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ABSTRACT

Simulating the TE01δ Mode of a Dielectric Resonator in Free Space

Daniel John King
Department of Physics and Astronomy, BYU

Bachelor of Science

Dielectric resonators, which are used to create standing waves in the microwave band, have been
an important topic of research for decades due to their usefulness as antennae, filters, enhancing
electron spin resonance, and a variety of other applications. For all these uses it is important to
know the resonant frequency of a given resonator, but predicting this frequency is difficult, as
only approximate formulas exist and performing precise numerical calculations to determine the
frequency is computationally expensive. In previous work, we demonstrated that a neural network
can be trained to accurately predict the TE01δ mode frequency and field modes of a pair of dielectric
resonators inside a cylindrical microwave cavity, with the training data created for a variety of
different configurations using the finite element method. Here, we modify this approach to similarly
determine the frequency and field modes for the TE01δ mode for a single dielectric resonator in free
space, by using a finite-difference method with perfectly-matched layer boundary conditions.
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Chapter 1

Introduction

A dielectric resonator is a piece of polarizable material designed to create standing electric and

magnetic fields, typically in the microwave band [1]. These standing waves are formed due to

the boundary between the edge of the dielectric material and free space. The exact layout of the

standing waves that are formed, and the resonant frequency at which this occurs, depends upon

the shape and relative permittivity of the resonator, and the frequency being used to excite the

resonator, as any given resonator has a number of different resonant modes that can be excited [2].

Although they can come in a variety of sizes, shapes and materials, the most common resonators are

cylindrical, made of ceramic, and on the order of centimeters in size.

The idea of using a finite piece of dielectric material as an electromagnetic resonator was first

proposed in 1939 by Robert Richtmyer [1]. Now, because of their small size and cheap cost to

produce, dielectric resonators are used commonly in industry for applications such as band-pass

filters, electronic oscillators, and microwave antennas [3]. In research settings, they are often used

to enhance field strength for electron spin resonance spectroscopy experiments, typically by placing

a sample of a material to be measured inside of a hollowed out resonator, and then placing that

resonator inside of a conductive microwave cavity [4].

This specific configuration of a hollow resonator in a cavity was the focus of a research paper
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2 Chapter 1 Introduction

by the Colton group, published in October 2021 in the journal IEEE Transactions on Microwave

Theory and Techniques [4]. The object of this paper was to determine a method of more quickly

calculating the resonant frequency and electric fields of a specific resonant mode, called the TE01δ

mode, of a resonator (or set of stacked resonators) inside a microwave cavity, all of arbitrary

dimensions. Because no analytical solutions exist for determining these values, one must resort to

either experimentally measuring them, running time-consuming simulations to determine them, or

relying on formulas that can only approximate these values within a certain range of dimensions or

dielectric values. The solution reached in this paper was to use a supercomputer to run simulations

for a large number of different configurations, and use the resulting data to train a neural network

to very accurately predict the fields and resonant frequencies for any set of input dimensions and

dielectric values.

The work of this thesis is to show how this method can be extended to work for a dielectric

resonator in free space, as even though this configuration is much simpler, there still is no analytical

solution for determining its fields and resonant frequencies. Extending this computational approach

to work for this configuration presents a number of challenges, chief of which is modifying the

boundary conditions of a finite simulation space to approximate an infinite space. This was

accomplished by implementing a type of artificial absorbing boundary called a perfectly-matched

layer (PML). Implementing this necessitated other modifications, including changing the type of

modeling technique used and the software library used to implement the simulation. Upon doing

this, we show that a dielectric resonator in free space can indeed be accurately modeled, achieving a

frequency accuracy nearly identical to previously used methods. The potential of utilizing this data

in training a predictive neural network with similar levels of accuracy is then discussed.



Chapter 2

Methods

In this chapter, we present an overview of the methods used in implementing the dielectric resonator

simulation. We start in Section 2.1 with a brief overview of the general simulation methods used

both in our past work and here. In Section 2.2 we explain in greater depth the nature of the problem

we are trying to simulate, which is elaborated upon in Section 2.3 where we present the solution

to the problem of simulating an infinite space. Section 2.4 introduces the code library used to

implement the simulation, and in Section 2.5 the code itself for the simulation is outlined.

