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Intoduction to Projects

As an undergraduate I have completed two major projects. I have written up
papers to summarize each of them. The first project was completed as a mem-
ber of the BYU nuclear physics group under the advisement of Dr. Lawrence
Rees and Bart Czirr. The purpose of the project was to analyze the effects of
neutron shielding in the form of polyethylene and borated polyethylene on the
ability to detect fission sources, as well as to compare these results with the
results of simulations using Monte Carlo Neutral Particle (MCNP) code. The
second project was carried out under the advisement of Malte Gottsche, a PHd
candidate at the Carl Friedrich von Weizsacker-Centre for Science and Peace
Research at the University of Hamburg. The purpose of this project was to
analyze diferent methods of calculating the uncertanties of neutron multiplicity
counting simulations done using MCNP.

Neutron Shielding

The motivation for this project began when data was collected using a lithium-
glass detector developed by the group for a fission source that was highly shielded
with polyethylene. When the results of the experiment were compared with a
simulation using MCNP we found that MCNP had overestimated the results by
a factor of two. Due to the importance of MCNP calculations in a wide range of
applications including calculations done to determine the ability that neutron
detectors used for portal monitoring to stop the importation of Special Nuclear
Materials (SNM) have to detect shielded sources, we decided it was important
to fully analyze the effects of shielding on the efficiency of our detectors as well
as to analyze the ability of MCNP to model highly shielded sources. The paper
included details more of the motivation as well as the methods and results of
the project.

Neutron Multiplicity Counting

This project was completed as part of a three month internship with the Carl
Friedrich von Weizsacker-Centre for Science and Peace Research at the Uni-
versity of Hamburg working with a PHd candidate Malte Gottsche on nuclear
warhead disarmament verification using an information barrier. Specifically
I was working with him on using neutron multiplicity counting to determine
the fissile mass of plutonium or uranium, which could be used in conjunction
with other techniques to authenticate a nuclear warhead in a non-intrusive way
gleaning little or no information on the construction of nuclear weapons by the
authentication party. The motivation for this authentication comes from the de-
sire of many nations, and as stipulated in the Nonproliferation Treaty, to move
toward nuclear disamament. However, in the current disarmament process nu-
clear warheads are verified inderectly via their delivery vehicles. A non-intrusive
authentication could therefore be used in disarmament by authenticating both



the pre and post-dismantled weapon. The largest nuclear weapons states by far
are the United States and Russia, yet they are slow to move toward disarma-
ment. Part of this reluctance is due to the low level of trust in eachother when
it comes to disarmament. Using this verification technique a third party would
be able to verify the actual disarmament of nuclear weapons without gaining
any state secrets and allowing there to be more confidence and trust between
the United States and Russia with regard to nuclear disarmament.

Important to this verification process is the application of neutron multiplic-
ity counting to determine the fissile mass of the plutonium or uranium being
used in the nuclear weapon. MCNP is often used to simulate neutron multiplic-
ity counting experiments. As part of my internship I wrote programs to analyze
both the experimental and simulated data collected and determine the singles,
doubles and triples rates and their associated uncertanties. However, their were
several existing methods to determine the uncertanties for the simulated data, so
as part of my project I analyzed the diferent methods and compared the results
with the calculated uncertanties. The techniques analyzed and their results are
included in the attached paper.



Neutron Measurements with a Shielded Source
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Abstract

Using the combination of a neutron sensitive °Li glass scintillator de-
tector with a neutron insensitive "Li glass scintillator detector we are
able to accurately measure the neutron capture rate of our °Li detector.
We used this detector with a Cf neutron source to measure the effects
that both polyethylene and 5% borated polyethylene shielding has on our
capture rates. Both of these measurements were compared with MCNP
calculations to determine how well the calculations simulated the mea-
surements, particularly when the source is highly shielded. MOCNP is
shown to have a general tendency to underestimate detector efficiency
with polyethylene shielding. For pure polyethylene it underestimates the
measured value at an average of 10%. This increases to an average of 18%
for borated polyethylene.

