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Barrier suppression ionization and wave-packet-spreading models are used to describe to first order in
a perturbative expansion the quantum-mechanical interaction between a photodetached electron wave
packet and its parent nucleus in the presence of a very strong laser field. The attraction between the
wave packet and the nucleus (the first-order approximation to the dipole acceleration) is interpreted in
terms of a force arising from an effective potential, where the effective potential is defined to attract the
electron treated as a point particle by the same amount that the true Coulomb potential attracts the
spreading wave packet. Thus the effective potential has no Coulomb singularity at the origin. The ob-
tained expression for dipole acceleration is used to calculate the emission spectrum of the detached wave
packet interacting in the strong laser field with the nucleus. In the case of detachment of the hydrogen
ground-state wave packet, the spectrum is shown to be broad and almost completely devoid of definite
harmonics of the laser frequency. The lack of any pronounced structure in the emission spectrum is ex-
plained by rapid spreading of the electron wave packet and by the resulting strong smoothing of the
effective interaction potential and force. The limitations on the applicability of the presented theory are
discussed and are shown to be rather stringent: the laser pulse must be very short (a few optical cycles)
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Strong-field photoionization and emission of light in the wave-packet-spreading regime

and very strong (of the order of the atomic field).

PACS number(s): 32.80.Rm, 32.80.Fb

I. INTRODUCTION

Photoionization of atoms by a strong and superstrong
light field is a subject of rather wide interest, both experi-
mental and theoretical. Many theoretical models have
been suggested to describe this process as well as accom-
panying phenomena, such as the emission of harmonics
of the laser field. The applicability of the various models
depends strongly on the parameters of laser radiation: its
intensity, frequency, and pulse duration. Two models of
importance to the topic of this paper are the barrier
suppression ionization (BSI) [1] and wave-packet-
spreading (WPS) [2—-5] models. In the BSI picture, ion-
ization is assumed to occur suddenly and completely
when the height of the atomic potential barrier is
suppressed by the laser field past the level of the electron
binding potential. In this paper, we assume further that
the wave packet of the bound state remains undistorted
until the moment of ionization. The WPS model assumes
that once the electronic wave packet has been released
from the atom, it spreads quantum mechanically in the
laser field while remaining almost free from an influence
of the atomic potential. The main assumptions of the
BSI and WPS models are further explained in Sec. II.

On an intuitive level, the main result of this work can
be formulated in advance as follows: From the BSI-WPS
assumptions, once the light field €(#) becomes strong
enough to release the originally bound electron, the
“center of mass” of the electron wave packet follows a
classical electron trajectory r(f) in the laser field,
whereas the electron charge distribution density spreads
quantum mechanically. Spreading is characterized by
the function ¥(r,z) of an electron free from both the
Coulomb and light fields. Under the BSI-WPS assump-
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tions, the electron charge distribution density is propor-
tional to |¢(r;¢ )|, which is centered on the classical tra-
jectory. The attraction between the nucleus and the
spreading and oscillating electron wave packet may be
found through a direct application of Coulomb’s law.
The attraction (effective force) between the nucleus and
the wave packet is given by a superposition of Fg (1)
with the weight function |¢(r;)]%:

Fo()= [ drFeo(r+r)us 0l ) - 5

As can be easily understood, the quantum-mechanical
spreading reduces the force on the electron cloud since
more of the wave packet becomes situated further from
the nucleus. Below in Sec. III, Eq. (1) is rigorously shown
to be valid in the first order of the quantum-mechanical
perturbation theory based on an expansion with respect
to the interaction of the detached electron with its parent
nucleus. The results of the quantum-mechanical deriva-
tion are further compared with a classical picture and in-
terpreted in terms of the effective atomic potential and
force. Specific calculations of the effective force and po-
tential are presented and discussed in Sec. IV. In Sec. V,
emission of light by the detached electron in the very
strong laser field is examined, and the fast spreading of
the wave packet is seen to strongly suppress harmonic
production. The main limitations of the present ap-
proach, which are rather stringent, are discussed in Sec.
VI.

II. BSI AND WPS MODELS

In the hydrogen atom, the total potential energy U of
the electron is given by a sum of the Coulomb energy
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—1/|r|, and the energy of electron-light interaction
r-e(t), where €(¢) is the electric component of the light
field

e(t)=ggy(t)cos(wt) . (2)

Here gy(2) is the time-dependent amplitude envelope and
® is the light frequency. Atomic units (%=m =|e|
=1,e,,=—1) are used throughout the paper. The total
electron potential energy U is plotted in Fig. 1 as a func-
tion of x =r-&(¢)/|€(z)|. The curve U(x) has a form of a
potential barrier with a height U,,, = —2V'|e(¢)|. If the
barrier is lower than the field-free atomic ground-state
level Eq, U, .« <Ey=—1/2, the electron can freely leave
the atom by propagating above the barrier. In other
words, ionization occurs when the laser field effectively
suppresses the barrier to the electron motion, which is
the main assumption of the BSI model. The formulated
BSI condition (U, < E,) can be rewritten as

le(t)|>1/16 . (3)

