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Abstract 
 
 We investigate the mechanism responsible for the reconstructive fcc-hcp phase 

transition in Pb that occurs at about 13 GPa.  The two most energetically favorable 

atomic pathways have enthalpy barriers much lower than any other pathway we 

considered.  Both mechanisms involve only shifts of (111) planes in the fcc structure. We 

physically interpret these pathways and represent them graphically.   

 

Introduction 
 

Under normal conditions (STP) Pb crystallizes in a face-centered-cubic (fcc) 

structure with one atom per cell.  It was suspected nearly forty years ago that a transition 

to another structure could be induced by applying pressure, but the pressure of transition 

and the structure of the new phase was not immediately determined1.  Balchan and 

Drickamer were the first to detect the transition, estimating it ensued at 16 GPa and 

determining the new structure to be hexagonal close-packed (hcp)2.  More recently it has 

been estimated that the phase transition occurs at room temperature somewhere between 

12-14 GPa.  However, as with many other transitions, a large degree of hysteresis could 

cause both types of structures to exist simultaneously in Pb.   

 The fcc-hcp transition occurs naturally in many other substances including gold, 

cobalt, and iron3.  Two common mechanisms for an fcc-hcp phase transition have been 

extensively theorized but never observed.  The first is known as the Shoji-Nishiyama 

(SN) mechanism4.  Others have anticipated this mechanism to be the most common and 

energetically favorable.  In the SN phase transition, pairs of (111) planes move in the  
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[1/6 -1/3 1/6]fcc direction relative to adjacent pairs of planes.  All pairs of planes shift in 

the same direction. The [111]fcc becomes [0001]hcp in the new hcp structure.   

 Another mechanism to achieve the fcc-hcp phase transition has been recently 

proposed by Wentzcovitch et al.5 and has been found to be equally as energetically 

favorable.  In this type of transition, adjacent (001) planes of the fcc structure experience 

a shear in opposite directions along [100] fcc.  Then the (001) planes are extended along 

[100] fcc, and compressed along the [010] fcc direction.  Thus the total effect the distortions 

change the (001) planes in the fcc structure to become identical to the (0001) planes in the 

hcp crystal.  This distortion is then followed by a compressive strain in the [001] 

direction. Therefore, in this alternate mechanism, [0001]hcp is parallel to the initial [001] 

fcc direction.    

 The fcc-hcp problem has been extensively researched in the past, some inquiries 

specifically relating to Pb, although it was not currently clear which mechanism causes 

this transition in Pb.   Our intent is to use COMSUBS, in conjunction with other 

sophisticated computing programs, as a new approach to answer this difficult question.  

Dr. Stokes has led several projects similar to this one, including the study of 

reconstructive phase transitions in Ti6, NaCl7, PbS8, SiC9.   

The ultimate goal for this project was to identify probable atomic pathways in the 

fcc-hcp phase transition of elemental Pb.  The project was executed completely through 

numerical methods using computers.  We have found that our computations and data are 

in general agreement with physical experiments and other recent literature regarding fcc-

hcp transitions.  The only significant difference is that we have identified the model 

proposed by Wentzcovitch et al. to not actually be as energetically favorable in the case 
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of Pb.  I believe that through the methods of this project, we have identified the two most 

energetically favorable, and thus the most likely, atomic pathways of the fcc-hcp 

transition in Pb.  These two pathways are related to each other, and involve shifts by only 

(111) planes, variations of the SN mechanism.   

 

Computational Methods 
 
 The first step in this project was to identify the target parameters and pressure to 

be used for numerical analysis.  The key computer program in this process was 

FIREBALL10 which is a program that rapidly calculates the energy of a crystal using 

first-principle methods.  We used FIREBALL to calculate the lattice parameters and total 

enthalpy for both the fcc and hcp structures at pressures ranging from 0 to 50 GPa.  We 

found that for pressures less than 34 GPa the fcc structure was more stable.  At pressures 

exceeding this value, the hcp structure was more energetically favorable.  This 

discrepancy with the experimentally determined values of 13 GPa at the transition is due 

to some approximations made by FIREBALL.  We also determined the lattice parameters 

to be 4.5700 angstroms in the [100] fcc, [010] fcc, [001] fcc directions for the fcc structure, 

and 3.2280, 3.2280, 5.2470 angstroms respectively for the hcp structure.   

 Once we had obtained the pressure of the transition, we employed COMSUBS11,12 

to discover how the transition might occur.  COMSUBS is a program that finds possible 

atomic pathways from one given structure to another, in this case, from fcc to hcp.  In 

order to limit the search to probable atomic pathways, we imposed several constraints 

(see Appendix).   
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1) We assume that as Pb evolves from fcc to hcp, its intermediate structure along 

the pathway is well defined at each point.  We assume that the intermediate 

structure has translational symmetry and can be defined using a unit cell.  We 

limited our search to pathways that involved an intermediate structure with a 

primitive unit cell containing no more than four atoms. 