1 Introduction and Motivation

Currently radiation portal monitoring (RPM) systems are used to help pre-
vent the importation of Special Nuclear Materials (SNM). Neutron detectors
are used as part of these systems to interdict the importation of materials, such
as plutonium, that have high spontaneous fission rates. Rees and Czirr [Rees]
stressed the importance of these detectors to be able to be sensitive not only
to bare fission sources, but also to shielded sources. Shielded sources are es-
pecially important as any illegally imported material will likely be shielded to
avoid detection. Polyethylene is a well known neutron moderator and used in
many shielding applications because of its high hydrogen content. High hydro-
gen content is desirable because hydrogen-neutron collisions cause the neutron
to lose half of its energy on average per collision. To improve the absorption
of neutrons in the polyethylene, boron can be added, which has a high neutron
capture cross section. This has been found to be a much better shielding ma-
terial [poly-boron]. We constructed a moderated lithium-glass detector that is
sensitvie to both high and low energy fission neutrons. Using this detector, we
measured teh effects of shielding a 2*2Cf fission source with both polyethylene
and borated polyethylene. We compare the experimental results with simula-
tions using Monte Carlo Neutral Particle (MCNP) code [MCNP].
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Figure 1: Detector geometry

2 Experimental Methods

2.1 Detectors

Two neutron detectors were used in conjunction with each other for our data
collection. The first consists of two pieces of ®Li-doped glass scintillator each 1
mm thick and 5 inches in diameter each. The first piece of glass is placed on
the front end of the detector followed by 1 inch of lucite moderator. The second
sheet of glass scintillator is placed on top of the lucite and then 3 more inches
of lucite moderator is added. The glass and lucite all have a 5 inch diameter.
Finally, on top of the lucite moderator is placed a 5-inch Adit photomultiplier
tube as shown in Fig. 1. The SLi in the glass scintillator has a large capture
cross section for lower-energy neutrons. The neutron capture and subsequent
fission process is as follows:

n 49 Li — «(2.056MeV) 42 H(2.729MeV) (2.1)

The alpha particle has a range of 7 um in the lithium glass and the triton
has a range of 40 pm, therefore both particles will generally deposit all of their
energy in the 1 mm thick piece of glass. The energy from these charged particles
will cause scintillation that creates a large, wide peak in the photomultiplier
tube. If this pulse rises above a set threshold, the pulse will be recorded as by
a signal digitizer. Two sheets of glass are used because the neutrons can vary
greatly in energy. The lucite moderator is high in hydrogen. As neutrons collide
with the hydrogen, they will change both energy and direction. The design of
the detector allows for high energy neutrons that will likely pass through the
first piece of glass to be slowed down and either backscatter into the first piece



100
I I I I I I I !

T T
% caplurs in fronl glass
% capiurs in back glass

%% lotal neulron caplura

p— —

] 2 4 5 H 10 12 14 16 18 0
Shielding Thickness in cm

Figure 2: MCNP calculation of percentage of lithium capture taking place in
each sheet of glass as a function of shielding thickness.

of glass or capture in the second piece. Low energy neutrons will mostly be
absorbed by the first piece of glass. This can be seen in Fig. 2 which depicts
an MCNP calculation of the fraction of neutron captures in lithium that take
place in each sheet of glass. Over 70% of the higher energy unshielded neutrons
are captured in the second piece, however, as shielding increases and the energy
of neutrons leaving the shielding decreases, nearly all of the neutron capture
occurrs in the first sheet. This allows for high sensitivity over a broader range
of neutron energies.

