE in describing the

ISGE.

7.7 A Cliffor Representation

There are many mathematical representations we could use to facilitate the

solution process of the ISGE. As each one is designed with a certain end in mind each
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one has its particular strengths and limitations. We have already seen the problem of

the ISGE treated using both matrices and differential calculus and encountered their

special challenges as well as their advantages. Another mathematical space within

which the quantum phenomena of spin is particularly interesting is the Clifford algebra

Cl3, also known as the Pauli algebra.

In this algebra the Pauli matrices σ̂j are not given a particular matrix rep-

resentation but are treated in a representation-“free” manner. More specifically, we

define a space with a product that preserves the algebraic properties of the σ̂j but that

does not require a specific matrix representation in order to manipulate them. In this

space the matrices σ̂j become vectors ej and can be taken as an orthonormal basis

that spans the space. In this way the spin properties, now represented in terms of the

algebraic properties of the vectors ej, are naturally associated with the 3 orthogonal

directions of physical space (see [39]). Thus, by avoiding matrix representations we

can also avoid many complications that arise from those representations, focusing

on the phenomenon of interest, and provide a more intuitive framework in which to

conduct a study of spin.

If we express eq. (7.14) in a frame moving along with the particles in the

beam, as we did in section 7.1 we can neglect the kinetic energy terms. We then have

ih̄
∂

∂t
|Ψ〉 = − e

m

h̄

2
σ̂jBj|Ψ〉 (7.48)

where there is an implied sum over j and Bj is a scalar. Using the simple mappings

|ψ〉 → ψ = ψ0 + iψ (7.49)

σj|ψ〉 → ejψe3 (7.50)

i|ψ〉 → iψe3 (7.51)

iσj|ψ〉 → iejψ (7.52)

that can be found in [39] we can express eq. (7.48) in Cl3

dψ

dt
=

e

2m
iBψ. (7.53)

where ψ is a Clifford representation, or a cliffor, of a spinor in Cl3 and i is a cliffor

with the same algebraic properties as the usual unit imaginary i but can additionally
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be interpreted as an oriented unit volume in Cl3. iB=iBjej is the magnetic bivector

corresponding to a plane normal to ej. Because we have neglected translational terms

in eq. (7.48) the spatial dependence of ψ is negligible and so the partial derivative

has been replaced with a total derivative. This makes the solutions easier but surely

hides important information.

The cliffor equation eq. (7.53) can be easily integrated to yield

ψ(t) = e
e

2m
iBtψ(0). (7.54)

The particular form of B has not be given yet. It has only been assumed that B is

constant in time. Substituting eq. (6.2) with B0 = 0, ψ becomes

ψ(t) = e
eb
2m

(−xie1+zie3)tψ(0). (7.55)

If we define a space dependent unit bivector A

A(x, z) ≡ −xie1 + zie3

| − xie1 + zie3|
(7.56)

such that

iB = |br|A (7.57)

then ψ clearly takes the form

ψ(t) = e(ωt)Aψ(0) (7.58)

where ω = e|br|/2m. In this form eq. (7.58) is recognizable as the clifford represen-

tation of rotations in the plane defined by the bivector A(x, z) (see [39]). Therefore,

this picture of the ISGE emphasizes the local precession of the spin state ψ at a loca-

tion dependent characteristic frequency ω. However, the identification of two distinct

momenta entangled with spin is not as clear.

If we would have included the kinetic energy terms from the beginning in eq.

(7.48) we could have used other geometric techniques of Cl3 for this more general

solution. The solution method above does demonstrate however that the removal

of the matrix level of representation in Cl3 causes systems of coupled equations like

eq. (7.18) to be replaced by a single equation in which separation of the variables
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becomes the issue. This could be a very desirable result depending on the familiarity

with and availability of either decoupling and separation techniques.

Finally, there is at least one other insight we gain from this approach which

is extremely interesting. In the derivation leading up to eq. (7.53) all factors of h̄,

which are characteristic of quantum behavior, cancelled out. Thus, in the classical

limit, which is typically formalized by the limiting process h̄→ 0, eq. (7.53) remains

unchanged. This fact is further emphasized when we recall that we have also described

this state using a formalism that is entirely expressible in physical 3-dimensional

space. In other words, the cliffor approach used here suggests that the ISGE is

completely independent of the quantum regime. That is, it can be equally considered

a classical phenomenon. This underscores the peculiar nature of the SGE, namely

that it closely ties our quantum and classical descriptions of nature. Further study

would have to be pursued in order to determine to what degree this classicality is

associated with the spin, the ISGE system, the neglect of the kinetic energy, or the

formalism itself (for further discussion see [40], [41], or [42]).

7.8 Green’s Function Representation

Sections 7.2-7.6 exhausted several possibilities in order to solve a second order

PDE. In the end the only thing we could do to avoid diverging solutions was to drop

the second derivative terms the p-space equation. This made the series soluble but

may have also inadvertently excluded other interesting behavior. By applying other

methods we may be able to avoid this.