This equation may be interpreted as an equation for ¢,
i.e., for that instant of time during the light pulse when a
growing and oscillating field €(z) [Eq. (2)] first achieves a
strength sufficient for the BSI condition (3) to be fulfilled.
Usually this instant of time occurs near an oscillation
peak of €(¢) [when cos(w?)=1 or —1]. Let t =0 corre-
spond to the position of the first oscillation peak for
which the BSI condition is fulfilled. Rigorously, the BSI
condition [Eq. (2)] can first be met at some time 7,70 be-
tween peaks of the growing and oscillating field &(z),
especially for very short pulses. For simplicity, we will
adopt the convention t;=0. Then according to the BSI
assumption, before ¢ =0 the field is too weak to produce
significant ionization, whereas after ¢ =0 the above-
barrier ionization is very fast and almost complete, and
occurs during a period of time much shorter than the
spacing 7/ between neighboring peaks of the field £(z).
As an extension of the ideas of BSI, we can assume that
once the electron is released from the atom, its wave
packet freely spreads as it is driven by a strong laser field.
This is the assumption of the WPS model. As mentioned
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FIG. 1. The atomic electron potential energy in the presence
of an electric field e=1/16. The hydrogen ls state probability
density is also depicted, and the height of the barrier has been
suppressed to E,= —1/2 a.u., the 1s state binding energy.

above the center of mass of such a wave packet follows
the trajectory of a classical dot-particle in the field &(z),
r, (), i.e., it oscillates with the amplitude equal to
ay(t)=gy(t)/w*. The WPS assumption of electron
motion that is almost free from the atomic potential is
only applicable if the free-electron quiver motion ampli-
tude a, is much larger than the initial atomic size, i.e, if

ay(0)=g(0)/w?>>1 . )

Theoretically, the BSI-WPS conditions imply the fol-
lowing formulation of the problem to be solved. Before
the BSI instant of time ¢ =0 the atom is stable, and the
electron wave function for <0 is W(r,t)
=1y(r)exp(—iE,yt) where y(r) is the field-free ground-
state atomic wave function. After the BSI instant of time
t =0, the electron is free from the atomic potential, and
the wave function W¥(r,?) obeys the Schrodinger equation
in the field €(¢) in the absence of the atomic potential, and
with the initial condition W(r,0)=1(r). This is an ap-
proximation in which no residual nucleus-electron in-
teraction is taken into account at all. Such a problem has
been solved in Ref. [5], where the expression for the wave
function was projected upon the ground-state wave func-
tion. The results were compared with exact ab-initio cal-
culations, i.e., with numerical solutions of the exact
Schrédinger equation in which both the light field &(¢)
and a one-dimensional (1D) model atomic potential were
taken into account. Similar exact numerical solutions for
different model atomic potentials and different laser pulse
envelopes were investigated in Ref. [6]. In this paper, the
analytical calculations of Ref. [5] will be extended to take
into account the interaction of the detached electron
wave packet with its parent nucleus in a first-order ap-
proximation. Further, the emission that can occur due to
this first-order correction will be examined.

It should be mentioned that in some sense the BSI-
WPS model is complementary to the well-known
Keldysh-Faisal-Reiss (KFR) approach [7-9], known also
as the theory of optical tunneling. In our opinion, the
difference between these two models originates from a
rather fundamental difference between the below- and
above-threshold propagation of the detached electron,
i.e., between tunneling and barrier-suppression. This
difference implies a rather significant difference in the
theories of light emission in the BSI-WPS regime (Sec. V
of this paper) and in the KFR [11] regime, below the BSI
threshold.

Finally, it should be mentioned that in order for the
BSI-WPS model to be valid, the pulse duration 7 must be
constrained [5] by the condition that the width of the
spreading free-electron wave packet [see Egs. (27), (34)
below] remains smaller than 2, Otherwise the atomic
potential begins playing a much more important role by
forming stationary Kramers-Henneberger bound states
[10].

III. THE FIRST-ORDER DIPOLE ACCELERATION

A. Quantum-mechanical derivation

We begin from the general nonstationary Schrodinger
equation for the electron influenced by both the Coulomb
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and laser fields
idW(r,t) /3t =[—13%/3r*+ V(r)+r-e(t)|¥(r,2) , (5)

where V' (r) is the atomic potential, which for the hydro-
gen atom is —1/|r|. In accordance with the main BSI-
WPS assumptions discussed above by neglecting V(r) we
can find immediately the following approximate solution
of Eq. (5) valid in the region ¢ > 0:

YOr,t)= [dr'U,(r,t;r,000(r') (6)

where Uy (r,t;1',¢") is the Volkov evolution operator that
can be expressed in terms of the nonrelativistic Volkov
functions W} (r,)

Uy(r,t;r',t")= [ dpW}ie,n)[Wl(r',t)]* . 7
The nonrelativistic Volkov functions are known to be
given by

1
v, —
vo(r,t)= 2m )2
2
. it A(t')
X —_— t' | p+— 8
exp {ipr Zfod P p }, (8)

where A(t)=—c f ‘dt'e(t') is the vector potential of the
laser field and c is othe speed of light (¢ =137 in atomic
units). The nonrelativistic Volkov function \I/:(r,t) and
the evolution operator Uy(r,t;r',t'), and hence also
W %(r,¢) of Eq. (6), obey the Schrédinger equation [Eq.
(5)] in the absence of the atomic potential V' (r). WO (g 1)
obeys the necessary initial condition since
Uy(r,t;r',t)=8(r—r'), which gives ¥'9(r,0)=1(r).

