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Many structural acoustics problems involve a vibrating structure in a heavy fluid. However, obtain-

ing fluid-loaded natural frequencies and damping experimentally can be difficult and expensive.

This paper presents a hybrid experimental-numerical approach to determine the heavy-fluid-loaded

resonance frequencies and damping of a structure from in-air measurements. The approach com-

bines in-air experimentally obtained mode shapes with simulated in-water acoustic resistance and

reactance matrices computed using boundary element (BE) analysis. The procedure relies on accu-

rate estimates of the mass-normalized, in vacuo mode shapes using singular value decomposition

and rational fraction polynomial fitting, which are then used as basis modes for the in-water BE

analysis. The method is validated on a 4.445 cm (1.75 in.) thick nickel-aluminum-bronze rectangu-

lar plate by comparing natural frequencies and damping obtained using the hybrid approach to

equivalent data obtained from actual in-water measurements. Good agreement is shown for the

fluid-loaded natural frequencies and one-third octave loss factors. Finally, the limitations of the

hybrid approach are examined. VC 2015 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4934959]

[KML] Pages: 3073–3080

I. INTRODUCTION

A fluid in contact with a structure will impart a complex

impedance loading on that structure. The resistance will cre-

ate additional damping from the acoustic radiation, while the

reactance will generally cause mass-loading. Several exam-

ples where fluid loading is important include ship hulls,

sonar transducers, liquid-filled pipes, liquid-cooled nuclear

reactor internals, and sandwich honeycomb panels.

Unbounded fluids act mostly as inertial loading, while

enclosed fluids may exhibit inertial or elastic loading.

Heavy external fluids such as water and oil will decrease

natural frequencies of a vibrating structure due to the extra

force required to accelerate the fluid’s inertia. By estimating

the mass loading of the fluid surrounding the structure and

knowing the unloaded natural frequencies, estimates for

the fluid-loaded resonance frequencies can be obtained.

Approximate equations for the shift in resonance frequency

can be found for example in Leissa1 or Blevins.2 In addition

to the shift in natural frequency, heavy fluid loading can lead

to a change in the radiation pattern for a point-driven plate,

causing the radiation to become more “dipole-like.”3

Radiation damping can also be significant for thick, lightly

damped structures, particularly near the coincidence fre-

quency of flexural and acoustic waves. Thus, knowing the

effects of heavy fluid loading on vibro-acoustic behavior of

a structure is critical.

Separating structural damping from acoustic damping is

also critical for modeling purposes, which often rely on

measurements for correct damping values. The damping

obtained from a measurement will include the combined

effects of both structural and acoustic radiation damping. If

the acoustic radiation damping is not removed, a vibration

model using uncorrected damping may be over-damped and

predict incorrect vibration levels.

Measurements on fully submerged structures are much

more difficult and time consuming than the in-air equivalent.

Installation and general use of transducers can be more

tedious, and structures are typically more difficult to excite,

particularly when using a force hammer. Also, many under-

water measurements require large bodies of water, typically

a water tank or lake, and certified divers, which can be a

large liability and expense. Additionally, the existence of

reflections from the water-air surface or tank boundaries

could create error under some circumstances. These difficul-

ties limit the amount of design testing and model validation

that can be performed.

This paper will discuss a hybrid experimental-numerical

approach for computing the heavy-fluid-loading effects on a

structure using in-air measurements and acoustic boundary

element (BE) analysis. Experimental modal analysis (EMA)

is used to assess the modal parameters of the structures and a

lumped parameter BE technique is used to compute the fluid

loading. The procedure relies on accurate estimates of the

mass-normalized mode shapes from experimental modal

analysis in air, which are then used as basis modes for the

BE analysis. The hybrid approach is demonstrated on aa)Electronic mail: mrs30@psu.edu
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4.445 cm (1.75 in.) thick nickel-aluminum-bronze (NAB)

panel by comparing simulated natural frequencies and damping

to equivalent data obtained from actual in-water measurements.

The results compare well, validating the hybrid approach.

II. TEST STRUCTURE

A thick NAB plate of dimensions 762 mm� 305 mm

� 44.4 mm (30 in.� 12 in.� 1.75. in) was used to validate

the hybrid approach. The density of the plate is approxi-

mately 7468 kg/m3. To simulate free boundary conditions,

the plate was suspended vertically using 100-lb test fishing

line threaded through 4 small holes at each corner. The holes

were drilled through the thickness of the plate, approxi-

mately 1.8 cm in from each corner. Modal analysis was per-

formed on the panel in air and then repeated in water.