In section 7.5.5 we concluded that the Stern-Gerlach system is similar to scat-

tering systems. If fact, we can consider it a special case of a scattering problem in

which an incoming beam of particles with spin undergoes a magnetic interaction via a

magnetic potential. Represented in this way the tools and methods of canonical quan-

tum scattering theory become tools and methods easily adaptable to understanding

the ISGE. For example, Green’s functions, propagators, and the Born approximation

may be applied to solve the ISGE. These methods are familiar in x-space.
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We can think of the time-independent Schrödinger equations for spin “up” and

“down” as two Helmholtz equations sourced by the functions g↑↓(x, z)(
∇2 + k2

)
ψ↑↓ = g↑↓ (7.59)

where

g↑↓ =
eb

h̄
(xψ↓↑ ∓ zψ↑↓) . (7.60)

Notice that g↑↓ couples the equations.

In general, the sources g↑↓ are extended functions over some region of space.

The Green’s functions G↑↓(x, z;x
′
, z

′
) are defined as the spin “up” or “down” field

component at point (x, z) produced by a unit point source located at (x
′
, z

′
). G↑↓

therefore satisfies (
∇2 + k2

)
G↑↓ = −δ(x− x

′
)δ(z − z

′
). (7.61)

[34] gives the solution to these equations, the 2-dimensional Helmholtz Green’s func-

tions for unbounded space, as

G↑↓ =
−1

4kxkz

eikx(x−x
′
)eikz(z−z

′
) (7.62)

identical for both spin “up” and “down” cases with k2 = 2mE/h̄2 − k2
y = k2

x + k2
z .

According to the formal theory of Green’s functions we can construct the

solutions to the whole field ψ↑↓ in eq. (7.59) by treating the source g↑↓ as a collection

of point sources and summing over their individual field contributions G↑↓. That is,

ψ↑↓(x, z) =

∫
allspace

G↑↓(x, z;x
′
, z

′
)g↑↓(x

′
, z

′
)dx

′
dz

′
. (7.63)

7.8.1 A Magnetic Field with Gaussian Fall Off

The advantage of approaching the problem from the perspective of these inte-

gral equations as opposed to the differential equations of previous sections is that it is

much easier to include a magnetic field that has a realistic asymptotic behavior. We

can make a slight modification to our field here that would not have been practical

in our earlier approaches.
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If we pick B such that

B = b(−xx̂+ zẑ)e−(x2+z2)/a, a > 0 (7.64)

where a is some characteristic length scale, it will capture the inhomogeneous behavior

of the four wire field near the origin but will also provide appropriate fall off at large

distances r � a. This gaussian factor would have greatly complicated the ODE

approach of sections 7.2-7.6, especially in p-space, but can be more easily used with

integrals. Doing this will hopefully eliminate much of the problems with the ODE

approach of the previous section which seemed to result from the unrealistic field

configuration.

7.8.2 The Born-Approximation

In order to get around the fact that g↑↓ in eq. (7.63) couples the two solutions

together we must either decouple the equations, which will lead to two fourth-order

operators, or we can use Born’s iterative approximation method with a well known

Helmholtz Green’s function. Sacrificing rightness for clarity we choose the latter

approach. In principle, it can easily be employed to obtain solutions up to any

desired accuracy. Because the field now decays at large distances there is hope that

only a few iterations will capture the essential behavior of the ISGE.

In this method the wave function ψ↑↓ is seen as a sum of successively smaller

corrections

ψ↑↓ = ψ
(0)
↑↓ + ψ

(1)
↑↓ + ψ

(2)
↑↓ + ψ

(3)
↑↓ ... (7.65)

Note here that the larger orders (numbers in parentheses) label successively smaller

corrections. Each successive order is found by using eq. (7.63) with g↑↓ approximated

from the preceding order.5 So,

ψ
(n)
↑↓ (x, z) =

∫
allspace

G↑↓(x, z;x
′
, z

′
)g

(n−1)
↑↓ (x

′
, z

′
)dx

′
dz

′
(7.66)

5It is interesting to note that we also applied this iterative technique to the differential equation
without the Gaussian fall off to the field. We solved a homogeneous differential equation then
substituted that solution back into the equation now with an approximated source. When this was
iteratively done the solutions were found to blow up, likely for the same reasons other derivative
methods did as well although when checked this approach worked for simpler cases.
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where ψ
(n−1)
↑↓ = ψ

(0)
↑↓ + ψ

(1)
↑↓ + ...+ ψ

(n−2)
↑↓ and(

∇2 + k2
)
ψ

(0)
↑↓ = 0. (7.67)

In this way, beginning with the homogeneous (zeroeth order) solutions to the Helmholtz

equation - the free particle solutions

ψ
(0)
↑↓ (x, z) = eikxxeikzz (7.68)

- and proceeding through iteration, the solutions to the ISGE can be found to any

desired degree of accuracy. While this can be done we will not pursue it here. We

will instead comment later on a similar propagator approach in section 7.11.1.