2) The unit cell of the intermediate structure generally changes its size and shape 

along the pathway.  This strain costs energy.  We limited the principal values 

of the strain tensor to values between 0.6 and 1.5.  Basically, this allowed 

macroscopic distances in the fcc structure to contract by no more than 40% 

and to expand by no more than 50% when making the transition to hcp. 

3) Since atoms cannot pass through each other, we discarded pathways where the 

distance between any pair of atoms was less than 2.6 angstroms anywhere 

along the pathway.  This value is approximately 80% of the distance between 

nearest neighbors in the fcc structure. 

4) Atoms near each other in the fcc structure should also be near each other in 

the hcp structure.  To achieve this, we discarded pathways where the atoms 

were displaced more than 3.3 angstroms from the center-of-mass position in 

the unit cell of the intermediate structure. 

 COMSUBS returned 618 possible atomic pathways for the fcc-hcp transition in 

Pb.  Not all of the solutions, however, are naturally viable.  Each individual pathway has 

a specific enthalpy barrier, and only the solutions with the lowest barriers would ever 

occur naturally.  Thus to determine which paths are most probable for this transition, the 

enthalpy barriers of each needed to be determined.  Using FIREBALL and the 
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information about the atomic pathways provided by COMSUBS, we can calculate the 

enthalpy along each pathway from fcc to hcp.  If we assume a linear pathway, we obtain 

an upper limit to the barrier of each case.   

 We found that the FIREBALL calculations were taking much longer than 

anticipated.  Each pathway required a few hours for FIREBALL to analyze.  Because of 

the large number of pathways, the total expected time to run the full examination for each 

pathway was estimated to exceed several weeks.  For this reason we searched for 

methods that would either shorten the runtime or further limit the scope of our 

investigation.  We decided to calculate the enthalpy at only the midpoint of each 

pathway.  This midpoint enthalpy of each pathway could underestimate the actual barrier, 

but we hoped that using this midpoint value we could immediately identify and eliminate 

pathways with very high enthalpy. This limited runtime to minutes instead of hours.  

Only pathways with extreme enthalpy asymmetries or local minima would be 

misrepresented by the calculation.  After employing this strategy, six pathways in 

particular had comparatively very low enthalpy barriers.  We decided to proceed with a 

full investigation of these pathways with the caveat that if none of them produced an 

actual enthalpy barrier (not just the midpoint value) lower than the midpoint value of any 

of the other 612 pathways, we would have to expand the investigation upwards.  

Fortunately, as explained in the ensuing section for results, this did not turn out to be the 

case.   

 After narrowing our investigation to just six pathways, we investigated the 

enthalpy barrier with FIREBALL along each entire pathway.  We also removed the 
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restriction to linear pathways and used the method of bow functions13 to find the enthalpy 

at the top of the actual barrier.    

 Once the final pathways had been determined, we still had to physically interpret 

the actual movement of the atoms in each pathway.  Using the information from 

COMBSUBS, we could calculate the actual movement of each atom along each pathway.  

We did this to observe the relative placement of atoms to their nearest neighbors.  This is 

useful for understanding what type of transition is taking place, for example planar shifts 

or distortions along an axis.  There will be a repeatable pattern among unit cells, and we 

searched for that pattern with the lowest two pathways.   

Some pathways were too difficult to interpret on paper, so we had to figure out 

another means of representing atomic movement.  To do this and check our result from 

more simple pathways, we graphically modeled the transition of the pathways in 

MATLAB, a powerful numeric mathematics computer program.  We were able to use 

MATLAB to render a three dimensional model of the actual movement of the atoms.  

This process could be applied to any transition given the pathway information from 

COMSUBS.  MATLAB verified our results and helped us visualize an important 

relationship between the two lowest pathways.   

 

Results 

 
FIREBALL found the approximate pressure of the phase transition to be 34 GPa.  

For time considerations as discussed above, only the enthalpy barrier at the midpoint of 

each atomic pathway was calculated.  This was used merely as an approximation to 

narrow the scope of investigation.  COMSUBS returned 618 possible atomic pathways 
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that met the required constraints. The midpoint enthalpy values of the pathways resemble 

a bell curve on the histogram depicted below.   
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Fig. 1:  Histogram of enthalpy at the midpoint of the 618 pathways returned by COMSUBS 
 