2.1 Overview of Simulation Methods

One popular method of simulating electrodynamic systems is the finite element method. This

method works by dividing the simulation space into a series of cells (called elements), and finding

an approximate solution to Maxwell’s equations for each element, in such a manner that the function

is piecewise-continuous with the functions of the surrounding elements [5]. These elements can

take on a number of different geometries, and can vary from one element to another within the

same simulation. This flexibility allows the finite element method to accurately model systems with

complex geometries [6]. Implementing this method for vector valued functions such as electric
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4 Chapter 2 Methods

and magnetic fields is often difficult, but can be simplified in some cases by exploiting symmetries

in the system. This method was what was used in our previous work, to model a set of stacked

resonators inside of a conducting microwave cavity.

Another popular class of methods are finite-difference methods. Unlike the finite element

method, this method discretizes the simulation space using a rectangular grid, with constant spacing

in each dimension [7]. After specifying some type of electromagnetic source, the simulation then

uses Maxwell’s equations to estimate how the fields in the system will evolve, either in a time

or frequency domain. These methods are often easier to implement, but generally can’t handle

complex geometries as well as the finite element method. For example, if material boundaries in the

simulation don’t exactly line up with the spacing of the computational grid, they will typically be

rounded to match, which will introduce error into the resulting fields or frequencies being calculated.

Though this does present some limitations to the number of configurations that can be tested, a

frequency domain variant of the finite difference method is what we have elected to use here, due

its ease of use.

2.2 Description of Resonant Mode and Boundary Conditions

Our goal is to determine both the electric and magnetic fields, as well as the resonant frequency,

of the TE01δ mode of a cylindrical dielectric resonator. TE stands for transverse electric, meaning

that electric field E has no z component, and for this specific mode it also has no r component

as well. This means it points only in the φ direction, relative to the resonator (using the typical

cylindrical coordinates of r, φ , and z). The 0 means that the E field has no φ dependence, i.e. the

field is rotationally symmetric. The 1 denotes a single anti-node (maximum field value) in the r

direction, and the delta has a similar meaning for the z direction, though we use delta instead of

1 because the field in the z direction only goes to zero in the limit of infinity in both directions,
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so the field extends beyond half a wavelength in this dimension. As is consistent with Maxwell’s

equations, the magnetic field B for this mode is zero in the φ direction, but nonzero in both the r

and z directions. From a distance the B field is similar to that of a magnetic dipole, meaning this

field mode is sometimes called the “magnetic dipole mode” [2].

In our previous work, these field patterns were altered by the presence of conducting walls

surrounding the resonator. These conducting walls act as boundaries, forcing both the E and B

fields to go to zero at these walls. This is the easiest case to simulate, as any electromagnetic

simulation requires boundary conditions, and so the values at these boundaries are simply kept

at zero. This of course alters the fields and resulting resonant frequency of the resonator itself,

because of how the fields reflect off of these boundaries. However, what we are interested in now

is simulating a resonator in free space, meaning that we can’t use this boundary condition, or any

similar boundary condition that results in reflections that alter the resonant frequency and fields.

Of course, we still need some form of boundary, because we can’t use an infinite simulation space

with our finite computing capabilities. What we need then is some kind of boundary that is able to

absorb electromagnetic fields of any frequency without producing reflections, which turns out to be

a difficult mathematical problem. Luckily, a solution to this conundrum was presented in 1994 by

Berenger [8], in the form of something called a perfectly matched layer.

2.3 Explanation of Perfectly Matched Layers

A perfectly matched layer (PML, for short) is not a boundary; rather, it is a layer of finite thickness

that pads the boundary of the simulation. It works by implementing a mathematical transformation

that causes any electromagnetic fields that enter this layer to quickly decay, so that by the time the

field reflects off of the boundary and exits the layer back into the simulation space, it is nearly zero

and therefore has no effect on the simulation. This mathematical transformation does not correspond
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to any real phenomenon or material; it is simply a tool that lets us approximate an infinite space

with our finite simulation.