7.9 Schrödinger and Heisenberg Representations

The final representation that we will discuss in technical detail has less to

do with the spatial behavior of the solutions and focuses more on the dynamics.

Early on, before we even moved into either x or p-space we assumed the states |Ψ〉

carried the time characteristics of the evolution of the system. This is the Schrödinger

representation of quantum mechanics which is expressed in his equation for |Ψ〉

ih̄
∂

∂t
|Ψ〉 = Ĥ|Ψ〉 (7.69)

given in section section 3.2. We could have associated the time development with

the operators involved instead. Because states are only revealed to us through mea-

surement - the action of an operator on a state - this is really an indistinguishable

and arbitrary choice. Such a choice constitutes the Heisenberg representation. This

follows Heisenberg’s equation

ih̄
d

dt
Â = [Â, Ĥ] + ih̄

∂

∂t
Â (7.70)

for an operator Â as given in section 4.3.

There is another possibility. Instead of an all-or-nothing treatment we could

choose to associate some of the time-dependence with the state and some with the

operators. This is known as the Intermediate, or Dirac, picture (see [36]). This gives

us much more freedom as we can choose from many different options exactly how to

divide up the dynamics of the system. We will discuss two particular ways here.
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7.9.1 A Mixed Picture

If our Hamiltonian for the ISGE is

Ĥ =
p̂2

2m
+ V̂ (7.71)

then we can choose to divide up the time-dependence in many ways. For example,

we can treat our operators Â, including Ĥ0 = p̂2/2m, in the Heisenberg picture as

varying in time while treating V̂ using the Schrödinger picture with the states carrying

the time-dependence. Thus we may separate our equation into two parts

ih̄
∂

∂t
|Ψ〉 = Ṽ |Ψ〉 (7.72)

ih̄
d

dt
Â = [Â, Ĥ] + ih̄

∂

∂t
Â (7.73)

where

Ṽ = Û V̂ Û † = e
i
h̄

Ĥ0tV̂ e−
i
h̄

Ĥ0t. (7.74)

In the case of the ISGE

V̂ = −µ̂ · B̂ (7.75)

and there may be several interesting choices for Â

Â = p̂, σ̂, x̂, etc. (7.76)

Since we assume that our operators have no explicit time-dependence we can

drop the partial derivative terms and can evaluate the commutator in eq. (7.73) for

the operators listed in eq. (7.76) to yield

d

dt
µ̂j = 0 (7.77)

d

dt
x̂j =

p̂j

m
= v̂j (7.78)

d

dt
p̂j = 0. (7.79)

So µ̂j and p̂j are constant in time and x̂j = v̂jt+ x̂0j. The index notation denotes the

separate components of the vectors, j = 1, 2, 3.
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Before we can solve eq. (7.72) we must express Ṽ in a more usable form. We

can apply the identity

eηN̂M̂e−ηN̂ = M̂ +
η

1!
[N̂ , M̂ ] +

η2

2!
[N̂ , [N̂ , M̂ ]] +

η3

3!
[N̂ , [N̂ , [N̂ , M̂ ]]] + ... (7.80)

to eq. (7.74) with η = it/2mh̄, N̂ = p̂2, and M̂ = −µ̂ · B̂ = −eh̄(σ̂ · B̂)/2m.

In index notation with all indices ranging from 1 to 3 our magnetic field is

B̂j = −b(xδj1 − zδj3) so it can be shown that

[p̂2
j , σ̂iB̂i] = 2ih̄b(σ̂xp̂xδj1 − σ̂zp̂zδj3). (7.81)

Fortunately p̂2
k commutes with all operators in eq. 7.81 so the expansion eq.

(7.80) has only two terms. Thus,

Ṽ = −µ̂ · B̂ − ebh̄t

2m2
(σ̂xp̂x − σ̂zp̂z) (7.82)

=
ebh̄

2m

[
(σ̂xx̂− σ̂z ẑ)−

t

m
(σ̂xp̂x − σ̂zp̂z)

]
. (7.83)

We can then write eq. (7.72) as

d

dt
Ψ↑↓ = −i eb

2m

[
(xΨ↓↑ ∓ zΨ↑↓)−

t

m
(p̂xΨ↓↑ ∓ p̂zΨ↑↓)

]
. (7.84)

So far this approach is similar to the differential equation approach of section

7.2 but because of our particular choice of representation there are some significant

differences. They are:

(1) We did not separate out the y and t behavior. Instead we have separated

the behavior in a different way.

(2) The equations are first order in both time and space.

(3) These equations are at least as general as those of section 7.2 and at least

as simple because some behavior has still been treated separately.

(4) We did not assume, but have explicitly shown, that the p̂j are constant

in time. This allows a us a clearer picture of how we could apply a slightly more

practical choice for p̂j rather than merely setting it to zero.

(5) Just as we saw in the cliffor treatment of section 7.7, here all factors of h̄

have cancelled out. However, unlike that previous result this cancellation took place
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while still including translational behavior. In this approach we also did not get rid

of the matrix representation for the Pauli matrices.