Only those with the lowest enthalpy values are likely to occur naturally and so are the 

only pathways considered.  Figure 2 shows the histogram of only the pathways with the 

seven lowest midpoint enthalpy values.  
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Fig. 2:  Histogram of enthalpy at the midpoint of the 7 lowest pathways 
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Of the 618 pathways, cases 3, 11, 416, 468, 484 and 501 had the lowest enthalpy 

values at the midpoint of transition, and are thus the pathways of interest.  We used the 

bow function method with FIREBALL to calculate the actual enthalpy barrier.  Results 

are shown in Fig. 3 and 4 below.   
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Fig. 3:  Actual enthalpy barriers for the six lowest pathways. 
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Fig. 4:  Actual enthalpy barriers for the two lowest pathways. 
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As depicted in Fig. 3, the actual enthalpy barriers of the 3rd and 4th lowest 

pathways were actually comparatively much higher than the midpoint prediction, thus 

narrowing the relevant investigation to cases 3 and 468 only.  Importantly, the midpoint 

enthalpy value strategy initially employed to speed up the analysis did in fact return the 

most energetically favorable pathways since the actual enthalpy barriers for these two 

pathways were indeed lower than the midpoint value of any other pathway.   

 

Discussion of Results 
 

FIREBALL identified the two pathways with the lowest enthalpy barrier.  To 

further investigate the actual mechanism of these two pathways, we used MATLAB to 

create a three dimensional representation of the actual movement of individual atoms and 

planes of atoms.  We wrote a MATLAB script that used the information from 

COMSUBS to calculate the end position of an atom, given an initial reference point.  

From this modeling, it became apparent that the two lowest atomic pathways for Pb were 

of the SN mechanism variety.  Interestingly, cases 3 and 468 experienced only shifts of 

(111) planes and no distortions.  These pathways are related in the sense that only planar 

shifts, and relatively short ones, are involved.  However, case 3 involves planar shifts in 

only a single direction, while case 468 uses planar shifts along two directions to 

accomplish the same transition.  Because both pathways use shifts only along the (111) 

plane, two-dimensional representations, although slightly less effective than the 

MATLAB three-dimensional models, are adequate to illustrate the atomic movement of 

the planes.   
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Case 3 represents the most simple fcc-hcp transition.  This transition involves 

(111) planar shifts in the same direction.  As seen in figures in the appendix, atoms in the 

same (111) plane create a pocket in the shape of an equilateral triangle.  Each (111) plane 

effectively sits in such pockets of the planes directly above and below.  During this 

transition, pairs of planes move together, shifting to an adjacent pocket of the top plane of 

the pair directly beneath.  This pattern of shifting relative to the pair of planes directly 

beneath repeats throughout the entire crystal.   

Although case 468 also exclusively uses shifts of the (111) planes, the process is 

slightly more complicated.  All planes do not move in the same direction.  However, the 

two different planar shifts together effectively creates the same result as in case 3.  Like 

case 3, the first pair of planes move to an adjacent pocket between atoms of the plane 

directly beneath.  The next pair of planes on top, however, moves in a different direction, 

but still to an adjacent pocket (see Appendix).  

 

Conclusions 

 
 Our calculations using COMSUBS and FIREBALL has reasonably demonstrated 

that planar shifts are the most energetically advantageous mechanism for the fcc-hcp 

transition in Pb.  Compared to the rest of the pathways, the (111) planar shifts are a very 

simple mechanism.  This simplicity could be a reason for very little strain in the crystal, 

as well as simple enthalpy barriers for cases 3 and 468.  It also naturally leads to the 

assumption that these planar shifts from pocket to pocket have a low energy barrier in 

general.  Two of the other six lowest pathways, cases 484 and 501, were mechanisms of 

longer planar shifts between pockets as well.   
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 The Wentzcovitch et al. mechanism in Pb did not appear in the lowest group of 

atomic pathways, and we were not able to identify which of the 618 pathways 

represented this mechanism so we cannot conjecture how much higher its enthalpy 

barrier is.  It is still plausible this alternate mechanism may be preferable in other 

materials.   
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Appendix 

fcc and hcp Structures 
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fcc Structure 
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hcp Structure 
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COMSUBS Input 

comsubs, version 2.1.1, July 2004 
Harold T. Stokes and Dorian M. Hatch, Brigham Young University 
Thu Feb 17 09:41:31 2005 
 
Pb fcc to hcp 
First crystal: 
  Space group: 225 Fm-3m 
  Lattice parameters:    4.5700   4.5700   4.5700  90.0000  90.0000  90.0000 
  Number of Wyckoff positions:   1 
  Pb, Wyckoff position a,    0.00000   0.00000   0.00000 
Second crystal: 
  Space group: 194 P6_3/mmc 
  Lattice parameters:    3.2280   3.2280   5.2470  90.0000  90.0000 120.0000 
  Number of Wyckoff positions:   1 
  Pb, Wyckoff position c,    0.33333   0.66667   0.25000 
Minimum size of unit cell:   2 
Maximum size of unit cell:   4 
Minimum strain: .600 
Maximum strain: 1.50 
Constrain shuffle to  3.30 
Minimum distance between atoms:    2.600 
Use fireball to estimate energy barrier 
Number of atoms in primitive unit cell of crystal 1:   1 
Number of atoms in primitive unit cell of crystal 2:   2 
Volume/atom in crystal 1:     23.861 
Volume/atom in crystal 2:     23.674 
Nearest distance between atoms in crystal 1:    3.2315 
Nearest distance between atoms in crystal 2:    3.2181 