PMLs work by using what is called an "analytic continuation" into a complex space. What

this means is that the real electric and magnetic field values gain an imaginary component via a

mathematical operation inside the PML that causes them to decay exponentially. For a scalar wave

equation in one dimension, the transformation takes this form [9]:

∂

∂x
→ 1

1+ iσx(x)
ω

∂

∂x
(2.1)

where ω is the frequency of the incident wave, and σx is a function that is nonzero within the PML,

and zero without. The function within the PML can vary, but typically is chosen to be something

that starts at zero, turns on gradually, and increases throughout the layer, like x2, for example. This

formula can be extended to work for higher dimensions, and can be further modified to work for

alternate coordinate systems such as cylindrical or spherical. For the corresponding transformations

for the three-dimensional, cylindrical coordinate system being used in our simulations, see Teixeira

et al [10].

Unfortunately, the code library (called FEniCS) used to implement the finite element method

approach used previously does not include native support for complex numbers, which makes a

direct implementation of PMLs impossible. There is an updated version of the FEniCS library,

called FEniCSx, which does include support for complex numbers; however, it differs enough from

FEniCS to make a port of the old code to FEniCSx very difficult. This is compounded by the fact

that the documentation for FEniCSx is rather sparse and poorly organized. Because of this, we

decided to turn to a different code library that could much more easily facilitate this task. This

library is called Meep.
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2.4 Introduction to Meep

Meep is, according to the documentation web page, a “free and open-source software package

for electromagnetics simulation via the finite-difference time-domain method spanning a broad

range of applications” [11, 12]. It was originally developed by a research group out of MIT, and

the current version uses a Python interface. Its chief advantages over the previously used FEniCS

library are that the user doesn’t have to implement the electromagnetic equations to be solved,

and it has PML functionality and support for cylindrical coordinates built in. All the user needs

to do is specify the configuration they wish to model, including where they want PMLs, and the

Meep code backend does the rest. Of course, since Meep uses a finite difference method instead of

the finite-element method like FEniCS, it cannot support as complex of geometries, and finding

resonant modes poses some challenges that can increase simulation runtime. However, the benefits

of the ease of implementation far outweigh these drawbacks.

One quirk of Meep is that it does not use standard SI units such as meters. Instead, Meep uses a

type of dimensionless unit system that the developers refer to as “Meep units” [13]. In Meep units,

the speed of light c, the permittivity of free space ε0, and the permeability of free space µ0 are all

set to 1. This makes all length values simply expressed as ratios of each other, and the frequency

of a given electromagnetic wave just becomes the inverse of its wavelength (using the standard

formula c = λ f ). Then, when you calculate a frequency in Meep units, if you want to convert that to

SI units, you start by picking a real length value in SI units to correspond to the unit length of your

simulation. Then, you divide your frequency by that length value, and multiply by the SI value of

c. This means that the actual size of a resonator being simulated is irrelevant. Therefore, the only

relevant quantities for determining the resonant frequency in Meep units of a simple, non-hollow,

cylindrical resonator are its relative permittivity and its aspect ratio, which is the ratio of its height

to its diameter.

Now because the resonator size is irrelevant, it is helpful to keep the size normalized between
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resonators using some metric, so that resonators of different aspect ratios occupy a similar amount

of area within their respective simulations. In keeping consistent with our previous work using

FEniCS, we determined that the best metric to use would be the harmonic mean of the diameter and

height of the resonator. The harmonic mean is a type of average given by the formula:

HM =
4hr

h+2r
(2.2)

where r is the radius and h is the height of the resonator. For our simulations we chose to keep the

harmonic mean of each resonator at or as close to 1 as possible.

2.5 Code Implementation

What follows here is a brief list of the general steps required to implement the simulation in Meep,

along with a basic explanation of each step. For the actual code itself, refer to the Appendix. The

steps are as follows:

1. Define the simulation and resonator geometry

2. Implement the PML boundary layers

3. Create a source function

4. Run the simulation and check the output mode

To define the simulation geometry, a coordinate system must first be specified, which in our case

is cylindrical. Doing this simply requires setting a dimension parameter equal to an enumerated

constant that corresponds to cylindrical coordinates. Once this is done, the geometry of the

simulation space is defined through specifying the radius and height of the space. One would

normally also specify a value for the angular coordinate φ , but in this case we can actually set this to

zero, which tells the Meep backend that our simulation will be rotationally symmetric. This reduces
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our simulation space from a 3-dimensional space down to a 2-dimensional space, greatly speeding

up runtime. We then specify the radius, height, and relative permittivity of our dielectric resonator,

which will be centered in our simulation space.