In accordance with (4) if we do take the limit that p̂j → 0 as we did before we

can recover the same results (see section 7.1). In this case eq. (7.84) would become

much simpler, namely
d

dt
ψ↑↓ = −i eb

2m

(
xψ↓↑ ∓ zψ↑↓

)
. (7.85)

These equations can be decoupled to yield the two second order ODEs

x
d2

dt2
ψ↑↓ − vx

d

dt
ψ↑↓ +

[(
eb

2m

)2 (
x3 + xz2

)
∓ eb

2m
(vxz − xvz)

]
ψ↑↓ = 0 (7.86)

where x and z are functions of time in general (see eq. (7.78)).

More specifically, for an infinite plane wave travelling in the y-direction vx and

vz both have definite zero values. Making this assignment eq. (7.86) becomes

d2

dt2
ψ↑↓ +

(
eb

2m

)2 (
x2

0 + z2
0

)
ψ↑↓ = 0. (7.87)

The x and z reduce to x0 and z0 respectively because vx = vz = 0. Notice now

that there is no difference between the ↑↓ cases. When compared to the approach of

section 7.1 this may tell us something about the meaning of the ↑↓.

The solutions to this equation are

ψ↑↓ = C1e
i
h̄
( ebh̄t

2m
)r0 + C2e

− i
h̄
( ebh̄t

2m
)r0 . (7.88)

If the interaction lasts for time T then this can be interpreted in the same manner as

in section 3.2.5 or 7.1. In fact, the momenta

pr = ±ebh̄T
2m

(7.89)

is identical. However, in this approach we see as a consequence of the derivation and

not as a matter of interpretation as before that the spatial dependence in the exponent

is actually a parameter describing the initial position of the beam or particle in the

field.

From this approach we can also more naturally attribute the constants C1

and C2 to the initial spin conditions in the z-basis. C1 is the fraction of the initial
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spins that were in the spin “up” direction and C2 is the fraction initially in the spin

“down” direction as defined in the z-basis. For example, if the initial beam is perfectly

polarized beam in +z, i.e. spin “up”, then C1 = 1 and C2 = 0

ψ↑↓ = e
i
h̄
( ebh̄t

2m
)r0 (7.90)

and we have a plane wave travelling radially outward the radial direction being defined

as pointing from the origin to r0.

If the spins were initially polarized in the “down” direction then the plane

wave would be travelling radially inward continuing on through the center.

We can also discuss orthogonal spins. Say the initial beam had initially passed

through a Stern-Gerlach magnet such that the resulting polarization was in the x-

direction. In this case C1 = 1/
√

2 and C2 = 1/
√

2. Thus

ψ↑↓ =
1√
2
e

i
h̄
( ebh̄t

2m
)r0 +

1√
2
e−

i
h̄
( ebh̄t

2m
)r0 (7.91)

and we have half the beam separating in the +r-direction and half in the −r-direction

just as we might expect based on the results of the traditional SGE.

Notice that both this and other similar approaches either tell us nothings at

all about the angular behavior of the solutions or they tell us that they are angularly

symmetric in constrast to eq. (7.35) of section 7.4.

If to any of the foregoing derivations for the ISGE a large field component B0ẑ

were added it is presumed that the radial behavior would partially average leaving

only the behavior of the selected direction thus recovering the traditional SGE limit.

7.9.2 The Heisenberg Picture

There are other choices within the Intermediate picture we could make in

dividing up the time-dependence of the system. [31] chooses to assign all temporal

behavior to the operators thus adopting a purely Heisenberg approach.

[31] also uses a field similar to eq. (6.2) but truncates it to a finite region with

a step function in order to avoid unwanted asymptotic behavior. Derivation of both

the standard SGE as well as the ISGE is then possible. Because the method is very
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similar to ours above we only cite their results. They find for the expectation values

of x and z

〈x̂(t)〉 = 〈x̂0〉+
t

m
〈p̂x0〉+

ebh̄t

2m2v
〈σ̂x0〉 (7.92)

〈ẑ(t)〉 = 〈ẑ0〉+
t

m
〈p̂z0〉 −

ebh̄t

2m2v
〈σ̂z0〉 (7.93)

with the assumptions that the factor ebh̄/2m2v is small enough to neglect it to second

order and that the velocity v of the beam in the laboratory frame is constant.

It is concluded that for eigenstates of σ̂z

...in fact only the average x deflection vanishes. A spin-up particle will

be found to undergo an x displacement but with equal probabilities in the

+x and −x directions [31]. (p. 580)

It is claimed that this can be more clearly seen from the rest of [31] which we will

discuss later in section 7.11.1.

7.10 A Comment on Precession in the Inhomogeneous Stern-Gerlach Ef-

fect

We have found some evidence that in the ISGE the particles will undergo a

deflection in the positive radial direction for one sense of spin orientation and in the

negative radial direction for the other (see section 7.1.4). This radial direction is

defined by the line connecting the particle’s parameterically described initial position

in the beam r0 and the origin (see sections 7.1.2 and 7.9.1). We have also seen

in section 7.7 that in the ISGE rotations, or precession, could occur in the plane

perpendicular to r.