 16

 
COMSUBS Output for Cases 3 and 468 

Case 3 
Principal values of strain tensor:    1.189   0.999   0.836 
Nearest-neighbor distance along path:    3.148 
Broken bonds:  1 out of 18 
Maximum atomic shuffle:    0.466 
Common subgroup:  12 C2/m 
Setting of crystal 1: 
   Size =  2 
   Lattice: (1,-1/2,-1/2),(0,1/2,-1/2),(0,1,1) 
   Origin: (0,1/4,1/4) 
   Lattice parameters:    5.5971   3.2315   6.4630  90.0000 125.2644  90.0000 
   Pb i  x'= 0.00000, z'= 0.75000 
Setting of crystal 2: 
   Size =  1 
   Lattice: (2,1,0),(0,-1,0),(-2,-1,-1) 
   Origin: (-1,-1/2,-1) 
   Lattice parameters:    5.5911   3.2280   7.6675  90.0000 136.8183  90.0000 
   Pb i  x'=-0.08333, z'= 0.75000 
At midpoint: 
   Lattice parameters:    5.5706   3.2162   7.0356  90.0000 131.0413  90.0000 
   Pb i  x'=-0.04167, z'= 0.75000 
Estimated energy barrier using fireball:      0.050 eV 
 
 
Case  468 
Principal values of strain tensor:    1.089   0.999   0.912 
Nearest-neighbor distance along path:    3.102 
Broken bonds:  2 out of 36 
Maximum atomic shuffle:    0.841 
Common subgroup:  15 C2/c 
Setting of crystal 1: 
   Size =  4 
  Lattice: (1/2,1/2,-1),(-1/2,1/2,0),(1,1,2) 
   Origin: (-1/4,1/4,1/2) 
  Lattice parameters:    5.5971   3.2315  11.1942  90.0000 109.4712  90.0000 
   Pb f  x'= 0.25000, y'= 0.50000, z'= 0.87500 
Setting of crystal 2: 
   Size =  2 
   Lattice: (2,1,0),(0,-1,0),(-2,-1,-2) 
   Origin: (-3/2,-1,-2) 
   Lattice parameters:    5.5911   3.2280  11.8905  90.0000 118.0481  90.0000 
   Pb f  x'= 0.29167, y'= 0.75000, z'= 0.87500 
At midpoint: 
   Lattice parameters:    5.5870   3.2257  11.5277  90.0000 113.7597  90.0000 
   Pb f  x'= 0.27083, y'= 0.62500, z'= 0.87500 
Estimated energy barrier using fireball:      0.038 eV 
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MATLAB Inputs 
 
% Subgroup 3 
 
clear;clc;close all; 
 
 
% Form arrays 
xa=zeros(size(7)); 
ya=zeros(size(7)); 
za=zeros(size(7)); 
 
xb=zeros(size(7)); 
yb=zeros(size(7)); 
zb=zeros(size(7)); 
 
xc=zeros(size(7)); 
yc=zeros(size(7)); 
zc=zeros(size(7)); 
 
 
xah=zeros(size(7)); 
yah=zeros(size(7)); 
zah=zeros(size(7)); 
 
xbh=zeros(size(7)); 
ybh=zeros(size(7)); 
zbh=zeros(size(7)); 
 
xch=zeros(size(7)); 
ych=zeros(size(7)); 
zch=zeros(size(7)); 
 
 
xaf=zeros(size(7)); 
yaf=zeros(size(7)); 
zaf=zeros(size(7)); 
 
xbf=zeros(size(7)); 
ybf=zeros(size(7)); 
zbf=zeros(size(7)); 
 
xcf=zeros(size(7)); 
ycf=zeros(size(7)); 
zcf=zeros(size(7)); 
 
% Planes in hexagonal coords. 
% 1st plane 
xa(1)=0; 
ya(1)=0; 
za(1)=0; 
 
xb(1)=0; 
yb(1)=1; 
zb(1)=0; 
 
xc(1)=1; 
yc(1)=1; 
zc(1)=0; 
 
% 2nd plane 
xa(2)=1/3; 
ya(2)=2/3; 
za(2)=1/2; 
 
xb(2)=1/3; 
yb(2)=5/3; 
zb(2)=1/2; 
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xc(2)=4/3; 
yc(2)=5/3; 
zc(2)=1/2; 
 