It will be convenient occasionally to employ a symbolic
notation for Egs. (6) and (7) (as well as for some other
arising equations) by dropping the coordinate variables r
and r’. In the symbolic notation U,(z;¢)=1, and Egs. (6)
and (7) are written as

(W) =0y (£;0)W(0)) ,
Oy(e;0)= [ dplwln) (Wl 9)
Some other useful features of the evolution operator are

(O,(5)) =0,"0),

i% O,(t;t")=Hy ()0 p(1;1"),

i—a%ﬁ,,(:';t)=—ﬁV(t;t')Ho(t'>, (10)
where Hy(¢t)=1[p+(1/c) A(1)]* and p=—iV.

From Egs. (6)—(9) the zeroth order (with respect to the
atomic potential, i.e., the atomic potential completely

omitted) average dipole moment and dipole acceleration
are found to be

d)= —<\If‘°’(t)|r|~lf‘°’(t)>=—if’dz'Am ,
cvo

dO)=¢e(2) . (11)

These equations are identical to the Newton equation for
a classical charged particle in the field €(¢). This means

that in the zeroth-order approximation the quantum-
mechanical and classical descriptions of the electron
motion are the same. It should be noted that no harmon-
ics of the laser field appear in Eq. (11); d'(¢) describes
only the well-known Rayleigh scattering, i.e, light
scattering without any frequency change.

We now turn our attention to the first-order correc-
tions to the dipole arising from the residual electron-
nucleus interaction. This means that we have to find a
correction ¥''(r,1) to W'9(r,t) of Eq. (6) by considering
now V(r) in Eq. (5) as a small perturbation. The first-
order wave function W'!(r,#) can be written as a super-
position of the nonrelativistic Volkov wave functions
\I/l';( r,t) [Eq. (8)] with some unknown coefficients C(¢).
Equations for C,(¢) follow directly from the Schrodinger
equation [Eq. (5)] by inserting W'%(r,#)+W¥'V(r,t) into
both sides of the Schrédinger equation while ignoring the
term W(r,7)V(r). Without dwelling upon the details of
this solution, which are straightforward, let us write
down the resulting expression for the first-order wave
function in the symbolic form that employs the evolution
operator defined in Egs. (7) and (9)

W00 =i [ dr' Oy (t;0 VO (50) ) . (12)

From this equation we can also find the first-order correc-
tion to the dipole moment

dV()=—[(¥V) || W) ) + (O [ | (2) ) ]
) t ’ . gl
——lfodt (ol O (0;0)c T (25¢")
X VO,(';0)|4y) +c.c. (13)

The second derivative of d'!(¢) determines the dipole ac-
celeration calculated for the first-order approximation.
In calculating d'’(¢) it is helpful to take into account the
features of the evolution operator U, (z;t’) indicated in
Eq. (10) as well as the commutation rules:
[Ho(t),r]=—i[p+(1/c) A(2)] and [H,y(z),p]=0. Then
d'V(¢) can be reduced to the form

d V() =2Re{i (| O, (0;0)pVU,(£;0)9o)} . (14

B. Classical picture

For a clearer interpretation, the quantum-mechanical
perturbation theory described above can be compared
with the corresponding iteration procedure in a classical
picture. The exact classical Newton equation for a
charged particle (electron) influenced by the atomic po-
tential and the light field has a form

r=—¢g(t)—VVI(r) . (15)

If we assume that the role of the atomic force is small as
compared to £(¢) we can use an iteration method to solve
Eq. (15) similar to the one used above. Under this as-
sumption the solution of Eq. (15) is represented in the
form of a series

(=1 +rV@)+ -,
V(ir(e)=vV )+ V()-VV(r)| +oee,

(16)

r=r(0)(t)
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where r'"(t)~[V(r)]". By substituting these expansions
into Eq. (15) and by retaining only the terms of the same
order of magnitude (of the zeroth, first order in V, etc.)
we arrive, in particular, at equations of the zeroth and
first order

Oy L [0 A
(== [dr A",

17
i ()=—vV(r)|

r=rl0%) *

The first of Egs. (17) is equivalent to the first of Egs. (11).
From the second of Egs. (17) the classical first-order di-
pole acceleration can be determined

dV()=vv(r)| (18)

r=r) °

C. Effective potential and force

We now compare the quantum-mechanical and classi-
cal expressions for the first-order dipole acceleration
[Egs. (14) and (18)]. In fact, it can be shown that the
quantum-mechanical expression for the dipole accelera-
tion of Eq. (14) can be reduced to a form similar to that
of Eq. (18)

dV()=VV (50| _ 0, =—Fealt) , (19)
where F (t) is the effective force of Eq. (1) and V g(r;¢) is
the corresponding effective potential

Ve(r;0)= [dr'Vie+r)|g(r;0)|? (20)