Four small accelerometers (PCB Piezotronics, Inc.

Depew, NY, W352-C67) were attached to the surface of the

plate using cyanoacrylate adhesive at locations shown in

Fig. 1. Using the roving hammer approach, the panel was

excited with impulses at 0.0254 m (1 in.) intervals along the

length and width of the panel for a total of 403 points

(31� 13). Acceleration to force frequency response func-

tions (FRFs) were recorded at a sampling frequency of

12 800 Hz with three root-mean-square averages per hit loca-

tion. The record time was varied to ensure that a sufficiently

long time sample was recorded to capture the full decay of

the structure, which sometimes reached 20 s due to the low

material damping. The FRFs were collected with a 5% pre-

trigger and carefully monitored to ensure high coherence

existed at each measurement point.

The modal test was then repeated with the plate sub-

merged in a reverberant water tank (8.7 m� 6.9 m� 5.5 m).

A 0.0508 m (2 in.) spacing was used for a total of 112 hit

points. Fewer points were used than in air due to the higher

difficulty of obtaining data underwater. Water-resistant

accelerometers and force hammer were used. The acquired

data were processed to extract the modal parameters using

the procedure outlined in Sec. III.

III. EXTRACTING MODAL PARAMETERS

The matrix of acceleration to force transfer functions

was processed using the singular value decomposition, one

frequency at a time. The data were arranged in matrix form

with each column representing the response to a different

drive point and each row representing a different response

point. The resulting matrix was input to the singular value

decomposition algorithm, and left- and right-singular vectors

and a diagonal singular value matrix were computed.4

Because they were computed and output in order of descend-

ing magnitude, one singular value curve does not track a sin-

gle mode. It is possible to force the singular values to track

only a single mode by using the singular value decomposi-

tion (SVD) at one frequency to decompose the coefficient

matrix at nearby frequencies. The resulting functions were

originally called “enhanced FRFs,”5 although the more de-

scriptive name “modal transfer functions” is used here

instead. To reduce computation times, the modal transfer

functions were only calculated over a limited frequency

range near the resonance peaks. The modal transfer functions

separate the data well for the individual modes (see Fig. 2)

even when the resonance frequencies are in close proximity.

The output from the singular value decomposition con-

sists of three matrices, U, V, and S. The U and V matrices

are unitary (e.g., UUH ¼ 1, where the superscript H indicates

a Hermitian transpose), and the S matrix contains the singu-

lar values on its diagonal and is real-valued. The three matri-

ces form a decomposition of the original matrix as

Hðx0Þ ¼ Uðx0ÞSðx0ÞVHðx0Þ; (1)

where x0 is the analysis frequency. Simple physical interpre-

tations can be given to the U and V matrices. The matrix U

is of size (# response points) by (# drive points), and its col-

umns (termed left-singular vectors) represent the vibration

patterns associated with each of the singular values, and thus

are interpreted as “unscaled mode shapes.” When we refer

subsequently to “SVD mode shapes,” we really are referring

to the left-singular vector associated with the singular value

under consideration. The matrix V is of size (# drive points)

by (# drive points), and its columns (termed right singular

vectors) represent the required input forces at the drive

points to excite the left-singular vectors and is therefore dis-

carded. In general, the U and V matrices do not change sig-

nificantly from one frequency to the next, and thus most of

FIG. 1. (Color online) Schematic of the NAB plate used to validate the

hybrid fluid loading approach. The plate was suspended to replicate free-

free boundary conditions. Four accelerometers were placed on the structure

for the measurements.

FIG. 2. (Color online) The modal parameters are estimated using modal

transfer functions calculated at a limited number of frequencies surrounding

the peak of interest. The first set of singular values is shown as a solid line

while the individual modal transfer functions are shown as dashed curves.

Away from the peaks, the singular values take on the value of zero.
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the frequency dependence in the transfer function data are

contained in the singular values. In this implementation, 128

frequency bins were used for each modal transfer function.

The SVD algorithm relegates noise to the lowest singu-

lar values, thus reducing the noise levels in the top few

curves that typically contain most of the modal information.