In doing all this, we make sure that we define the simulation space to be significantly larger than

the resonator itself, so we can see how the fields extend into the free space surrounding the resonator.

This also reduces the small amount of error introduced by the PML boundary layers. However,

adding space also increases runtime, so a balance must be found between space and runtime. For

our tests, we found it sufficient to set both the simulation radius and height to a length of 4. We felt

that this was sufficient, given that across all the configurations we tested, no resonator ever had a

radius greater than 2.4 or a height greater than 1.2.

Next we implement the PML boundary layers. In Meep, this is as simple as specifying the desired

thickness of our PML layers with the variable dpml, and then calling the function mp.PML(dpml).

Generally, a good rule of thumb for PML thickness is to make the layer at least half as thick as the

expected wavelength of our fields, and since we know that our wavelengths are going to be on the

same order of magnitude as the radius of our cylinder, we found setting dpml equal to 1 to be more

than sufficient.

We then must create a source function, which is some type of electric or magnetic oscillator

within the system. Otherwise, all E and B field values would simply return as zero. For this we

chose to use a magnetic source oriented vertically in the center of the resonator, as we know from

the field topology of the TE01δ mode that the B field exists along the z-axis only in the z direction,

and is at a maximum in the center of the resonator. There is a problem however, because this source

needs a specified frequency, one that is close enough to the resonant frequency that we are trying to

find that it excites the correct mode in the resonator. Luckily for us, there is an approximate formula

we can use:
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fGHz =
34

r
√

εr

( r
h
+3.45

)
(2.3)

Here, r is the radius of the cylinder and h is the height (both in millimeters), with the resulting

frequency in GHz. Converting this into Meep units gives us:

f =
0.113413

r
√

εr

( r
h
+3.45

)
(2.4)

This can be further rewritten in terms of the aspect ratio and harmonic mean as:

f =
0.226826

HM (1+AR)
√

εr
(1+6.9AR) (2.5)

Eq. 2.3 is well established in literature and can be found in Dielectric Resonators by Kajfez and

Guillon [2]. This formula is said to be accurate to within about 2% within the following ranges:

0.25 < AR < 1 (2.6)

30 < εr < 50 (2.7)

We have found through testing that outside these ranges, this formula tends to predict a value above

the actual resonant frequency.

Once all of these parameters have been specified, the simulation can be initiated, and the

resonant frequency and fields can be calculated using the Meep sim.solve_eiqfreq() method. This

method uses an iterative frequency-domain solver to compute the resonant frequency to within a

specified margin of error, which is 10−7 in our case. Once a solution has been converged upon,

the simulation outputs the resulting resonant frequency, as well as the E and B fields as a series of

2D arrays, one array for each field component. To then ensure that the mode found is the TE01δ

mode, we check the E field to make sure that at no point does it switch directions; that is, if the E

field points generally in the +φ direction, there aren’t any points in the resonator or surrounding
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space where it points in the -φ direction. If it does, or if the simulation fails to converge, this is

generally because we’re using an aspect ratio or relative permittivity value outside of the range that

our approximate formula is good for, and as a result our source frequency is usually too high and

doesn’t excite the proper mode. To fix this, we then iteratively call the sim.solve_eigfreq() method,

lowering the source frequency by 10% each time, until the proper mode is found.
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Chapter 3

Results

In this chapter, we present the results and our discussion of our simulations. We first start in Section

3.1 by plotting the electric and magnetic fields, as well as the resonant frequency, for a single,

typical configuration. This serves as an example from which we can learn about the simulation

accuracy. Comparison with approximate formula values are also discussed. In Section 3.2, we

examine the runtime behavior of our simulations, and how it scales with resolution. Similarly, in

Section 3.3, we discuss how the accuracy of the determined resonant frequency for an example

configuration varies with resolution. This all leads us into Section 3.4, where we apply what we

have learned from these examples across a wide variety of different configurations using the BYU

supercomputer. We finish in Section 3.5 with a discussion of potential future work.

3.1 Single Resonator Field Values

A plot of the electric and magnetic fields for a typical solid single resonator is shown in Fig. 3.1. As

is expected for the TE01δ resonant mode, we see that the E field only propagates in the φ direction,

while the magnetic field propagates only in the r and z directions. There are a few things worth

mentioning here, however, particularly the E field values along the z-axis and the total B field flux.