7.10.1 The Inhomogeneous Stern-Gerlach Effect as a Local Stern-Gerlach

Experiment

To give us a unified model of what is going on at the field point r0 let’s consider

our purely inhomogeneous magnetic field

B = b(−xx̂+ zẑ) (7.94)
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which was valid in a small region equidistant from the four parallel wires running in

the y-direction (see fig. 6.1). Let us suppose that in a coordinate system centered on

the point B= 0 that our particle is initially at the point

r = r0r̂ = x0x̂+ z0ẑ. (7.95)

The field at this point is

B(x0, z0) = b(−x0x̂+ z0ẑ). (7.96)

If we add and subtract this field (eq. (7.96)) to the field everywhere (eq. (7.94)) then

although there is no net change we can write the general field as

B = b
[
(−x+ x0)x̂+ (z + z0)ẑ

]
−B(x0, z0). (7.97)

Now doing a coordinate transformation such that

x̃ = x− x0 and z̃ = z + z0 (7.98)

we have

B = b(−x̃x̂+ z̃ẑ) + A (7.99)

where

A = −B(x0, z0) = −b(x0x̂+ z0ẑ) = br0r̂ (7.100)

is a local homogeneity along the direction pointing from (0, 0) to (x0, z0) in the (x, z)

coordinates.

Writing the field in this suggestive form and with the indication of section 7.7

that precession is occurring about the vector6 A we can then interpret the ISGE as a

local SGE in which there is a local uniform field component about which precession

can be thought to occur as well as a non-uniform component which causes the particles

in that region to separate according to their spin orientations. However, at any given

point

|Bhomogeneous| = br0 = b
√
x2

0 + z2
0 (7.101)

6A (not bolded) was a bivector in section 7.7.
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and

|Binhomogeneous| = b
√
x2

0 + z2
0 + x2 + z2 − 2xx0 + 2zz0 (7.102)

so, for most particles, there is no clear reason to believe that the validating condition

eq. (5.11) for the precession argument is met. Only near the point (x0,−z0) will the

condition be satisfied.

7.10.2 Making Precession Insignificant: A Semi-Classical Argument

As we have said, one can trivialize the occurrence of precession in another way.

If the experiment is constructed in such a way that the apparent duration of the field

is short compared to the precession period then the averaging procedure exemplified

in eq. (5.24) does not go to zero (see section 5.5). The precession argument becomes

invalid.

As we have seen, in the ISGE the incident beam seems to spread in the radial

direction with momentum

p = ±ebh̄T
2m

r̂. (7.103)

So as the field gradient b or the time of interaction T increase, the “up” and “down”

components of the incident wave are able to spread further apart.

Let us assume that, as is the case with silver atoms, the particles are massive

enough that it is consistent to discuss them in terms of trajectories on their way to

the detecting plate. This justifies a semi-classical treatment of the ISGE in which

the particles are thought to have classical-like trajectories but with a “spread” factor

appended. In our case

pr → pr + ∆pr (7.104)

where ∆pr follows the uncertainty relation eq. (3.30).

Following this we can say that the particles have distinguished their trajectories

according to their spin “up” and spin “down” components in the direction of the radial

vector r0 by assuming different p’s or propagation directions.
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Some Important Parameters

∆r0 The maximum radius within which the particle is likely to be initially found
r0 The initial position of the particle within the beam spot
pr0 The initial radial momentum of the particle
r The position of the particle after interaction
R The radius of the spreading due to spin interactions with the field
R

′
The radius of the spreading due to collimation, i.e. an initial pr distribution

T The time which the particle is interacting with the field.
τ The time of flight between leaving the field and hitting the detecting plate.

Table 7.1: A table showing the physical definitions of some important variables.

If the radial distance travelled is R during the time of flight after leaving the

field τ at a constant speed v then we may write

pr =
ebh̄T

2m
= mv = m

(
R

τ

)
(7.105)

so

R =
ebh̄T τ

2m2
. (7.106)

Notice the similarities between this and the small factor in eq. (7.92) and eq. (7.93).

However, even if we neglect the splitting that occurs from the magnetic field

some blurring of the beam will occur due to diffraction effects of the beam collimation,

i.e. effects from the ∆pr in eq. (7.104). In a quantum context this exemplifies the

uncertainty principle. If we confine the beam to a given region of space through

collimation we necessarily broaden the spread of momenta in that direction. So let us

confine all particles in the beam to a circular beam region of radius ∆r0. The spread

of radial momentum obeys

∆r0∆p
′

r0
≥ h̄

2
, (7.107)

the uncertainty principle. Note that the primes refer to dynamics that result from

collimation whereas the unprimed variables refer to the dynamics caused by the in-

teraction of the particle with the field.
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Figure 7.3: This shows graphically what some of the parameters are in finding a constraint on the
precessionless ISGE in the semi-classical approach. The light dotted circle is the original beam radius
and the dark dotted circle is the radius to which the beam would have spread due to collimation
effects alone. It is still unclear whether or not ϕ0 = ϕ. See also Table 7.1

In the semi-classical picture we can describe this as a particle located at r0

following a classical trajectory with a momentum pr0 ± ∆pr0 somewhere within the

region of ∆r0. This is perhaps reminiscent of the pilot-wave picture in which a particle

is said to dynamically evolve in unknown ways inside some region of likelihood.