% 3rd plane 
xa(3)=0; 
ya(3)=0; 
za(3)=1; 
 
xb(3)=0; 
yb(3)=1; 
zb(3)=1; 
 
xc(3)=1; 
yc(3)=1; 
zc(3)=1; 
 
 
% 4th plane 
xa(4)=1/3; 
ya(4)=2/3; 
za(4)=1/2+1; 
 
xb(4)=1/3; 
yb(4)=5/3; 
zb(4)=1/2+1; 
 
xc(4)=4/3; 
yc(4)=5/3; 
zc(4)=1/2+1; 
 
% 5th plane 
xa(5)=0; 
ya(5)=0; 
za(5)=2; 
 
xb(5)=0; 
yb(5)=1; 
zb(5)=2; 
 
xc(5)=1; 
yc(5)=1; 
zc(5)=2; 
 
 
% 6th plane 
xa(6)=1/3; 
ya(6)=2/3; 
za(6)=1/2+2; 
 
xb(6)=1/3; 
yb(6)=5/3; 
zb(6)=1/2+2; 
 
xc(6)=4/3; 
yc(6)=5/3; 
zc(6)=1/2+2; 
 
% 7th plane 
xa(7)=0; 
ya(7)=0; 
za(7)=3; 
 
xb(7)=0; 
yb(7)=1; 
zb(7)=3; 
 
xc(7)=1; 
yc(7)=1; 
zc(7)=3; 
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% Transform into fcc 
n=1; 
while n<8 
     
    % 1st & 2nd steps 
    xah(n)=.5*xa(n)-za(n)-1/12; 
    yah(n)=.5*xa(n)-ya(n); 
    zah(n)=-za(n)+3/4; 
 
    xbh(n)=.5*xb(n)-zb(n)-1/12; 
    ybh(n)=.5*xb(n)-yb(n); 
    zbh(n)=-zb(n)+3/4; 
 
    xch(n)=.5*xc(n)-zc(n)-1/12; 
    ych(n)=.5*xc(n)-yc(n); 
    zch(n)=-zc(n)+3/4; 
     
    % 3rd step 
    if ((zah(n)==(3/4)) | zah(n)==(-1/4) | zah(n)==(7/4) | zah(n)==(11/4) | 
zah(n)==(15/4)) 
        xah(n)=xah(n)+1/12; 
        1 
    end 
     
    if (zah(n)==(1/4) | zah(n)==(-3/4) | zah(n)==(5/4) | zah(n)==(9/4) | zah(n)==(13/4)) 
        xah(n)=xah(n)-1/12; 
        2 
    end 
     
    if (zbh(n)==(3/4) | zbh(n)==(-1/4) | zbh(n)==(7/4) | zbh(n)==(11/4) | zbh(n)==(15/4)) 
        xbh(n)=xbh(n)+1/12; 
        3 
    end 
     
    if (zbh(n)==(1/4) | zbh(n)==(-3/4) | zbh(n)==(5/4) | zbh(n)==(9/4) | zbh(n)==(13/4)) 
        xbh(n)=xbh(n)-1/12; 
        4 
    end 
     
    if (zch(n)==(3/4) | zch(n)==(-1/4) | zch(n)==(7/4) | zch(n)==(11/4) | zch(n)==(15/4)) 
        xch(n)=xch(n)+1/12; 
        5 
    end 
     
    if (zch(n)==(1/4) | zch(n)==(-3/4) | zch(n)==(5/4) | zch(n)==(9/4) | zch(n)==(13/4)) 
        xch(n)=xch(n)-1/12; 
        6 
    end 
     
    % 4th step 
    zah(n)=zah(n)-3/4; 
    zbh(n)=zbh(n)-3/4; 
    zch(n)=zch(n)-3/4; 
     
    % 5th step (last) 
    xaf(n)=xah(n); 
    yaf(n)=-.5*xah(n)+.5*yah(n)+zah(n); 
    zaf(n)=-.5*xah(n)-.5*yah(n)+zah(n); 
 
    xbf(n)=xbh(n); 
    ybf(n)=-.5*xbh(n)+.5*ybh(n)+zbh(n); 
    zbf(n)=-.5*xbh(n)-.5*ybh(n)+zbh(n); 
 
    xcf(n)=xch(n); 
    ycf(n)=-.5*xch(n)+.5*ych(n)+zch(n); 
    zcf(n)=-.5*xch(n)-.5*ych(n)+zch(n); 
     