Unfortunately, the singular values are output from the

decomposition in order of magnitude, so that they switch the

modes they are tracking whenever two singular values cross.

This problem is avoided by computing modal transfer func-

tions, which force the singular values to track a single mode.

These functions are computed by using the singular value

decomposition at an initial frequency to decompose the

transfer function matrix at nearby frequencies as

�SðxÞ ¼ UHðxÞHðxÞVðx0Þ: (2)

The overbar on the matrix S indicates that it is no longer

real-valued or diagonal. Savitz-Golay filters are applied to

the data to reduce noise6 and the modal assurance criteria are

used to detect duplicate modes. Once a peak is found, the

modal parameters are then estimated using a linear least

squares circle fit of the modal transfer function equation for

a single mode.1

While the scaling of the identified mode shapes is arbi-

trary, using mass-normalized mode shapes enables the meas-

ured data to be synthesized without knowledge of the system

mass or stiffness characteristics. The transfer function

between the displacement at node a due to an input force at

node b (i.e., da=fb) can be written in the form7

da

fb
¼
XN

l¼1

UalUbl

kl � x2Ml
� �

þ i gl kl

¼
XN

l¼1

1

Ml

UalUbl

x2
l � x2 þ i gl x2

l
; (3)

where kl, Ml, and gl are the stiffness, mass, and loss factor

at mode l and N is the number of modes. In Eq. (3), Ua;l

represents unscaled mode shapes, which are extracted from

the SVD analysis as the left-singular vectors accompanying

peaks in the singular values. When the drive and response

point are the same, this reduces to

da

fa
¼
XN

l¼1

1

Ml

jUalj2

x2
l � x2 þ i glx2

l
: (4)

To derive the modal transfer functions, the transfer

function matrix is multiplied by the corresponding left- and

right-singular vectors at the peak, as in Eq. (2). In a similar

fashion, it is possible to set all but one of the singular values

to zero, and then calculate a “filtered” transfer function ma-

trix at x0 containing the contribution from only singular

value l as

Hlðx0Þ ¼ rlðx0Þulðx0Þvlðx0Þ; (5)

where ul is of size (# Response Points� 1) and vl is of size

(1� # Drive Points). The filtered transfer function data are

then consistent with the left-singular vectors, and the drive

point transfer functions can be extracted from the matrix.

As long as the singular value decomposition is success-

ful at separating the various modes from each other and

accurate damping loss factors gl are extracted, the transfer

function for a single mode can be approximated by a single

term of the summation as

da

fa
¼ 1

Ml

jUalj2

x2
l � x2 þ i glx2

l
; (6)

and modal mass can now be computed. The mode shapes

can be mass-normalized by dividing by the modal mass scale

factor Tl ¼ 1=
ffiffiffiffiffiffiffi
Ml

p
. In theory, the calculation can be per-

formed using any location where drive point transfer func-

tion data are available. However, the computations become

inaccurate and unstable when the drive point location is near

a nodal line. Thus, the modal mass is computed using the

drive point with the largest response amplitude.

To refine the SVD estimates for the resonance frequen-

cies and loss factors, the modal parameters are then updated

using rational fraction polynomial (RFP) curve-fitting. The

RFP algorithm is adapted from that given in Ref. 8. Residual

contributions of nearby modes are accounted for using

higher-order polynomial fits. The displacement data can then

be synthesized once the resonance frequencies, loss factors,

and mass normalized mode shapes have been determined.

The measurements required for experimental modal

analysis also can be used to derive other useful information.

One third octave loss factors based on the power injection

method can be computed as gPin¼Conductance/(x Energy),

where the conductance for a particular drive point location l
is simply the real component of the velocity divided by the

input force, Refvl=Flg.
The power injection and radiation loss factors require

vibrational energy to be computed as a function of frequency.

The energy can be computed directly given the incremental

structural masses at each of the nodal locations as

E ¼ vHMv ¼ x2dHMd: (7)

For this calculation to be performed, a mesh is created using

the hit points from the modal analysis. Densities and thick-

nesses are defined for the mesh elements, thus assuming that

a plate representation is appropriate. The energy is computed

by assigning an incremental mass to each node, assuming

the matrix M is diagonal, and then performing the calcula-

tion in Eq. (7). The overall mass at each node is computed

by first calculating the element masses, and then assigning

each connected node an equal portion of the mass and sum-

ming. This method can be difficult for inhomogeneous com-

plex structures.