Ignoring the fields then for a moment we can find the amount of radial dis-

placement R
′
a particle will undergo due to diffraction of the collimator in the same

way that we found the dynamical displacement R. Assuming we can add the maxi-

mal amount of uncertainty to an initial radial momentum of pr0 = 0, i.e. initially no

spreading, we have

pr0 + ∆pr0 = ∆pr0 = mv
′
= m

(
R

′

τ

)
(7.108)

but with a maximum uncertainty state we also have

∆pr0 ≈
h̄

2∆r0
(7.109)

so

R
′ ≈ h̄τ

2m∆r0
. (7.110)

We interpret R
′
to be the maximum amount of spreading that will occur due

only to the collimation of a given beam of width ∆r0. We can see that if we make the
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time of flight between the field and detector τ longer or if we made the beam more

narrow, i.e. smaller ∆r0, this spreading would be more pronounced.

Now, in order to assure ourselves that the spreading from the spin interactions

is observable against the inevitable spreading from collimation we require that

R > R
′
. (7.111)

Without this condition observation of the ISGE would be swallowed up in a blur.

Using our definitions for R and R
′
from eq. (7.106) and eq. (7.110) we get the

inequality

b∆r0T >
m

e
(7.112)

where all parameters that can be experimentally adjusted have been consolidated to

the left side. Only physical constants are on the right. The semi-classical description

tells us that this is the condition for an observable effect.

We discussed the field locally in the previous section. At r0 there is apparently

a local SGE with a precession frequency of

ω =
e|B|
2m

=
ebr0
2m

(7.113)

about the local field direction r̂.

This could average away the transverse deflections due to the transverse com-

ponents of the spin if it is allowed to operate long enough. Avoiding this gives us one

more experimental condition. We require

T ≈ 2π

ω
=

4πm

ebr0
(7.114)

where T is the time of interaction or the time the particle spends in the field. Putting

this value for T into the condition eq. (7.112) we arrive at

r0 < 4π∆r0. (7.115)

If this condition is met then (1) precession is not a valid argument to discount the

measurement of transverse components in the field because it is too slow to sufficiently

average them away and yet (2) the spreading from spin effects will be observable
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despite the spreading due to collimation. If we recall our interpretation of r0 as the

initial location of a particle within a beam spot of width ∆r0 it is seen that this

condition is always met.

This is an extremely interesting result but it must be qualified.

(1) It follows an approach that neglects the kinetic energy terms which amounts

to dropping important derivatives from a differential equation in x-space.

(2) It is a semi-classical derivation so it is neither purely classical nor purely

quantum. Its interpretation is therefore somewhat ad hoc and stands on unclear

ground. Whatever concepts might be most useful from either of the two regimes can

be borrowed at will despite their mutual inconsistencies.

(3) From (2) all variable definitions are vague.

(4) As an example of (3) the momentum pr was used in one case as a defi-

nite value whereas in another case it was said to uphold the uncertainty principle.

Therefore, perhaps the inconsistency of the result with the uncertainty principle is

a function of the application of the semi-classical representation and not of the phe-

nomenon itself.

(5) The B-field is only approximate.

(6) In conjunction with (1) the incident waves were assumed to be infinite plane

waves as stated in sections 7.1.1 so in actuality, even if all spin “up” components go

“out” and all “down” components go “in” nothing but an infinite blur will be detected.

There are many other concerns that might be mentioned. These are sufficient

though to point out that this discussion provides an interesting test, namely the

method of this section, that might be applied under any circumstance using any

approach or interpretation. Even if physically wrong it is useful in teaching us about

our own misunderstandings of both interpretations of the representations and of the

representations themselves.

7.11 Other Representations

Amongst the representations explored in this chapter there are several other

possible representations by which we can view and assess the question of the ISGE
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and precession in the standard SGE. We mention here a few of those that may be

beneficial.

7.11.1 Propagators

The Green’s function method outlined in section 7.8 maps source points in

space to field points in space. But this glossed over the time evolution of the system.

We have yet to do a solution that does not trivialize the time-dependence but allows it

to naturally evolve.7 Propagators can do this. They are similar to Green’s functions

but they map temporally past points to temporally present or future points.

[31] gives analytic expressions for the states ψ↑↓ of the ISGE in the coordinates

(x, y, z) which supposedly justifies the claim quoted in section 7.9.2. However, as

many of the technical details in its derivation are cited from other papers and have

not been sufficiently verified or interpreted we only mention this for completeness and

to point out the potential fruitfullness of the propagator method of [31] for describing

the time evolution in the ISGE.