    % Increment 
    n=n+1; 
end 
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% [111] line for orientation purposes 
xline = -4:.1:4; 
yline = -4:.1:4; 
zline = -4:.1:4; 
 
 
plot3(xaf(1),yaf(1),zaf(1),'rh',xbf(1),ybf(1),zbf(1),'rs',xcf(1),ycf(1),zcf(1),'rx'); 
hold on 
plot3(xaf(2),yaf(2),zaf(2),'bh',xbf(2),ybf(2),zbf(2),'bs',xcf(2),ycf(2),zcf(2),'bx'); 
hold on 
plot3(xaf(3),yaf(3),zaf(3),'gh',xbf(3),ybf(3),zbf(3),'gs',xcf(3),ycf(3),zcf(3),'gx'); 
hold on 
plot3(xaf(4),yaf(4),zaf(4),'ch',xbf(4),ybf(4),zbf(4),'cs',xcf(4),ycf(4),zcf(4),'cx'); 
hold on 
plot3(xaf(5),yaf(5),zaf(5),'kh',xbf(5),ybf(5),zbf(5),'ks',xcf(5),ycf(5),zcf(5),'kx'); 
hold on 
plot3(xaf(6),yaf(6),zaf(6),'mh',xbf(6),ybf(6),zbf(6),'ms',xcf(6),ycf(6),zcf(6),'mx'); 
hold on 
plot3(xaf(7),yaf(7),zaf(7),'yh',xbf(7),ybf(7),zbf(7),'ys',xcf(7),ycf(7),zcf(7),'yx'); 
hold on 
plot3(xline,yline,zline,'k'); 
 
 
% Subgroup 468 
 
clear;clc;close all; 
 
 
% Form arrays 
xa=zeros(size(9)); 
ya=zeros(size(9)); 
za=zeros(size(9)); 
 
xb=zeros(size(9)); 
yb=zeros(size(9)); 
zb=zeros(size(9)); 
 
xc=zeros(size(9)); 
yc=zeros(size(9)); 
zc=zeros(size(9)); 
 
 
xah=zeros(size(9)); 
yah=zeros(size(9)); 
zah=zeros(size(9)); 
 
xbh=zeros(size(9)); 
ybh=zeros(size(9)); 
zbh=zeros(size(9)); 
 
xch=zeros(size(9)); 
ych=zeros(size(9)); 
zch=zeros(size(9)); 
 
 
xaf=zeros(size(9)); 
yaf=zeros(size(9)); 
zaf=zeros(size(9)); 
 
xbf=zeros(size(9)); 
ybf=zeros(size(9)); 
zbf=zeros(size(9)); 
 
xcf=zeros(size(9)); 
ycf=zeros(size(9)); 
zcf=zeros(size(9)); 
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% Planes in hexagonal coords. 
% 1st plane 
xa(1)=0; 
ya(1)=0; 
za(1)=0; 
 
xb(1)=0; 
yb(1)=1; 
zb(1)=0; 
 
xc(1)=1; 
yc(1)=1; 
zc(1)=0; 
 
% 2nd plane 
xa(2)=1/3; 
ya(2)=2/3; 
za(2)=1/2; 
 
xb(2)=1/3; 
yb(2)=5/3; 
zb(2)=1/2; 
 
xc(2)=4/3; 
yc(2)=5/3; 
zc(2)=1/2; 
 
% 3rd plane 
xa(3)=0; 
ya(3)=0; 
za(3)=1; 
 
xb(3)=0; 
yb(3)=1; 
zb(3)=1; 
 
xc(3)=1; 
yc(3)=1; 
zc(3)=1; 
 
 
% 4th plane 
xa(4)=1/3; 
ya(4)=2/3; 
za(4)=1/2+1; 
 
xb(4)=1/3; 
yb(4)=5/3; 
zb(4)=1/2+1; 
 
xc(4)=4/3; 
yc(4)=5/3; 
zc(4)=1/2+1; 
 
% 5th plane 
xa(5)=0; 
ya(5)=0; 
za(5)=2; 
 
xb(5)=0; 
yb(5)=1; 
zb(5)=2; 
 
xc(5)=1; 
yc(5)=1; 
zc(5)=2; 
 
 
% 6th plane 
xa(6)=1/3; 
ya(6)=2/3; 
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za(6)=1/2+2; 
 
xb(6)=1/3; 
yb(6)=5/3; 
zb(6)=1/2+2; 
 
xc(6)=4/3; 
yc(6)=5/3; 
zc(6)=1/2+2; 
 
% 7th plane 
xa(7)=0; 
ya(7)=0; 
za(7)=3; 
 
xb(7)=0; 
yb(7)=1; 
zb(7)=3; 
 
xc(7)=1; 
yc(7)=1; 
zc(7)=3; 
 
% 8th plane 
xa(8)=1/3; 
ya(8)=2/3; 
za(8)=1/2+3; 
 
xb(8)=1/3; 
yb(8)=5/3; 
zb(8)=1/2+3; 
 
xc(8)=4/3; 
yc(8)=5/3; 
zc(8)=1/2+3; 
 