A second method for computing energy that does not

require input for the element densities can also be used. The

method assumes that the displacements can be represented in

terms of a modal summation as

d ¼ U nðxÞ; (8)

where the mode shapes are the columns of U and the vector

n is made up of the modal participation factors. Assuming

J. Acoust. Soc. Am. 138 (5), November 2015 Shepherd et al. 3075



the modes are orthogonal and mass normalized, the modal

participation factors are given as

nl xð Þ ¼ 1

x2
l � x2 þ i glx2

l
/lf : (9)

The energy can then be written as

E ¼ vHM v ¼ x2dH M d

¼ x2 nHðxÞUH MUnðxÞ ¼ x2 nHðxÞnðxÞ: (10)

It is desirable to use this method to compute energy not

only because it does not require input for the elemental den-

sities, but also because it can be generalized to structures

that are not “plate-like.” Since the modal participation fac-

tors only depend on the mode shape amplitudes at the loca-

tions where forces are input to the system [due to the /l

f term in Eq. (9)], the energy will be correct as long as they

are normalized correctly. In general, if the surface displace-

ments can be accurately synthesized using Eq. (8), then the

energies will be computed accurately.

IV. COMPUTATION OF FLUID LOADING

Once the mass-normalized mode shapes are estimated,

the fluid loading matrices can be determined. When fluid

loading is added to a structural vibration model, the displace-

ments d satisfy

½K� x2Mþ AðxÞ�d ¼ f; (11)

where K and M are the stiffness and mass matrices,

respectively, A is the acoustic coupling matrix, and f is

the input force.9,10 The matrix A relates the generalized

forces due to the acoustic pressure field to the nodal dis-

placements and contains both resistive and reactive com-

ponents. It can be generated using BE or finite element

analysis or analytically for simple shapes. Using the prin-

cipal of modal summation leads to a reduction in matrix

size and requires an estimate of the modal acoustic cou-

pling matrix UTAU. In this paper, the modal acoustic

coupling matrix was computed using the lumped parame-

ter method by Fahnline and Koopman.11,12 The lumped

parameter method has been recently used for optimization

of a fluid-loaded panel.13

To accommodate these computations, the discrete hit

points used in experimental modal analysis are used as grids

which are connected to form elements and create a wetted

surface mesh for numerical analysis. The modal coupling ma-

trix is then determined using equivalent source amplitudes

from each element (i.e., the lumped parameters method) and

the experimentally-obtained mode shapes. In this application,

the elements were treated as dipole sources since there is con-

tact with the fluid on both sides of the plate.

The dipole sources were aligned in the normal direction

of the plate in order to represent the pressure difference on

the two sides and the dipole source amplitudes were deter-

mined by enforcing the boundary condition for the normal

surface velocity. Since the plate is thin (i.e., small with

respect to wavelength), the velocity at any particular point is

exactly the opposite from the corresponding point on the

back side. Consequently, only the top velocity boundary

condition must be matched. A related discussion is found in

Terai14 and Martinez.15

To ensure convergence of the numerical solutions, the

mesh must be refined enough to resolve the acoustic waves.

The typical rule of thumb for BE methods is to use six ele-

ments per wavelength for linear basis functions. Since the hit

points were spaced at 0.0254 m (1 in.) apart in the modal

analysis, the acoustic element length is also at 0.0254 m.

The BE model should then resolve acoustic waves

up to 9.8 kHz. The characteristic impedance of water

[1.5� 10�6 kg/(s m2)] was used for the surrounding fluid. It

should also be noted that the lumped parameter BE formu-

lation has been shown to converge as a function of acoustic

element mesh density.11 The BE mesh is shown in Fig. 3.

V. HYBRID EXPERIMENTAL/NUMERICAL APPROACH

To compute the simulated in-water modal participation

factors and resulting surface vibration, the numerical modal

acoustic coupling matrix is included directly into the matrix

form of Eq. (9),

½n� ¼ ½x2
l � x2 þ i glx

2
l þUTAU��1 /l f: (12)

The modal participation matrix is now fully populated due to

the acoustic coupling matrix. The fluid-loaded power trans-

fer function is then computed directly (without requiring sur-

face vibrations) using

P ¼ n RefUT A UgnT : (13)

FIG. 3. (Color online) The BE mesh is

created by connecting excitation points

together into elements. Each element

shade represents a separate dipole

source whose amplitude is determined

by matching the surface velocity

boundary condition.
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This simulates the radiated sound power in the heavy fluid

given a unit point drive at the accelerometer response points.