7.11.2 Numerical Methods

To this point no numerical investigation has been done. While representing

these problems numerically gives concrete and definite results they do not offer the

same sort of insight as does the explicit confrontation of detail that an analytic

approach offers. However, for a computer the PDEs that we have dealt with here

could be solved for specific choices of parameters. This would not only give us one

more perspective on the phenomenon of the ISGE but one that focused on results.

This could guide our work in other more revealing analytic approaches including the

ones discussed in this chapter. For example, it could provide an estimate for how

accurate eq. (7.45) is for the near-origin approximation of section 7.5.7. For this

reason numerical methods should be pursued in the future.

7Section 7.9 is the closest we have come to this so far. Eq. (7.85) might be generalized from
assuming incident plane waves (setting vj = 0 as we did) to assuming some sort of incident packet
(a spread in vj).
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Figure 7.4: The trajectories of particles in a traditional Stern-Gerlach apparatus as calculated
using the Bohmian techniques. 25% are initially chosen with spin “down” in the selected direction
and 75% are chosen with spin “up.”

7.11.3 Perturbation Theory

Often a portion of a system can be designated as small. Using perturbation

methods these small effects can be eventually accounted for. This generally yields

approximate but often sufficient results. Although one of the defining characteristics

of the ISGE is the equal treatment of field components there are several other pertur-

bation techniques that might be applied to solving the ISGE as was the Born method

in section 7.8.2. For example, the series expansion eq. (7.7) could be perturbatively

treated to slowly remove the relative strength of the homogeneous field B0.

7.11.4 Bohmian Mechanics

Because we desire to understand the inner workings of the measurement process

it is difficult to apply standard quantum techniques to gain understanding. In a
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Figure 7.5: Top The spin field showing the orientation of the spin vectors associated with the
conditions of fig. 7.4 at every point in physical space. Bottom If the trajectory and spin pictures
of fig. 7.4 and Top are overlaid only those spins that are realized by the actual particle trajectories
are emphasized and we obtain a model representative of the evolution of the spin vector during the
process of a standard Stern-Gerlach measurement for given initial conditions. This point-by-point
correlation allows a more ontological, or realist, interpretation of spin. Taken from [43].
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field that is formed by measurement axioms8 how does one objectively study the

nature of measurement itself? The methods of quantum mechanics have been effec-

tively designed and interpreted to match experimental results or potential results, not

processes.

There has been relatively little done with the other approaches that claim to

give an accounting of the behind-the-scenes dynamics of the measurement process

but they do exist. Many have applied the mechanics first introduced by de Broglie in

1927 and formalized by David Bohm in 1952 to inquiries of the SGE. In such cases

the actual dynamics of both the position and spin orientation of the particles can be

continuously and consistently described (see figs. 7.4 and 7.5. See also [14], [33], [43],

and [44]). This has even been done using the representational algebra of section 7.7

to account for relativistic effects [45].

Insightful investigations of the sort proposed by Bohm should be extended to

the case of the ISGE. Like many other representations they have the potential to offer

unique insights into the operation of measurement and the SGE in general.

8Note the discussion of the “collapse” and “cut” axioms in section 3.2.3.
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Chapter 8

Conclusions

There has been an overarching tension in all that we have done in this thesis.

It arises from the fact that while representations are necessary in order for rational

communication and comprehension they also necessarily alter the perceived behavior

of the phenomena they represent. They carry an accompanying value system and set

of assumptions. In the case of the traditional SGE these values and assumptions have

not been explicitly identified in the past because of its axiomatic role in the modern

interpretation and practice of quantum mechanics. In Chapter 5 we attempted to

show how this has limited our understanding, or possibility for understanding, in

various ways and proposed a study of the ISGE. The question then becomes, “How

does one study a phenomenon independent of its representation?” In this thesis we

have used several different techniques in an effort to understand the SGE, and more

particularly the ISGE, on a deeper level.

8.1 The Method of Relativity

Despite the multiplicity of specific methods that were used our overall approach

is not that different from the general methodology of Einsteinian relativity. Instead of

being confused by the number and relative nature of the several possible points of view

that can be taken to solve a single problem we have deliberately moved between these

“frames of reference” in order to study nature on a level independent of the frames

themselves. That is, by honestly recognizing and comparing our relative knowledge

we have hoped to approach more absolute knowledge.
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In more concrete language we have approached the ISGE using several differ-

ent methods. Each method necessarily involved some simplifying assumptions and

approximations that allowed us a more or less explicit view of particular aspects of

the ISGE. By comparing the effects of these simplifications, both on the results and

on the methods themselves, we were able to round out our understanding of the

SGE to a larger degree than had we merely applied just one result. Granted any

one approach here could be pursued much further adding even more insight. In one

sense this comparison method served to conceptually triangulate the one thing that

was held constant in all approaches: the phenomenon. In another sense, the varied

approaches can serve the same purpose as statistical sampling does in any study of

complex behavior, though we have not used it so here.1 In this sense we gain confi-

dence and insight into both our descriptions of phenomena and into the phenomena

themselves.