2.1.1 Gamma Discrimination

For our application, this detector must also be able to differentiate between
neutrons and gamma rays. Gamma rays can Compton scatter in the glass and
transfer energy to electrons which can excite the scnitillator and create a light
pulse. Because the range of electrons of this energy is about 1 mm in the glass,
it is not likely that all of their energy will be deposited within the glass itself.
However, when it does occur, these pulses will cause an event to be recorded
just as a neutron would. Neutron pulses and gamma pulses can be distinguished
in the data analysis by comparing the shapes of the pulses. Pulses caused by
neutrons are wider and have a longer tail where pulses caused by gammas are
much narrower. This allows for the process of pulse-shape discrimination to be
applied to discriminate between neutrons and gammas.[wallace]

To further reduce gamma events, a second detector was built with exactly the



same dimensions as the first detector, but replacing the %Li glass scintillator with
Li glass scintillator. The 7Li glass scintillator has the same gamma sensitivity,
but it lacks the high neutron capture cross section making it insensitive to
neutrons. This is then used in conjunction with the first detector to allow the
subtraction of source-related gamma events.

The two detectors were first gain matched by adjusting the photomultiplier
tube voltages and using a %°Co source. Every set of shielding data for a given
configuration consisted of four runs of data collection. Two background runs
were taken, first using the SLi detector and then the 7Li detector. Two runs
with the 252Cf fission source were also taken, again with the SLi then the "Li
detector. The total number of source neutrons detected, T, was then calculated
as follows:

[°Li(Cf)-"Li(Cf)] — [°Li(Bkg)-"Li(Bkg)] =T (2.2)

In other words, the total number of source neutrons detected equals the
total number of neutrons captured in the 6Li detector minus the total number of
background neutrons. The two-detector design creates a high level of confidence
in our measurement of the total number of source neutrons T, which allows us
to calculate the efficiency of the detector.

2.2 Experimental Setup

Another difficulty with making accurate neutron measurements is that of “room
return” caused by walls, floors, etc., that readily reflect neutrons and cause
overestimates of detector efficiency. To minimize this effect, we placed our
detector, shielding, and source on top of a 20 ft scissor lift. This separated our
experiment from all walls and floors and concrete objects which are the major
neutron-reflecting materials.

On the scissor lift the detector was placed facing downward on a thin steel
sheet 4 ft above the floor of the lift. The source was elevated 48 cm above the
floor, 55 cm below the detector. 12x12x1 inch slabs of borated polyethylene
and 12x12x1.18 inch slabs of pure polyethylene were used as shielding. The
source was placed in a small slot in the center of two slabs of shielding. Data
were taken with the bare source and with two, four, six, eight, ten, twelve, and
sixteen slabs of shielding equally divided above and below the source.

MCNP was used to model each of these configurations. The exact chemical
makeup of the borated polyethylene was measured using x-ray photoelectron
spectroscopy and verified by the distributor. By weight percentage the borated
polyethylene used was 11.60% hydrogen, 62.20% carbon, 22.00% oxygen and 5%
boron.



3 Results/Data

3.1 Pure Polyethylene

We describe our results in terms of “practical intrinsic efficiency,” defined as
the ratio of detected neutrons to neutrons emitted from the source into the
solid angle subtended by the detector. The detector has a maximum measured
practical intrinsic efficiency of 53.51% with 3 cm of polyethylene shielding above
the source. The decrease in the neutron detection rate with larger amounts of
shielding occurs solely because of the large number of neutrons that are absorbed
in the shielding. The lowest practical intrinsic efficiency occurs with 24 cm of
shielding which is the last measured data point. At this level of shielding, the
practical intrinsic efficiency was measured to be 1.45%. Although the efficiency
has dropped off considerably the neutron counting rate is over 100 times the
measured neutron background rate.

The MCNP simulations showed a general tendency to underestimate the
measured efficiency, as seen in Fig. 3. The bare source comparison showed an
underestimation of 15%. With only one slab of shielding this underestimation
dropped to 4% and then gradually increased with every layer of shielding until
it reached 29% at 24 cm.
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Figure 3: MCNP vs. measured practical intrinsic efficiency for polyethylene.