Here ¢(r;t) is the free-electron wave function that obeys
the Schrodinger equation [Eq. (5)] in the absence of both
the ¥V (r) and the r-&(¢) terms, and which obeys the initial
condition ¥(r;0)=1,(r). In this case, ¥(r;¢) is neither
affected by the atomic potential nor by the laser field, and
depends on time ¢ only through the quantum-mechanical
spreading of the initial wave packet. Explicitly, ¢(r;¢) is
given by

P(r;t)= (2 3 fdpfdr exp |ip(r—r')— xllo(r)

372

fdrexp ALl

—i

2t

]tﬁo( ). 1)

A qualitative interpretation of these results is very sim-
J

ple. The difference between V g(r;t) of Eq. (20) and ¥V (r)
arises because in quantum mechanics, the electron is a
cloud rather than a pomt The dens1ty of the electron
distribution in space is given by l[(r';t) )|?, and the bare
atomic potential ¥ (r) must be averaged with this weight
function in order to get the effective potential of Eq. (20).
The term r in the argument of the effective potential in
Eq. (20) is interpreted as the vector determining a posi-
tion of the center of mass of the electron cloud, or wave
packet. Owing to spreading, both the electron distribu-
tion and the effective atomic potential depend on time ¢.
Perhaps, the most interesting aspect of the results derived
[Egs. (1), (19), and (20)] is the separation of the effects
arising from the quantum-mechanical spreading and from
the classical oscillations of the electron in the laser field
€(¢). In accordance with Egs. (20) and (21), to calculate
the average quantum-mechanical dipole acceleration in
the first-order approximation, one can first solve the WPS
problem for the field-free electron. Then the classical
electron trajectory r'®(z) in the laser field €(¢) replaces r
in the field-free effective force —VV g(r;t). Thus, there
are two independent effects that cause the average
quantum-mechanical dipole acceleration [Eq. (19)] to de-
pend on time ¢. These are (i) the dependence on ¢ via the
effective potential itself arising from the WPS and (ii) the
dependence on ¢ via the classical electron quiver motion
or the positioning of the wave packet center of mass as
specified when r'(z) is substituted into —VV g(r;¢) in-
stead of r.

The three-dimensional integrals in Egs. (20) and (21)
can be reduced to the one-dimensional ones in the case of
a spherically symmetric bare atomic potential and a
spherically symmetric ground-state wave function,
V(r)=V(r), and 9o(r)=1y(r). Under these conditions
both the spreading wave packet ¥,(r;¢) and the effective
potential Vg(r;t) are spherically symmetric also. After
integration over the angular variables Eq. (21) takes a
form

172
==L L g,
Ylr;t) 27t r fo dr'r'ie(r’)
(r—r')? . (r+r')?
X lexp Y exp |~ ] ] . (22)

Similarly, under the same assumptions Eq. (19) for the
effective potential reduces to

Ve,r(r;t)=fowdr’r'2l¢(r’;t)|2f_lldx V((r2+r2+2xrr)172)

2
2 ”?2 172 o " L’__Eﬁ _ M
2m f dr f dx V((r24r242xrr')17?) f dr''r'"o(r [exp > ] ex oy (23)
and the effective force F4(r;¢) is directed along the vector r
Far)=—L2v (im0 . (24)
e rdr

In the specific case of the Coulomb bare atomic potential [ ¥(r)=—1/r], Egs. (23) and (24) can be simplified further to
give
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)= — _1_ T wﬂ 2 rgy]2
Valr;t) 2{rf0dr+fr b ]r lg(r';0)]

““—‘L i T gt wﬂ el "o " (r”'—r')2 (r”+rl)2
=—— ,r fodr +f’ = ’ fo dr''r'"o(r )[exp 2 exp > H (25)
and
. —_L 2 T2 ’. 2
Fofr;t)= r:;fodrr ly(r'; )|
' 2
=_1xI 1 frdrl fwdr”r"dl (r'") {ex (r"—r')2 ex (r"+r')2 26)
r atr? Yo 0 0 P p 2t :

The last result has a simple electrostatic interpretation.
To see this, consider the atomic nucleus as a probe
charge interacting with a spherically symmetric electron
charge distribution by the Coulomb force. This probe
charge is located at a distance » from the center of the
electron charge distribution. In this case, as it is well
known, due to the 1/r? law of the Coulomb force there is
a complete cancellation of contributions to the total force
acting upon the probe charge from all the parts of the
spherical electron charge distribution located outside the
radius 7 from its center. In other words, the probe charge
measures only that part of the electron charge distribu-
tion that is located inside the sphere with the radius r.
This is the reason why the upper limit of integrations
over r’ in Eq. (25) is equal to ». It should be emphasized
that this result is only valid for the Coulomb bare atomic
potential (Coulomb forces) and a spherically symmetric
initial and time-dependent field-free wave function ¥(r;¢).
Without either of these assumptions, all parts of the elec-
tron distribution would give nonzero contributions to the
effective force F4(r;?).

IV. MODELING OF THE GROUND-STATE
ATOMIC WAVE FUNCTION
AND BARE ATOMIC POTENTIAL;
ONE- AND THREE-DIMENSIONAL PICTURES

In this section, the general expressions for V 4(r;¢) and
F (r;¢) will be analyzed and specified further in three
and one dimensions for some reasonable and often used
forms of the bare atomic potential and the ground-state
atomic wave function.