% 9th plane 
xa(9)=0; 
ya(9)=0; 
za(9)=4; 
 
xb(9)=0; 
yb(9)=1; 
zb(9)=4; 
 
xc(9)=1; 
yc(9)=1; 
zc(9)=4; 
 
 
% Transform into fcc 
n=1; 
while n<10 
     
    % 1st & 2nd steps 
    xah(n)=.5*xa(n)-.5*za(n)+7/24; 
    yah(n)=.5*xa(n)-ya(n)+.75; 
    zah(n)=-.5*za(n)+.875; 
 
    xbh(n)=.5*xb(n)-.5*zb(n)+7/24; 
    ybh(n)=.5*xb(n)-yb(n)+.75; 
    zbh(n)=-.5*zb(n)+.875; 
 
    xch(n)=.5*xc(n)-.5*zc(n)+7/24; 
    ych(n)=.5*xc(n)-yc(n)+.75; 
    zch(n)=-.5*zc(n)+.875; 
     
    % 3rd step 
    % a 
    if (zah(n)==(7/8) | zah(n)==(7/8+1) | zah(n)==(7/8+2) | zah(n)==(7/8+3) | 
zah(n)==(7/8-1) | zah(n)==(7/8-2) | zah(n)==(7/8-3) | zah(n)==(7/8-4)) 
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        xah(n)=xah(n)-1/24; 
        yah(n)=yah(n)-1/4; 
    end 
     
    if (zah(n)==(-7/8) | zah(n)==(-7/8+1) | zah(n)==(-7/8+2) | zah(n)==(-7/8+3) | 
zah(n)==(-7/8-1) | zah(n)==(-7/8-2) | zah(n)==(-7/8-3) | zah(n)==(-7/8-4)) 
        xah(n)=xah(n)+1/24; 
        yah(n)=yah(n)+1/4; 
    end 
     
    if (zah(n)==(3/8) | zah(n)==(3/8+1) | zah(n)==(3/8+2) | zah(n)==(3/8+3) | 
zah(n)==(3/8-1) | zah(n)==(3/8-2) | zah(n)==(3/8-3) | zah(n)==(3/8-4)) 
        xah(n)=xah(n)-1/24; 
        yah(n)=yah(n)+1/4; 
    end 
     
    if (zah(n)==(-3/8) | zah(n)==(-3/8+1) | zah(n)==(-3/8+2) | zah(n)==(-3/8+3) | 
zah(n)==(-3/8-1) | zah(n)==(-3/8-2) | zah(n)==(-3/8-3) | zah(n)==(-3/8-4)) 
        xah(n)=xah(n)+1/24; 
        yah(n)=yah(n)-1/4; 
    end 
     
    % b 
    if (zbh(n)==(7/8) | zbh(n)==(7/8+1) | zbh(n)==(7/8+2) | zbh(n)==(7/8+3) | 
zbh(n)==(7/8-1) | zbh(n)==(7/8-2) | zbh(n)==(7/8-3) | zbh(n)==(7/8-4)) 
        xbh(n)=xbh(n)-1/24; 
        ybh(n)=ybh(n)-1/4; 
    end 
     
    if (zbh(n)==(-7/8) | zbh(n)==(-7/8+1) | zbh(n)==(-7/8+2) | zbh(n)==(-7/8+3) | 
zbh(n)==(-7/8-1) | zbh(n)==(-7/8-2) | zbh(n)==(-7/8-3) | zbh(n)==(-7/8-4)) 
        xbh(n)=xbh(n)+1/24; 
        ybh(n)=ybh(n)+1/4; 
    end 
     
    if (zbh(n)==(3/8) | zbh(n)==(3/8+1) | zbh(n)==(3/8+2) | zbh(n)==(3/8+3) | 
zbh(n)==(3/8-1) | zbh(n)==(3/8-2) | zbh(n)==(3/8-3) | zbh(n)==(3/8-4)) 
        xbh(n)=xbh(n)-1/24; 
        ybh(n)=ybh(n)+1/4; 
    end 
     
    if (zbh(n)==(-3/8) | zbh(n)==(-3/8+1) | zbh(n)==(-3/8+2) | zbh(n)==(-3/8+3) | 
zbh(n)==(-3/8-1) | zbh(n)==(-3/8-2) | zbh(n)==(-3/8-3) | zbh(n)==(-3/8-4)) 
        xbh(n)=xbh(n)+1/24; 
        ybh(n)=ybh(n)-1/4; 
    end 
     