3.2 Borated Polyethylene

The neutron detection rate was about a factor of two less than that of pure
polyethylene for the same configuration. The detector’s practical intrinsic effi-
ciency was at a maximum at 27% with 2.54 cm of shielding. It then followed a
similar curve to pure polyethylene ending at 1.37%. This means that it is detect-
ing neutrons at a rate about 80 times that of our measured neutron background
rate.

Once again MCNP showed a tendency to underestimate the measured effi-
ciency.
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Figure 4: MCNP vs. measured practical intrinsic efficiency for borated polyethy-
lene.

At 2.54 cm of shielding MCNP underestimates the measured efficiency by
5.5%. This number rapidly increases to around 20% for 7.62-15.24 c¢m of shield-
ing with a high of 28% at 15.24 cm. At 20.32 cm of shielding the MCNPcalcu-
lated efficiency rises above the measured value overestimating the efficiency by
17%.

Also, MCNP calculations were done to compare the response of a typical
3He detector to the one used in this experiment. The detector-source distance
was chosen so that the solid angle of the *He tube was that of one of our typical
experimental runs. The calculation showed that the ®Li glass detector has a
much higher efficiency with all levels of shielding. The *He tube reached its
peak practical intrinsic efficiency of 9.14% with one slab of shielding as shown
in Fig. 5.
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Figure 5: MCNP calculation of a 3He tube with borated polyethylene shielding.

4 Conclusion

Both pure polyethylene and borated polyethylene give an initial increase in neu-
tron detection efficiency as many neutrons are thermalized, but a large amount
are still able to escape the shielding without being captured. As shielding is
added, the detector’s practical intrinsic efficiency quickly decreases as more and
more neutrons are captured and never escape the shielding.

This detector is capable of detecting neutron fission sources comparable to
252Cf witth at least 24 cm of pure polyethylene of 20.3 cm of borated polyethy-
lene with counting rates well over the neutron background rate.

MCNP does a good job at modeling polyethylene and borated polyethy-
lene with a general tendency of underestimating detector efficiency. For pure
polyethylene it underestimates the measured value at an average of 10%. This
increases to an average of 18% for borated polyethylene.

Borated polyethylene makes a better neutron shield with an increase in neu-
tron absorption by a factor of 2 on average.
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Measured and Theoretical Errors for
Multiplicity Counting
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Abstract

The method for arriving at the statistical errors for the mass, multi-
plication and alpha-n rate for a Pu source from a multiplicity counting
measurement is explained. Next, three methods for calculating the er-
rors from a simulation using MCNP-Polimi are presented and compared
with the measured results. The three approaches considered here are:
a multinomial distribution, a Poisson distribution, and a semi-empircal
approach.

Introduction

Multiplicity counting is a technique used to determine the mass, the multiplica-
tion and the alpha-n rate which can be used to determine the actual weight of
effective Pu-240 mass in a sample. This can be used as part of a nuclear warhead
verification procedure. An important requirement is a knowledge of the uncer-
tainty of the assayed effective Pu-240 mass. The uncertainty can be determined,
but because the singles, doubles and triples rates used to calculate the mass,
multiplication and alpha-n rate are inherently correlated, simple Gaussian error
propogation might not suffice, and determinig the correct uncertanties becomes
a challenge. Different approaches will be discussed here. The techniques and
methods used are based on a paper by Dytlewski. [1]

Measured Errors

The covariance matrix for the singles, doubles and triples can be estimated
directly in a measurement by taking collecting several data sets. The calculated
singles, doubles and triples rates can then be compared to find the correlations
between them through multiple runs. Mathematically the covariance matrix is
0s2 O0sp OST
COV(SDT) = |O0Dbs O p2 opT
ors OTD 072



where

950 = 371 [(S1 = 8) (D1 = D) + (52— §) (D2 — D) + ..+ (Sx — ) (D ~ D)]
(1)

N is the number of data sets.