A. Coulomb potential in three dimensions

For the Coulomb potential V' (r)=—1/r, the hydrogen
atom ground-state wave function is

Y (r)= T/-%exp( —r). 27)

However, to simplify the forthcoming analytical expres-
sions it is convenient and reasonable to replace ¥\’(r) by
a Gaussian function

L /4exp
wAr}

W(r)= [ , (28)

_|r
Arg

[

where Ar is the initial size of the electron wave function
Yo(r). This size can be chosen, e.g., from the condition of
the maximal overlapping of ¥\ with y{, that gives
Ary=1.92 and provides an overlap of 97.8%. We have
performed the forthcoming calculations for each of the
ground-state representations, ¥\’ and ¥{¥’, and have
found their results to differ only slightly.

After substituting ¥ (r)=—1/r and ¢o(r)=1{"(r) into
Egs. (22) and (25) we can perform all of the integrals and
calculate explicitly the time-dependent field-free electron
wave function 1(r;¢) and the effective potential V 4(7;?).
From Eq. (22) we get

2 372 2
sOPP= | ——— - - ,
[(r;] warpP | P Ar(z) ]
(29)
where

2 1172
Ar(n)= Ar3+—Z—’r7 (30)

0

Equation (29) describes the electron distribution of the
spreading field-free Gaussian wave packet, where Ar(t) is
its time-dependent width. In accordance with Eq. (29),
when the electron distribution |¢0(r)|2 is initially deter-
mined by a Gaussian function of Eq. (28), the same shape
characterizes the electron distribution at any time ¢,
though with a growing width Ar(¢) [Eq. (30)].

By substituting |¢(r;¢)|? of Eq. (29) into Eq. (25) we
find the effective potential

Veg(r;t)=——erf , (3D

where erf denotes the error function [12]. Since for large
arguments the error function approaches one, the
effective potential V 4(r;¢) coincides with the bare
Coulomb potential —1/r at large distances, r >>Ar(t).
At small distances r <<Ar(t), Vg(r;t) of Eq. (31) ap-
proaches
2V2

Ar(t)WVr
Thus, in contrast to the bare Coulomb potential, the
effective potential V 4(7;¢) has no singularity at r =0. As

Veglr;t) =V 4(0;¢)=— (32)
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mentioned before, the singularity is removed because the
quantum-mechanical electron is a cloud, or a wave pack-
et, rather than a classical point. This effect occurs at any
t, beginning from the instant of time ¢ =0 when the elec-
tron becomes free in accordance with the BSI assump-
tion. As the time ¢ increases, the magnitude of V 4(0;¢)
decreases due to the WPS, and the width of the region of
the smoothed singularity grows proportionally with
Ar(t). The dependence of V 4(r;t) on r for three different
instants of time ¢ is shown in Fig. 2.

In accordance with Eq. (24), the derivative of V g(r;t)
of Eq. (31) with respect to r yields the effective force
2
Ar(t)

Feﬂ(r;t)=—% [——l—e f
r

T
7

23/2

+ _

Ar(WV'r
2
,

250

Xexp

] . (33)

The dependence of F 4(r;t) on r is shown in Fig. 2(b) for
several different instants of time ¢. As mentioned previ-
ously, the spherical symmetry of the electron density dis-
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FIG. 2. (a) The effective atomic potential and (b) the

Coulomb force on the wave packet at three different instants of
time: ¢t =0, t =35, and ¢t =25. This calculation is based on the
Gaussian model for the ground-state wave function [Eq. (28)].

tribution causes the effective force to be zero at r =0,
F.4(0;2)=0. At some electron-nucleus distance r,
~Ar(t), the force F.4(r;t) has a minimum, and then, at
larger 7, it returns to zero following the long-range
Coulomb law, Fg(r;t)~ —1/r% The curve F4(r) grows
smoother with time ¢, and its minimum becomes more
shallow and located at larger distances r.

It is interesting to compare the results derived above
with those corresponding to the well-known Ehrenfest
theorem [13,14]. This theorem describes a direct transi-
tion from the quantum-mechanical Schrédinger equation
to the classical Newton equation. By using exact
Schrodinger equation [Eq. (5)] and by calculating explic-
itly the second-order time derivative of the average elec-
tron position vector ¥(¢)={W(r,¢)|r|W¥(r,7)) one can find
an equation for ¥(#):

Tt)=—¢e(t)—{(W(r,)|VV(r)|W(r,z)) . (34)

In the general case, this equation is insufficient to de-
scribe T(#) completely because the second term on the
right-hand side is not determined by ©(¢) alone. The only
exception is that described by the Ehrenfest theorem
which corresponds to the case when all quantum-
mechanical corrections are small, i.e., the size of the lo-
calized wave function is small compared to the features
of the potential. Then one can write r=7(¢)+8r and
make the assumption that |8r|<<|%(¢)|. In the zero-
order approximation with respect to 6r, the second term
on the right-hand side of Eq. (34) can be replaced by
—V_V(t(z)), and Eq. (34) itself reduces to the Newton
equation for T(¢) [Eq. (15)]. In this approximation, for
example, the Coulomb potential conserves its singularity.
In a sense, the results of the present work correspond to a
case opposite to that described by the Ehrenfest theorem.
In our case the quantum modification of the potential
Vg(r;t) as compared to V(r) is not small. In particular
the smoothing of the Coulomb singularity described
above is a rather large effect, so the Ehrenfest theorem is
inapplicable.