13
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Figure 3.1 Cross-section showing electric and magnetic field lines for a resonator with
an aspect ratio of 1, and a relative permittivity of 40. This simulation was performed at a
resolution of 20.

Starting with the B field plot, we should expect to see a total downward flux equal to the

total upward flux when summing across all space, in accordance with Gauss’s law for magnetism.

However, the plot clearly shows a net upward flux. This is because in reality this resonant mode

extends out into all space, so even though the fields approach zero infinitely far away, if you were

to sum over all space, you would see a net flux of zero. This is why using perfectly-matched

layer boundaries in our model is so important: had we not used those, our B field plot would look

significantly different, as the entirety of the field would be enclosed in the simulation space.

We also see that the electric field is not exactly zero at r = 0, as one should expect to see for

this mode. This is a form of numerical error caused by the finite-difference method, specifically

from how the simulation truncates the field values near the magnetic field point source [12]. The

magnitude of these erroneous values along the z-axis is dependent largely on the specified resolution

of the simulation: the higher the resolution, the closer to zero these values become.

To quantify this, we found the maximum value of the electric field along the r-axis for a typical
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configuration, and divided that value by the value of the electric field at the origin. We then

repeated this for a variety of different resolutions. What we found was that in almost every case,

the max-to-min field ratio was very nearly equal to the resolution. So, for a resolution of 50, the

field at the origin was around 1/50 of the maximum electric field value. Because we know this field

value should actually be zero, we can estimate that the maximum error of our field will have a lower

bound equal to the inverse of the resolution. So, a simulation with a resolution of 50 will have a

field error of at least 2%, and a simulation with a resolution of 10 will have a field error of at least

10%. This is less than ideal, given that the finite element method approach used in our previous

work was significantly more accurate than this. This of course can be mitigated by using even higher

resolutions, but this leads to issues with long runtimes, which is what we will now discuss.

3.2 Single Resonator Configuration Runtimes

Because the simulation resolution corresponds to the number of discrete divisions per unit length,

and our simulation space is two dimensional, the total number of points in our simulation grid is

proportional to the resolution squared. This means that at best, we can hope that the time it takes

for a simulation to run to completion would also be roughly proportional to the resolution squared.

For example, if you doubled the resolution, you would expect the runtime to increase by about a

factor of four. Unfortunately, this is not the case. Instead, the runtime increasese with resolution

by a polynomial factor closer to 4. To show this, the runtimes for a typical configuration tested

at a variety of different resolutions are plotted in Fig 3.2. This behavior puts an upper limit on

the accuracy we can achieve, as with a resolution of 60 a single simulation takes over 2 hours to

complete on a node of the BYU supercomputer. Given that our goal is to potentially run thousands

of different configurations, any resolution above 60 is simply untenable, even with a supercomputer

than can run many simulations simultaneously.
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Figure 3.2 Runtime plotted against resolution for a resonator with an aspect ratio of 1 and
a relative permittivity of 30. The red curve is a simple polynomial function fitted to the
data, which has the form t = 0.0000577x4.58731. The runtime for the resolution set equal to
60 was 2 hours and 16 minutes.
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Figure 3.3 Calculated frequency values for different resolutions for a resonator with an
aspect ratio of 1 and a relative permittivity of 30.

3.3 Single Resonator Frequency Accuracy

Equally, if not more important than finding the electric and magnetic fields, is finding the resonant

frequency. Ideally, we would like to see the simulation resolution have no impact on the calculated

frequency, but unfortunately this is not quite the case. What we find is that typically the simulation

tends to slightly undershoot what the real frequency should be, and as resolution is increased it

asymptotically approaches this true value. Fig 3.3 shows this with the calculated resonant frequency

(in Meep units–see Chapter 2) for the same configuration and resolutions as before. The difference

is very slight–between resolutions 30 and 60, for example, there is only a difference of 0.13%.

Now, it would be possible to fit these points to an exponential curve to estimate the calculated

frequency as resolution approaches infinity. However, we found this approach to be unwieldy and

difficult to implement across many different resonator configurations. Instead, we elected to use a

technique called Aitken extrapolation, which is a method that allows one to estimate the value at
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which a geometric sequence converges [14]. The formula is given as follows:

S∞ = Sn+2 −
(Sn+2 −Sn+1)

2

Sn −2Sn+1 +Sn+2
(3.1)

where Sn, Sn+1, and Sn+2 are consecutive terms in a geometric sequence. Since terms in a geometric

sequence must increase by a constant multiplicative factor, we can use the calculated frequency

values at resolutions of 10, 20, and 40 for our Sn, Sn+1, and Sn+2, respectively. Inputting these into

the above formula will then give us an estimation of the resonant frequency as if it were calculated

at a resolution of infinity.