This represents the correlations between singles and doubles.

When performing these calculations one can see that there is a clear cor-
relation between the singles, doubles and triples rates. An example covariance
matrix that shows this coorelation is given in Table 1. The software that an-
alyzes the measurement files performs the calculations this way and expresses
the error as the Standard Error.

With the covariance matrix of singles, doubles and triples, the covariance
matrix for the mass, multiplication and alpha is attained by using the matrix

of the partial derivative of the same with respect to singles, doubles and triples.

Cov[mMa] = A - Cov[SDT] - AT (2)
where
om  Om  Om
W |5
IR
8s 9D 9T

The diagonal of this matrix is then the variance of the mass, multiplication
and alpha. The errors for mass, multiplication, and alpha are then expressed as
the standard error in the measurement output file.

Theoretical Errors

Multiplicity counting experiments are often simulated using MCNP-Polimi which
has the disadvantage of not performing mutiple cycles of data collection with the
same conditions. Because of this it is impossible to find the covariance matrix
by simply viewing the correlations through multiple runs. So a new technique
is needed to find the covariance matrix theoretically.

In the analysis of the neutron pulse stream, the number of times that n counts
are observed in each gate is recorded in a distribution. The signal-triggered
gate, or the reals plus accidentals gate, distribution will be called P(n). The
random triggered gate, or accidentals gate, distribution well be called Q(n).
In the simulation only one P(n) and one Q(n) multiplicity distribution can be
calculated. However, one can use the covariance matrix of these, which would
need to be calculated through the application of a model as will be proposed
later, to arrive at an estimated singles, doubles and triples covariance matrix.
To find the covariance matrices of the singles, double and triples the three
approaches considered are: a multinomial distribuition, a Poisson distribution,
and a semi-empircal approach.



Multinomial Distribution

A multinomial distribution can be used to model the distribution if each gate
that is opened is thought of as a trial. Each of these trials then has exactly one
success for one of k categories, where the catagories are the possible multiplici-
ties. This model assumes that the total number of counts is constant for every
distribution.

Assuming a multinomial distribution, the covariance matrix of the P(n) dis-
tribution and Q(n) distribution can be found by:

max

Cov(P()),, = pi(1—pi) > P(n) (3)
n=0

max

Cov(P(n);; = —pip; > P(n) (4)
n=0

where p; is the probability of measuring multiplicity i given by:

P(i)

Pi= P
and
Cov(Q(n)); =pi(1 —pi) > Q(n) (5)
n=0
Cov(Q(n)),; = —pip; »_ Q(n) (6)
n=0
where here
pi= z%i()n)

The Cov(P(n),Q(n)) and Cov(Q(n),P(n)) are taken to be independent and are
set to zero in approximation. [1]

Two more matrices are necessary to find the covariance matrix for the singles,
doubles and triples. The first we call X and is the matrix of partial derivatives
of the singles, doubles and triples rates with respect to the reals plus accidentals
distribution P(n), the second we call Y and is the matrix of partial derivatives of
the singles, doubles and triples rates with respect to the accidentals distribution
Q).

The equations used for singles, doubles and triples are the non deadtime
corrected equations since in our simulation there was no deadtime simulated.

Yo P(n)
¢

Yoo nP(n) = 35725 nQ(n)
t

S— (7)

D= (8)
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The partial derivatives with respect to P(n) are:

t

oS 1
== 1
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== 11
dP(n) t (11)
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And the partial derivatives with respect to Q(n) are:
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oQ(n) t (14)
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9Q(n) t

The X and Y matrices can then be constructed as follows using equations 10-15:

[0S 9S 1
. oP(D) apg 8Pg1
= |sP) opP@ ' 9P(n)
oT oT oT

LOP(1) OP(2) 8P(n)_
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Then the covariance matrix of the singles, doubles and triples can be found
using X and Y along with the covariance matrices of the distributions found in

equations 3-6:

Cov(SDT) = X - Cov(P(n)) - X7 +Y - Cov(Q(n)) - YT (16)

The equations for the variance of the singles, doubles and triples found by
equation 16 are:



, X[ 98 K os S R - )+ SR ST | S P0) 0
75T 21 9P(n) &= aP(m) """ | 2 -
(17)
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A property of the multinomial distribution is that the variance of the total
number of multiplicity counts is zero as can be seen. To include a nonzero
variance, the singles variance is set to that given by the semi-empircal method
which will be explained later:

S P(n) + e S
t2
An example covariance matrix for the singles, doubles and triples found using
this method is given in Table 1.
Once the covariance matrix of the singles, doubles and triples has been at-
tained, the errors for the mass, multiplication and alpha can be found using the
same procedure as outlined under the measured error and given by equation 2.

n(P(n) — Q(n))

o5 = (20)

Poisson Distribution

If the total number of counts is taken to be a random variable, as it is in the
experiment, then the distribution can also be estimated to be Poisson and every
count rate for each multiplicity will be assumed to follow a Poisson distribu-
tion. Assuming a Poisson distribution, the process is quite similar to that of the
multinomial distribution. The difference lies in the reals plus accidentals distri-
bution P(n) and the accidentals distribution Q(n) covariance matrices. Using a
Poisson distribution the matrices are given by:

Cov(P(n)); =pi »_ P(n) = P(i) (21)
n=0
Cov(P(n)),. =0 (22)

ij

where

_ __P()
Pi = STmaepln)



and

where
-
pi = szam U

The covariance matrix for the singles, double and triples is then found just as
it was for the multinomial case by equation 16.

Cov(SDT) = X - Cov(P(n)) - XT +Y - Cov(Q(n)) - YT

The variance of the singles, doubles and triples is then found to be:

P omeo P(n)
> M (P(n) +Q(n))
o, = Lo (X (26)
max oT 2 max oT 2
, 2 n=0 I:(SP(n)) P(n)} +2no [(aQ(n)) Q(n)]
UT = t2 -
maz [ (n(n=1) _ Sme mQ(m) S mP(m) -t mQm) | 2
2on=0 [( O - R (n - B )) P(”)}
t2 +
maz n(n— mat m(2Q(m)—P(m 2
Zn:O |:( (2 1) +nEM7021éi§(P(2n) ( ))) Q(TL):|
(27)

12

Another difference between this and the multinomial distribution is that the

variance of the singles rate is not zero in this case, and therefore no correction

for the singles rate is needed as seen in table 1. However, because multiplic-

ity counting measures time correlated events from fission events, the Poisson

distribution is also not an exact estimation as it is valid only for independent
processes.



Semi-Empirical

As mentioned above, the rules do not completely apply to use a Poisson or a
multinomial distribution and so a semi-empirical technique was created to arrive
at the uncertainties for the singles, doubles and triples rates. The procedure to
arrive at these equations is quite complex and only a summary is given here.
The implementation follows [1] and [3]. The approach taken was to start as if
Poisson statistics did apply but to write the Poisson equations in terms of the
measured singles, doubles, and triples values and their corresponding accidental
rates described below.

The Poisson variance (Eq. 25) can be written in terms of the singles rate
(Eq. 7) as:

meP(n) S
0_% — Zn_](f)2 ( ) — ? (28)

and as can be seen, has no corresponding accidental rate.

The doubles rate is harder to see, but if P(n) is thought of as R+ A (real plus
accidental) distribution and Q(n) is thought of as the A (accidental) distribution,
in the calculations for the doubles

Doubles = Zn=0 P Z:LW nQ(n) , the numerator can be thought of as the sum
of all the R+ A measured neutrons minus the sum of all A measured

neutron which gives the rate of total real measured neutrons D =
R+A-A _ R
t

7"

Then when taking the variance of this quantity the Poisson distribution would
give 0% = w where R and A are now the real and accidental rates. Sub-
stituting in D for the reals or R rate we get the Poisson equation in terms of

the doubles rate and the doubles accidentals rate.