B. Smoothed Coulomb potential in one dimension

In the theory of strong-field laser-atom interaction,
very often model 1D problems are considered instead of
the real 3D one since 1D problems are much easier for
numerical calculations. It is interesting to modify the 3D
general theory described above to the 1D case, to see
what effects dimensionality has on the model. By replac-
ing all of the 3D integrals by the corresponding 1D ones
in Egs. (20) and (21) we can find immediately that in the
1D case the effective potential and force are given by

Verlx;0= [dx'V(x +x")|gx";0)]?,
(35)

%Veﬂ‘(x;t) ,

Feﬂ‘(x 3t )=—
where x is a single 1D coordinate, — o <x < 0, and the
field-free time-dependent electron distribution |¢(x';¢)|?
has a form similar to that given by Egs. (21)
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;L —x')?
2t

12
PY(x;t)= [;l—] f_w dx'exp

Y- P(x';0) .

(36)

In the case of the singular 1D Coulomb potential
V(x)=—1/|x]|, the integral for the effective potential in
Eq. (35) is divergent for any electron wave packet that is
nonzero at the origin. Therefore, a direct consideration
of the singular Coulomb interaction in the 1D model is
senseless, at least under the BSI-WPS conditions dis-
cussed above. However, as has been the custom for 1D
calculations [15], we can consider instead a smoothed,
nonsingular potential such as

1
V2+x?
This potential has the same behavior for large values of x
as the true Coulomb potential and has a ground state
with the same binding energy as the ground state of the
3D Coulomb potential E;=0.5. In addition, the ground

state of this potential can be well approximated by the
model Gaussian ground-state wave function

1/4
2

—_— ex
7(Axo)? P

Vix)=— (37)

x2

 (Axg)?

P(x;0)= ) (38)

where Ax,=2.65 is chosen to provide the maximum
overlap, 99.8%. For this potential and initial wave func-
tion Egs. (35) and (36) yield for V4(x;?),

V2 w 1
Vlxit)=——2— " dx'———ex
en(x31) VaAx'(t) f—w VoY)
(x'—x)?
X — —_
PN T Ax (0]

(39)
where Ax (t) is the time-dependent width of the 1D wave
packet similar to Ar(¢) in the 3D case [Eq. (30)]:

5 172

Ax3+ —it—z
Axj
In a sense, the artificially smoothed 1D potential of Eq.
(37) is similar to the true Coulomb potential in the 3D
picture since the 3D geometry inherently removes the
singularity of the effective potential V g(x ;) as has been
seen. However, the long-range Coulomb interaction
causes the dipole acceleration to behave differently in 1D
and 3D pictures as can be seen in Fig. 3. Figure 3 shows
a comparison between the effective forces of the 1D mod-
el of Eq. (37) and the 3D model at the times ¢ (typically
within a single laser cycle) when the Gaussian wave pack-
ets of either picture have spread to a width Ax=Ar
=100. While the force in either picture becomes less and
less as the wave packets spread, the force in the 1D case
decreases much more slowly than in the 3D case. This is
because the 1D geometry overemphasizes the long-range

Coulomb behavior.

Ax (t)= (40)

V. EMISSION OF LIGHT

The general results derived above can be used to de-
scribe emission of light by the electron in the BSI-WPS

0.00

—-0.02

-0.04

Vatr, 1) (.0.)

—-0.06

—-0.08 L : L
0 50 100 150 200

r (a.u.)

FIG. 3. The effective potentials for the smoothed 1D atomic
potential (solid) and the exact 3D Coulomb potential (dotted).
In each case the Gaussian electron wave packet has a width of
Ax=Ar=100.

regime. It is known [16,17] that the Fourier spectrum of
the dipole acceleration determines directly the coherent
part of the emitted light spectral energy (i.e., the part
proportional to the squared number density of the emit-
ting atoms)

dé

d&)' 0C|(a)a;’|2 ’ (41)

coh

where o’ is the frequency of the emitted light, d 6 /dw' is
the energy per unit interval of frequencies, and

(&)= [ “dt d(nexplio’D) . (42)

We now calculate the dipole acceleration d(¢) and its
Fourier transform (d), for some specific parameters of
the laser pulse. The results of the calculations are shown
in Figs. 4 and 5. Figure 4(a) shows the structure of the
light pulse used, the dotted line is the time-dependent
width of the wave packet Ar(¢) [Eq. (30)]. The time ¢ is
in optical cycles. The light frequency is chosen to be
®=0.5, and the initial and peak values of the field ampli-
tude gy(¢) are taken to be ey, =gyt =0)=0.0625 and
€omax —0- 845 (all in atomic units). These correspond to
the initial and maximum values of the electron quiver
motion amplitude of ag, =ay(t =0)=25 and gy, =338.
The pulse envelope is approximated by the Gaussian
function gy(t)=gomaexp[ — (¢t —A?)*/7*] with 7=3
X2m/w and At=4.83X27m/w. The calculated dipole
acceleration is shown in Fig. 4(b). The effective potential
was calculated with the help of Eq. (31) in the model of
the Gaussian ground-state wave function. The curve d(¢)
of Fig. 4(b) shows a series of periodic kicks experienced
by the oscillating electron as it returns to the nucleus.
But the amplitudes of these kicks fall off very rapidly be-
cause of smoothing of the effective potential through
WPS. The first kick not shown completely in Fig. 4(b) is
in fact 200 times larger than the maximum value of d(¢)
in the figure.