    % c 
    if (zch(n)==(7/8) | zch(n)==(7/8+1) | zch(n)==(7/8+2) | zch(n)==(7/8+3) | 
zch(n)==(7/8-1) | zch(n)==(7/8-2) | zch(n)==(7/8-3) | zch(n)==(7/8-4)) 
        xch(n)=xch(n)-1/24; 
        ych(n)=ych(n)-1/4; 
    end 
     
    if (zch(n)==(-7/8) | zch(n)==(-7/8+1) | zch(n)==(-7/8+2) | zch(n)==(-7/8+3) | 
zch(n)==(-7/8-1) | zch(n)==(-7/8-2) | zch(n)==(-7/8-3) | zch(n)==(-7/8-4)) 
        xch(n)=xch(n)+1/24; 
        ych(n)=ych(n)+1/4; 
    end 
     
    if (zch(n)==(3/8) | zch(n)==(3/8+1) | zch(n)==(3/8+2) | zch(n)==(3/8+3) | 
zch(n)==(3/8-1) | zch(n)==(3/8-2) | zch(n)==(3/8-3) | zch(n)==(3/8-4)) 
        xch(n)=xch(n)-1/24; 
        ych(n)=ych(n)+1/4; 
    end 
     
    if (zch(n)==(-3/8) | zch(n)==(-3/8+1) | zch(n)==(-3/8+2) | zch(n)==(-3/8+3) | 
zch(n)==(-3/8-1) | zch(n)==(-3/8-2) | zch(n)==(-3/8-3) | zch(n)==(-3/8-4)) 
        xch(n)=xch(n)+1/24; 
        ych(n)=ych(n)-1/4; 
    end 
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    % 4th step 
    xah(n)=xah(n)-1/4; 
    yah(n)=yah(n)-1/2; 
    zah(n)=zah(n)-7/8; 
     
    xbh(n)=xbh(n)-1/4; 
    ybh(n)=ybh(n)-1/2; 
    zbh(n)=zbh(n)-7/8; 
     
    xch(n)=xch(n)-1/4; 
    ych(n)=ych(n)-1/2; 
    zch(n)=zch(n)-7/8; 
     
    % 5th step (last) 
    xaf(n)=.5*xah(n)-.5*yah(n)+zah(n); 
    yaf(n)=.5*xah(n)+.5*yah(n)+zah(n); 
    zaf(n)=-xah(n)+2*zah(n); 
 
    xbf(n)=.5*xbh(n)-.5*ybh(n)+zbh(n); 
    ybf(n)=.5*xbh(n)+.5*ybh(n)+zbh(n); 
    zbf(n)=-xbh(n)+2*zbh(n); 
 
    xcf(n)=.5*xch(n)-.5*ych(n)+zch(n); 
    ycf(n)=.5*xch(n)+.5*ych(n)+zch(n); 
    zcf(n)=-xch(n)+2*zch(n); 
     
    % Increment 
    n=n+1; 
end 
 
% [111] line for orientation purposes 
xline = -4:.1:4; 
yline = -4:.1:4; 
zline = -4:.1:4; 
 
 
plot3(xaf(1),yaf(1),zaf(1),'rh',xbf(1),ybf(1),zbf(1),'rs',xcf(1),ycf(1),zcf(1),'rx'); 
hold on 
plot3(xaf(2),yaf(2),zaf(2),'bh',xbf(2),ybf(2),zbf(2),'bs',xcf(2),ycf(2),zcf(2),'bx'); 
hold on 
plot3(xaf(3),yaf(3),zaf(3),'gh',xbf(3),ybf(3),zbf(3),'gs',xcf(3),ycf(3),zcf(3),'gx'); 
hold on 
plot3(xaf(4),yaf(4),zaf(4),'ch',xbf(4),ybf(4),zbf(4),'cs',xcf(4),ycf(4),zcf(4),'cx'); 
hold on 
plot3(xaf(5),yaf(5),zaf(5),'kh',xbf(5),ybf(5),zbf(5),'ks',xcf(5),ycf(5),zcf(5),'kx'); 
hold on 
plot3(xaf(6),yaf(6),zaf(6),'rp',xbf(6),ybf(6),zbf(6),'rd',xcf(6),ycf(6),zcf(6),'ro'); 
hold on 
plot3(xaf(7),yaf(7),zaf(7),'bp',xbf(7),ybf(7),zbf(7),'bd',xcf(7),ycf(7),zcf(7),'bo'); 
hold on 
plot3(xaf(8),yaf(8),zaf(8),'gp',xbf(8),ybf(8),zbf(8),'gd',xcf(8),ycf(8),zcf(8),'go'); 
hold on 
plot3(xaf(9),yaf(9),zaf(9),'cp',xbf(9),ybf(9),zbf(9),'cd',xcf(9),ycf(9),zcf(9),'co'); 
hold on 
plot3(xline,yline,zline,'k'); 
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Pathway 3 Transition  
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Pathway 3 Transition 
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Pathway 468 Transition:  First Group of Planes 
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Pathway 468 Transition:  Second Group of Planes 
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Pathway 468 Transition 
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