D+2A
o= (20)

A can also be found in terms of the measured singles rate as:
A=5%G |2

Where G is the gate length. It can be thought of as (SG)S where SG is the mea-
sured neutron count rate times the gate length which would give the expected
number of measured neutrons in any random gate times the neutron count rate
S which would give you the average expected accidentals rate[2][3].

The triples is treated just like the doubles where the triples rate is thought
of as T=(T' + Ar) — Ar where Ap is the accidental triples rate. Then, just like
the doubles case, the variance of the triples rate is given as:

T+24
op = — L (30)

where



Ap = (1 + 7) S(DG) + ~5(5G)? (31)
fa 2

A7 calculates the accidental triples-coincidences. A triple coincidence event
occurs when two triggers occur in the opened gate interval taking into account
the combinatorial nature of the scoring. The accidental triples can be split into
two categories represented by eq. 31. If the trigger rate captures a double
coincidence or if the trigger rate captures a chance pair that happens to be
present in the gate. The first case corresponds to the first term in eq. 31 where
DG is the expected number of double events per gate and S is the rate at which
gates are opened. The multiplier (1 + %) comes about because some of the
doubles are associated, while a proportion would be present independent of any
temporal association with the triggering event. The second term is simply the
random or chance pile-up of uncorrelated events. [3]

fa represents the fraction of doubles events on the pulse train that fall into
the finite reals plus accidentals gate and «y represents the proportion of time cor-
related doubles events that are actually detected in the accidentals gates. These
can be found theoretically if the Dewey profile is represented by a pure expo-
nential with an effective 1/e die-away time of 7 (which is a good approximation)
by:

poen(2) (-0 ()

Where 7 is the detector die-away time and P is the pre-delay. [4]

After finding these modified Poisson equations a rate specific compensation
factor is added to expand the uncertainty to allow for correlations. This com-
pensation factor was found to capture the main functional dependence evident
in theory and seen in experiment. Therefore our equations are the modified
Poisson equations (28-30) with an added compensation factor 4.

P(n S
D+2A
0% = 5D% (33)
T +2A
o3 = 5T¥ (34)

The compensation factors that best agreed with measured data were found
as:

2D

bs =14
s faS



op=1+—

D +de
nyD

or =1

T + .5

where n is a factor determined experimentally so that the result would match
the measured uncertainty with a typical value of n=10. [1, 3]
Combining these with equations 32-34 the variances are:

(1+%)S

2 _
o5 = 7 (35)
14 582) (D +25%G
0% = ( fds)i ) (36)
1+ 222 (T + 2Ar)
o2 = (48 )t (37)

These values can be put into a covariance matrix with the off-diagonals set
to zero as seen in Table 1. This matrix can then be used to calculate the
uncertainties for the mass, multiplication and alpha using equation 2.

Results and Discussion

An example singles, doubles, and triples covariance matrix for the Poisson,
multinomial, and semi-empirical methods are compared with measurement in
Table 1.

The relative standard deviation (r.s.d.) of the three methods as well as the
measured value are compared in figures 1-18. It can be seen that the multinomial
distribution is slightly below the Poisson distribution for all but the corrected
singles. The semi-empirical method tends to give the largest r.s.d of the three
methods, with the exception of the triples rate, and the closest to the measured
value.