The aperiodicity of the dipole acceleration arising from
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FIG. 4. The light pulse (a) and the dipole acceleration d(¢)
(b) as a function of time ¢ (in optical cycles).

the WPS strongly affects the spectrum of emission which
is characterized by the squared absolute value of the
Fourier transformed dipole acceleration [Egs. (41) and
(42)]. The result of the calculation is shown in Fig. 5.
The spectrum of emission is wide with little structure.
This is explained by the aperiodicity of the dipole ac-
celeration in its dependence on the time ¢ resulting from

0.02 T T T T
E)
= 001 | .
S
0 | ] }

FIG. 5. Spectrum of the dipole acceleration |(d),,|? (in units
of the laser frequency).

the WPS and the smoothing of the effective potential. In
particular, the relatively large attraction felt by the elec-
tron wave packet as it leaves the atom for the first time
has the greatest influence on the spectrum. In a macro-
scopic emitting media, harmonic structure can be carved
out of the spectrum of Fig. 5 owing to the phase-
matching effects. But for a microscopic emitting media
with a perfect phase matching (i.e., all atoms emitting
from a region much smaller than a wavelength) the emis-
sion spectrum arising under the BSI-WPS conditions
shows no definite harmonics.

A comparison of this result with that of the theory
based on the KFR approach [11] suggests that bound-
free-bound atomic transitions are much more suitable for
harmonic generation than coherent continuum-
continuum transitions of an almost free electron. In oth-
er words, there is an optimum of the laser intensity for
harmonic production. The field should be as strong as
possible but not so strong that it destroys the atom so
that the total probability of ionization per optical cycle is
small. It is interesting to notice that there is a pro-
nounced difference between the coherent case considered
above and the case of spontaneous emission by external
electrons scattered by a nucleus in the presence of a
strong light field [18]. In the latter case, the harmonics
do occur in the emission spectrum, and they become
more emphasized with a stronger field. The explanation
for this difference lies in the initial conditions: in the case
considered in this paper the initial electron state is a lo-
calized wave packet that spreads, whereas in the case
considered in Ref. [18] the incident (initial) electron state
is a stationary plane wave. For this reason, WPS does
not affect at all emission from a beam of external elec-
trons but it does affect the emission of the electrons de-
tached from the atoms by a strong laser field which col-
lide again with their own parent ions.

VI. LIMITATIONS OF THE BSI-WPS MODEL

One of the main restrictions of the BSI-WPS model
consists of a requirement mentioned above and found in
Ref. [5] according to which the time-dependent width of
the spreading wave packet has to be smaller than the
double electron quiver motion amplitude. Assuming that
the BSI conditions are fulfilled somewhere in the middle
of the rise of the laser pulse, it is reasonable to require the
formulated restriction to be valid up to the peak of the
pulse envelope, i.e., up to t ~7:

Ar(71) <2apmax » (43)

where 7 is the pulse duration, ag,,, denotes the quiver
motion amplitude at the peak of the pulse envelope
Qomax = ([£0(t) Imax /@)%, and Ar(r) is given by Eq. (30).
Equation (43) determines the condition for which the
atomic potential can be treated as a small perturbation.
If this condition is not met [Ar(7)>2ag,.,] then in ac-
cordance with Ref. [5] part of the electron density can be
trapped by the atomic Kramers-Henneberger potential
formed in a strong laser field, and this part does not
behave any more as a free electron wave packet. For
large times 7>>1 (always the case), Eq. (30) gives
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Ar(7)=27/Ar, and Eq. (43) can be considered as a limi-
tation of the pulse duration 7

T < omaxA? (44)

This limitation can be rewritten in terms of the number N
of optical cycles in the pulse,
Ar
T 0
N = Goma® " - 43
The formulations throughout this paper have been
based on the nonrelativistic approximation. This as-
sumes in particular that the electron quiver motion veloc-
ity gy(#)/w is much smaller than the speed of light
¢=137, and hence the parameter a,,, is limited by the
condition

Comax® < 137 . 46)

All of the other limitations discussed below follow
from the general condition that the electron does not ac-
quire too large a drift during the action of the laser field.
The drift can eliminate collisions with the parent nucleus
completely, and this would change the picture described
significantly. The drift was ignored above, but in reality
there are several reasons for the drift to occur. For ex-
ample, a drift can occur if the electron is born not exactly
at an oscillation peak of the field (z,70). A drift can also
arise from relativistic effects, and in particular the Lorenz
force [5,19]. The latter can produce a significant drift
even when the restriction of Eq. (46) is satisfied. We will
analyze the limitations arising from the condition that
the drift velocity caused by either of these mechanisms
remains smaller than the rate of spreading A7(z) where
Ar(t) is given by Eq. (30).