To determine whether or not this was an accurate approach, we simulated the same configuration

as before using these resolutions; however, this time we removed the PML boundary layers to

simulate a dielectric resonator inside of a conductive cavity. This allowed us to perform the same

simulation in FEniCS, and then compare the resulting frequencies. The results of this are plotted

in Fig 3.4. What we found was that the Aitken extrapolated Meep frequency is in almost exact

agreement with the FEniCS frequency, with a percent difference of only 0.008% between the two.

Because of this, we believe our Meep code combined with Aitken extrapolation can be used to

obtain accurate frequency estimates.

3.4 Frequency Results Across Parameter Space

Given that we have now established the limitations of our simulation code, we can now move on

to testing a variety of different resonator configurations, both within and beyond the ranges that

our approximate formula (Eq. 2.5) is said to be accurate within. To do this, we varied our aspect

ratio from 0.25 to 4, and our relative permittivity from 20 to 50, and performed simulations at a

large sampling across this space. All configurations were simulated at resolutions of 10, 20, and

40, and then Aitken extrapolation was used to obtain the final values. A plot of all the calculated
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Figure 3.4 Comparison of Meep and FEniCS frequency values for a resonator with an
aspect ratio of 1 and a relative permittivity of 30, inside a conductive cavity with a diameter
and height of 4. The blue points represent the raw Meep values, and the blue line represents
the Aitken extrapolated value at infinity. The red line represents the calculated FEniCS
value for the frequency.
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resonant frequencies is shown in Fig. 3.5. For clarity, a cross section of this plot is shown in Fig.

3.6. Fig. 3.7 shows the error between the formula and calculated frequencies; here the height above

the z = 0 plane corresponds to the percent error of the approximate formula from the calculated

frequency. At an aspect ratio of 1 and a relative permittivity of 30, which is at the very edge of

the range the approximate formula is said to be accurate within, the percent difference is 2.38%,

more or less verifying the accuracy claims of this formula. One thing that is concerning, however, is

the alternating behavior between overestimation and underestimation seen at higher aspect ratios,

as well as the aspect ratio of 1.2 having a much higher error than the surrounding ratios that were

tested. We believe this is most likely due to some kind of flaw in our computational approach that

has yet to be addressed, or even a mathematical error. Further research is required to determine

what the cause of this behavior is.

3.5 Future Work

The work of this thesis was primarily to establish this simulation method as a viable way of

determining the fields and resonant frequency of the TE01δ mode of a dielectric resonator in free

space. This lays the groundwork for several avenues of potential work in the future. Firstly, we

can use this data to create a more accurate function to estimate the resonant frequency for a single,

solid resonator; a function that also could be used across a larger range of relative permittivities and

aspect ratios.

More importantly, however, is the potential to use this work in combination with a neural

network, similar to the previous work done by this group. This type of simulation can easily

be modified to work for a hollow dielectric resonator, or a set of stacked resonators. Doing this

introduces new degrees of freedom that makes it impossible to create a simple function that can

estimate the resonant frequencies. However, this is the type of task a neural network is well suited
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Figure 3.5 3D plot of all calculated frequencies, as a function of both aspect ratio and
relative permittivity. The overlaid surface plot is the estimation provided by Eq. 2.5 (with
the harmonic mean set to 1), and the red section of the surface plot indicates the region
within which the formula is accurate to within 2%.
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Figure 3.6 Cross section of Figure 3.5, for a relative permittivity of 30.

to handle, given a large enough dataset to train with, which is what we can provide using the BYU

supercomputer.

To pursue these avenues, we will also attempt to better quantify and address the sources of

error in our simulations, in addition to testing resolutions at a wider variety of configurations, and

also finding established frequency values in literature with which we can compare our results with.