The slightly lower variance for the multinomial distribution when compared
to the Poisson can be understood when looking at the signs of the derivatives
and the covariance matrix. For the doubles variance the terms for the deriva-
tives are always positive as are the variances of the distribution so the product
of these terms creates the positive contribution, however, the terms for the co-
variances of the distribution always have a negative contribution. Because the
variance of the multinomial distribution is smaller than that of the Poisson dis-
tribution the doubles error estimations for the multinomial distribution should
be smaller than those of the Poisson distribution. The same is true for the
triples error except that some covariance terms may have a slightly positive



Measured Multinomial Poisson \ Semi-Empirical
7.52 1.69 0.91 4.61* 0 0 2.70 1.05 0.28 461 0 0
1.69 1.90 2.22 0 1.96 1.00 1.05 245 1.13 0 340 O
0.91 2.22 3.45 0 1.00 1.31 0.28 1.13 1.34 0 0 1.47

Table 1: An example singles, doubles, triples covariance matrix calculated from
the same measurement of 19.9 g PuOs. The asterix denotes the value obtained
from the semi-empirical approach as suggested by [1].

contribution. However, it is still expected that generally the multinomial triples
error estimation will be smaller than that of Poisson.
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Figure 1: Relative standard deviation of the singles for PuO2: comparison
between Poisson, semi-empirical method and measurement.
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Figure 2: Relative standard deviation of the doubles for PuO2: comparison
between Poisson, multinomial and semi-empirical with measurement.
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Figure 3: Relative standard deviation of the triples for PuO2: comparison be-
tween Poisson, multinomial and semi-empirical with measurement.
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Figure 4: Relative standard deviation of the mass for PuO2: comparison be-
tween Poisson and multinomial distributions with measurement.
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Figure 5: Relative standard deviation of the multiplication for PuO2: compar-
ison between Poisson and multinomial distributions with measurement.
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Figure 6: Relative standard deviation of the alpha rate for PuO2: comparison
between Poisson and multinomial distributions with measurement.
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Figure 7: Relative standard deviation of the singles for PM metal: comparison
between Poisson, semi-empirical method and measurement.

13



+
0 +  Measured )
+ + O  Poisson
045+ + Multinomial .
+ *  Semi-empirical
04t .
2 o
2 03p + .
= +
o
+
T % :
+
#
L O i
025 o
oo
02t o ]
1 1 1 1 1
04 1 1.5 2 25 3 35

Pu240 mass (g)

Figure 8: Relative standard deviation of the doubles for PM metal: comparison
between Poisson, multinomial and semi-empirical with measurement.
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Figure 9: Relative standard deviation of the triples for PM metal: comparison
between Poisson, multinomial and semi-empirical with measurement.

14



s
+  Measured
09r + 4
+ + O Poisson
+ + Multinamial
nar *  Semi-empirical 4
=
< 0o +
o
. +*
@ 0Br O + .
= *
+
0&F o ¥ -
[m}
o +
[m}
04r o 4
1 1 1 1 1
0.4 1 1.5 2 25 3 35

Pu240 mass (g)

Figure 10: Relative standard deviation of the mass for PM metal: comparison
between Poisson and multinomial distributions with measurement.
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Figure 11: Relative standard deviation of the multiplication for PM metal:
comparison between Poisson and multinomial distributions with measurement.
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Figure 12: Relative standard deviation of the alpha rate for PM metal: com-
parison between Poisson and multinomial distributions with measurement.
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Figure 13: Relative standard deviation of the singles for CBNM: comparison
between Poisson, semi-empirical method and measurement.
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Figure 14: Relative standard deviation of the doubles for CBNM: comparison
between Poisson, multinomial and semi-empirical with measurement.
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Figure 15: Relative standard deviation of the triples for CBNM: comparison
between Poisson, multinomial and semi-empirical with measurement.
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Figure 16: Relative standard deviation of the mass for CBNM: comparison
between Poisson and multinomial distributions with measurement.
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Figure 17: Relative standard deviation of the multiplication for CBNM: com-
parison between Poisson and multinomial distributions with measurement.
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Figure 18: Relative standard deviation of the alpha rate for CBNM: comparison
between Poisson and multinomial distributions with measurement.
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