(i) The first drift mechanism is connected with the BSI
assumptions. If the electron wave packet is detached
from the atom not exactly at the peak of the field, it ob-
tains an additional transversal drift velocity in the direc-
tion of € equal to . (t5)=[gylty)/w]sin(wty)
=ay,0sin(wt,) where wt, is a phase corresponding to
the amount of time between the field oscillation peak
(¢t =0) and the moment of ionization ¢,. The condition
v (o) <AF(2) gives

Qoin@|sin(wtg)| <2/Ar . (47)

This restriction is not severe since for the parameters pre-
viously used (0=0.05, ay, =25, Arqy=1.92), the inequali-
ty holds even when wty=m/4.

(ii) The Lorenz-force drift velocity is equal to [5,19]

[eo()]?

; 48)

v, ()=
L 4dcw

This drift can be ignored if v, (z) is less than A#(z) which
gives the condition

Qomax@ <

3 172
c
Ar J 30. (49)

This restriction is stronger than that of Eq. (46). The
condition of a small Lorenz-force drift [Eq. (49)] is com-

patible with the free WPS condition [Egs. (43)—-(45)] if the

pulse is short enough, or if the number of optical cycles N

is rather small,

V' 2cAr
o

N < ~5. (50)

Finally, it should be mentioned that under the formu-
lated conditions the ponderomotive acceleration due to
the inhomogeneous field of a laser focus does not provide
significant drift because limitation of Eq. (50) requires the
pulse to be much shorter than the time necessary for the
electron to leave the focus [20]. The pulse used in the
calculations of the emitted light spectrum in Sec. V is an
example of one that meets all of the formulated condi-
tions [Eqs. (45), (47), (49), and (50), plus the original BSI
conditions of Eqgs. (3) and (4)].

VII. CONCLUSION

We have calculated quantum mechanically the first-
order correction to the electron dipole acceleration in the
BSI-WPS model for electron detachment from an atom in
a very strong laser field. The BSI-WPS assumptions are
that the electron wave packet remains undistorted and at-
tached to the atomic nucleus until the moment that the
laser field suppresses the Coulomb barrier below the elec-
tron binding energy at which time the wave packet begins
to execute free motion in the oscillating field as it spreads
quantum mechanically. The first assumption, that of a
clean and sudden break away by the electron wave packet
from the nucleus, is perhaps the least tenable and is one
that has not been addressed in this work. More likely,
the wave packet leaves the vicinity of the nucleus with its
shape significantly distorted with respect to the original

- bound state. In addition, it may be an extreme view to

imagine that the entire wave packet leaves the nucleus in
a single half laser cycle. Of course such distortions can
strongly affect the details of the dipole acceleration and
spectrum as calculated in this paper. Nevertheless, the
qualitative features arising from wave packet spreading in
this analysis should persist, and this is the primary
justification for this work. These suggestions cannot be
checked and clarified completely in the framework of the
same approximations as used in this paper. They require
an exact numerical ab-initio solution of the full
Schrodinger equation [Eq. (5)], and we hope to return to
this problem elsewhere.

Perhaps the most important result of the present work
is that fast spreading of the detached electron wave pack-
et strongly damps harmonic production. Very early
(within a single laser cycle) after the electron wave packet
begins to execute free motion in the field, it spreads to
such a size that its acceleration due to the attraction to
the parent ion is dramatically reduced as described in the
first-order correction to free motion of the wave packet.
This reduction of the dipole acceleration arising from the
strong spreading can be intuitively understood electro-
statically since the larger electron cloud is less attracted
by the nucleus. The decline in the first-order correction
to the dipole acceleration shows that the WPS assump-
tion improves with time. For the same reason we can
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conclude that high-order harmonic production occurs
more readily for bound-bound or bound-continuum tran-
sitions as has been described in other models than for the
continuum-continuum transitions that result from the
scattering of the wave packet by the Coulomb potential.
In this sense, perhaps this work can be thought as being
complementary to the theory of harmonic emission based
on the KFR approach which assesses bound-free-bound
transitions while ignoring the free-free transitions [11].
In other words, we have analyzed that part of the prob-
lem that has been ignored and have found it to be an
inefficient means of harmonic production. We know of
no experiments that have examined the atomic emission
in the regime where our theory should be valid.

It should be mentioned that the only case considered
explicitly in this paper deals with ionization and emission
from the ground atomic state, though the general equa-
tions derived above are valid for arbitrary initial wave
functions and arbitrary bound atomic states. We expect
that in the case of ionization and emission from a highly

excited (Rydberg) level, the emission spectrum may have
a much more pronounced structure (i.e., harmonic peaks)
because the large size of Rydberg orbits causes the
spreading of the corresponding wave packets to be much
slower. As a result, the dipole acceleration d'®(z) should
have a much more regular periodic dependence on time ¢
than in the case of ionization from the ground state. This
problem deserves its separate consideration.
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