According to reciprocity, the reference and response points

can be exchanged to produce the same results. Additionally,

acoustic radiation loss factors can be computed as

gPin¼Radiated Power/(x Energy).

The fluid-loaded mode shapes could also be computed

using a similar singular value decomposition approach

described by Fahnline16 or with other approaches such as the

modal decomposition approach using polynomial approxi-

mations and eigenvalue linearization by Peters et al.17,18

These approaches follow the state space formulation origi-

nally posed by Giordano and Koopman.19 A flow chart

describing the general approach is shown in Fig. 4.

VI. RESULTS

The modal parameters were determined for the NAB

plate data measured in air using the procedure described in

Sec. III. The natural frequencies and mode orders are listed

in Table I. The theoretical dimensionless wavenumbers (kL)

are also listed for free-free plates. Since the synthesis proce-

dure relies on an accurate estimate of the mass-normalized

mode shapes, the mass normalizations are also compared to

those determined with a finite element model. The modal

mass scale factor (fraction of plate static mass) is shown for

the first eight modes in Table I with the associated percent

difference. The percent error is highest for the lowest order

mode but quickly becomes small for higher-order modes.

The higher error in the first natural frequency may be an arti-

fact of hanging the panel from fishing line instead of having

a truly free boundary condition. The average modal mass

scale factor is approximately 0.315 which is comparable to,

but slightly higher than, the value of 0.25 for plates with

simply-supported boundary conditions.20

The first 17 natural frequencies obtained from in-air

modal analysis are compared to those with simulated water

loading and those obtained from the in-water modal analysis

in Table II. Fluid loading causes a downward shift in reso-

nance frequency of about 10%. The percent difference

between the measured and simulated water loaded frequen-

cies is also shown in Table II revealing good accuracy of the

virtual fluid loading procedure. The largest difference is seen

for the 1st mode and the 17th mode, which is less than 5%.

Five measured mode shapes in air and in water are shown in

Fig. 5.

Since the natural frequency of an elastic structure is

inversely proportional to the square root of its mass, the

effects of the fluid mass can be expressed approximately as

xL

xv
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ mf=ms

p ; (14)

where xL is the natural frequency of the fluid-loaded struc-

ture, mf is the mass loading of the fluid, and ms is the mass

of the structure.2 It should be noted that if the fluid mass

changes the structural mode shape, this approximate form

would not hold.

The modal damping of the plate in air is shown in Fig. 6.

The damping levels are very small, between 6.0� 10�5 and

FIG. 4. A flow chart of the hybrid EMA/BE methodology.

TABLE I. Modal frequencies, wavenumbers, and experimentally-obtained estimates of the modal mass scale factors for the NAB plate in air.

Mode # Exp. Freq. (Hz) (m,n) kxLx kyLy Exp. Ml/Mstatic FE estimated Ml/Mstatic % Ml/Mstatic Difference

1 312 (2,0) 4.712 0.0 0.230 0.294 �27.8

2 446 (1,1) 1.571 1.571 0.295 0.330 �12.0

3 843 (3,0) 7.854 0.0 0.238 0.257 �8.1

4 945 (2,1) 4.712 1.571 0.326 0.329 �0.9

5 1552 (3,1) 7.854 1.571 0.346 0.352 �1.9

6 1601 (4,0) 10.99 0.0 0.269 0.273 �1.3

7 1880 (0,2) 0.0 4.712 0.285 0.274 6.8

8 2023 (1,2) 1.571 4.712 0.329 0.326 0.9

9 2308 (4,1) 10.99 1.571 0.345 0.335 2.9

10 2493 (2,2) 4.712 4.712 0.346 0.357 �3.0

J. Acoust. Soc. Am. 138 (5), November 2015 Shepherd et al. 3077



8.0� 10�4 with a peak near 1 kHz. The peak damping is a

result of in-air radiation damping at coincidence. The in-air

coincidence frequency based on thick plate theory is 360 Hz.

Due to the low modal overlap near coincidence, the radiation

losses are strongly influenced by the modal radiation losses.