We are confident that with continued work, we can achieve similar accuracy in our results to our

previous work with resonators enclosed inside conductive cavities, across potentially an even wider

range of configurations. Given these possibilities, we are excited to continue to explore this project,

and find ways to contribute and expand our collective understanding of these materials.
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Figure 3.7 Percent difference between calculated frequency and frequency predicted by
the approximate formula. The z = 0 plane has been displayed for convenience, with the
red section corresponding to the region within which the formula is said to be accurate to
within 2%.
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Appendix

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import meep as mp
import sys
import numpy as np
import timeit
import csv

oR = float(sys.argv[1]) #dielectric outer radius
h = float(sys.argv[2]) #dielectric height
iR = float(sys.argv[3]) #dielectric inner radius
diel = float(sys.argv[4]) #dielectric constant
sim_r = float(sys.argv[5]) #simulation radius
sim_h = float(sys.argv[6]) #simulation height
dpml = float(sys.argv[7]) #PML thickness
resolution = int(sys.argv[8]) #simulation resolution
output_file_base = str(sys.argv[9]) #output file name

if __name__ == "__main__":
#mp.verbosity(0) #uncomment this command if you want to reduce the amount of log text output

sr = sim_r + dpml #total simulation radius
sh = sim_h + 2*dpml #total simulation height

t0 = timeit.default_timer() #start timer

max_attempts = 5
attempt_counter = 0
is_te011 = False
while((not is_te011) and (attempt_counter < max_attempts)):

dimensions = mp.CYLINDRICAL
cell = mp.Vector3(sr, 0 , sh)
geometry = [mp.Block(center=mp.Vector3(iR + ((oR-iR)/2), 0, 0),

size=mp.Vector3((oR-iR), 1e20, h),
material=mp.Medium(epsilon=diel))]

25



26 Chapter 3 Results

pml_layers = [mp.PML(dpml)]
freq = (0.113413 * (3.45 + oR / h))/(oR * np.sqrt(diel))
freq = freq - (0.1 * freq * attempt_counter)
#this guess frequency used for the source is often slightly above the resonant frequency,
#so if the simulation fails with the first guess frequency,
#it tries again with a slightly lower guess frequency. This rarely happens though

src = [mp.Source(mp.ContinuousSource(frequency = freq),
component = mp.Bz,
center = mp.Vector3(0, 0, 0),
size = mp.Vector3(0, 0, 0))]

sim = mp.Simulation(cell_size = cell,
geometry = geometry,
boundary_layers = pml_layers,
resolution = resolution,
sources = src,
dimensions = dimensions,
m = 0, #Angular mode number, which is 0 for us
force_complex_fields = True)

try:
sim.init_sim()
eigfreq = sim.solve_eigfreq(tol=1e-7, maxiters=100,

cwtol=1e-10, cwmaxiters=10000, L=10)
#these are just the default settings for solve_eigfreq, written out for clarity

ep_data = sim.get_array(component = mp.Ep).real #get Ephi array

#trim array to exclude PML boundaries plus a little extra
ep = np.copy(ep_data[int(resolution*1.5*dpml):int(resolution*sh-resolution*1.5*dpml),

:int(resolution*sr-resolution*1.5*dpml)])
if(np.abs(np.amin(ep)) > np.abs(np.amax(ep))): #flip Ephi if negative

ep = -1 * ep

#perform mode check (note: this isn't perfect)
tol = 0.01
if ((-np.amin(ep) * tol) < np.amax(ep)): #checks for zero crossings in the E field.

is_te011 = True

except Exception as exception:
eigfreq = -1 #frequency value to report that indicates error
is_te011 = False
print(exception)

attempt_counter += 1

tf = timeit.default_timer() #end timer
total_time = tf - t0
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print("Total time is : ", str(total_time) + " s") #print total time

#generating output array
output = np.zeros(13)
output[0] = h/(2*oR) #(aspect ratio)
output[1] = oR
output[2] = h
output[3] = iR
output[4] = diel
output[5] = sim_r
output[6] = sim_h
output[7] = dpml
output[8] = resolution
output[9] = attempt_counter
output[10] = total_time

#add frqeuency value to frequency array
if (is_te011):

output[11] = eigfreq.real
output[12] = eigfreq.imag

else:
output[11] = -1
output[12] = -1

output_file = output_file_base + ".csv"

with open(output_file, 'a') as f: # 'a' = append
writer = csv.writer(f)
writer.writerow(output) #array is saved as a single row in the specified .csv file
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