8.2 Our Results

For example, in our thematic account we saw how precession is often used as

a physical argument by which to simplify the description of the SGE. Later we saw

how the same mathematical result could be rigorously arrived at by treating the field

with a series expansion eq. (7.7). This gave us a concrete way to study the nature

of the precession argument, which had been difficult to approach until then, and the

ISGE by perturbatively adding back in higher order corrections making precession less

and less dominant. We also saw this happen with the assumption of incoming plane

waves which is sometimes used in thematic approaches to the SGE. Although this led

to the recognition of two distinct momenta it posed other problems. However, using

the Intermediate or Heisenberg representations made this assumption more explicit so

that one could perhaps lift the assumption in graded steps thus more closely returning

to exact solutions.

1In this sense the approach we used here mirrors the experimental method of statistically com-
paring large samples with “controls” and “variables” but with the analytical methods themselves as
the object of study. Nature is only indirectly an object of study.
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In our use of differential equations we did not make the assumption of incoming

plane waves. It did however show us the effect of not having an asymptotically finite

field. Using the integral equations provided by Green’s functions provided for both

these issues: we could address the asymptotic behavior of the field without having to

assume incoming plane waves. Along this line there is much promise in pursuing the

work of [31].

Using the Clifford algebra Cl3 we found a result which in addition to empha-

sizing the apparent precession of the particle about the local field direction hinted at

an interesting field of research as to the relation of the ISGE and spin to the classical

and quantum regimes.

We also saw how it was precession that by and large justified the usual inter-

pretation of the uncertainty principle in Stern-Gerlach measurements by averaging

away incompatible components. However, it appears that the precessionless ISGE

could require us to formulate a more definite notion of uncertainty as the appearance

of any localized spot on the detecting plate in that case would seem to violate the

usual interpretation (see section 5.5.3). Based on our work in section 7.10.2 this seems

feasible.

Thus, the ISGE, which appears to be only a local version of the traditional

SGE, has opened the door for a clearer study of both the theory and interpretation

of physical science. We believe there are still several interesting and unanswered

questions as to the correct interpretation of the SGE. Being very subtle and “relative”

issues these may be pursued using the methodology of relativity as we have used it

here.

8.3 The Dangers of an Inadequate Philosophy

Perhaps one of the most interesting conclusions of applying methods involving

several representations is not the knowledge that comes out but the apparent fact that

there is further knowledge to be gained. For this reason we cannot be too content

with the prevalent, results-oriented, “it works” attitude although it may be necessary

for the purposes of instruction. That is, “it works” should only serve as a temporary
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justification for pursuing knowledge and not as its permanent replacement. Whether

or not something “works,” which is a relative term based on the desired ends of the

investigator and her choice of assumptions, many different theoretical and analytical

studies should be encouraged as only they when taken together provide explicit con-

ceptual confrontation with all the details of nature. The process of understanding

the differences and connecting the similarities of these details is a much less scientific

process2 but it is nonetheless vital. As we hinted at in section 2.1

Without abstract ideas...’[we] would not be able to deal with con-

crete, particular, real-life problems. [We] would be in the position of a

new-born infant, to whom every object is a unique, unprecedented phe-

nomenon’...’As a human being [we] have no choice about the fact that

[we] need a philosophy. [Our] only choice is whether [we] define [our]

philosophy by a conscious, rational, disciplined process of thought and

scrupulously logical deliberation - or let [our] subconscious accumulate

a junk heap of unwarranted conclusions, false generalizations, undefined

contradictions, undigested slogans, unidentified wishes, doubts and fears,

thrown together by chance, but integrated by [our] subconscious into a

kind of mongrel philosophy and fused into a single, solid weight: self-

doubt, like a ball and chain in the place where [our] minds’s wings should

have grown.’ (Rand in [5] p. 1-2)

Therefore, a carefully scrutinized conceptual scheme is necessary for a more effective

and accurate picture of physical processes.

On a broader scale we finally note that our search for this consistent conceptual

scheme has led us to an understanding, not only of the SGE and precession, but more

generally of the process of searching itself. We have found that there is an inherent

tension in this process that can contribute to our progress. It is demonstrated in the

2[5] argues that this unscientific process of integration of diverse concepts can be nonetheless
objective.
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act of representing a phenomenon for communication or study, which is a necessary

part of teaching and research. In research it was manifest as the tension between

accurate historical accounts and clearly formed thematic ones, between the physical

and analytical justifications of our approximations, between the realist and positivist

interpretations of physics, between the x and p representations, between mutually

inconsistent approximation methods, etc. In physics education and teaching this

tension lies in the necessary balance of both clear and accurate communication; in

both learning to answer questions and to question answers; in a sense, to both open

and close the mind. There is a value in not only understanding these necessary

disparities but also in accepting and using them for our advantage and progress. Thus,

it seems that masterful and progress-oriented research and teaching will require that

we master the art of mediation.
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