Since the mode near coincidence is odd-ordered and there-

fore has poor radiation efficiency, the radiation damping

peaks at a frequency higher than the coincidence frequency.

The one-third-octave (OTO) damping estimated using the

power injection method is nearly identical to that of the

modal damping.

Figure 7 shows the measured damping, averaged into

OTO bands, once the plate is submerged in water. The

TABLE II. Natural frequencies of the NAB plate measured in air, predicted

with hybrid approach and measured in water.

In-air

(Hz)

Water simulated

(Hz)

% frequency

shift

Water measured

(Hz)

%

difference

312 255 �18.27 268 4.85

446 396 �11.21 400 1.00

843 732 �13.17 741 1.22

945 848 �10.27 855 0.82

1552 1409 �9.21 1416 0.49

1601 1413 �11.74 1431 1.26

1880 1689 �10.16 1716 1.57

2023 1832 �9.44 1863 1.66

2308 2121 �8.10 2121 0.00

2493 2266 �9.11 2298 1.39

2592 2344 �9.57 2342 �0.09

3155 2875 �8.88 2914 1.34

3223 2978 �7.60 2979 0.03

3707 3389 �8.58 3378 �0.33

3958 3645 �7.91 3665 0.55

4276 3970 �7.16 3971 0.03

4650 4206 �9.55 4413 4.69

FIG. 5. (Color online) Mode shapes of

the NAB plate measured in water (left)

and measured in air (right).

FIG. 6. (Color online) Measured modal damping for the NAB plate in air (þ)

with the OTO damping estimated using the power injection method (�).
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damping is higher than in air due to the increased resist-

ance of the fluid on the plate. Additionally, the modal

frequencies are now well below the plate critical frequency

in water (estimated to be above 5 kHz) and damping

generally increases with increasing frequency. Since the

radiation damping was not removed from the in-air meas-

urements, the simulated losses are slightly too high in the

1.6 kHz band. Additionally, the predicted damping in the

250 Hz and 3 kHz OTO band is slightly low.

Measured and simulated surface-averaged velocity is

shown in Figs. 8 and 9. The effect of the fluid loading is

clearly shown for the air and water measurements, and the

hybrid approach compares well to the measured case. As

previously discussed, the simulated damping is slightly off

in two of the OTO bands. This is apparent in the velocity

plots since the simulated amplitude is higher near 250 Hz

and 3 kHz and lower near 1.5 kHz.

Using the computed resistance matrices, the narrow-

band sound power can also be computed, as shown in

Fig. 10. Since narrowband sound power estimates are dif-

ficult to make in reverberant in-water environments with-

out special geometries (see Ref. 21), this makes the

hybrid method more appealing as it can be applied to

most geometries.

VII. LIMITATIONS

Several limitations of the hybrid method described in this

paper should be listed. First, it cannot track strong frequency-

dependent damping. Material damping is assumed to be fairly

constant over the range where the frequencies may be shifted.

Using the hybrid method on visco-elastic or porous materials

may therefore over- or underestimate the damping at the

fluid-loaded frequencies. Similarly, the hybrid method may

not be appropriate for coupled structures, particularly if there

is a strong difference in damping between the two structures.

An approach similarly developed by Collery and Guyader

may be more appropriate for such cases.22

Another limitation is the need for sufficient spatial reso-

lution for the modal analysis. If low spatial resolution is

used, the mode shapes will be insufficiently resolved such

that the modal resistance matrix will contain errors. There

also may not be enough points to resolve the acoustic waves.

Finally, the mode shapes must be reasonably estimated using

plate-like elements. This is usually true when sufficient grid

spacing is used. However, this is not always feasible or

practical.

FIG. 7. (Color online) Measured modal damping (þ) and estimated damp-

ing (�) for the NAB plate in water, averaged within OTO bands. The

630 Hz and 1 kHz bands are not shown since no modes exist in those

bands.

FIG. 8. (Color online) Surface-averaged velocity measured in air and in

water.

FIG. 9. (Color online) Surface-averaged velocity measured in water and

hybrid approach (simulated from air data).

FIG. 10. (Color online) Radiated sound power for the NAB plate simu-

lated in water using the hybrid EMA-BE approach for a unit drive on the

corner.
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VIII. CONCLUSION

A hybrid approach has been presented for predicting

modal parameters of structures submerged in heavy fluids

based on in-air measurements. The singular value decompo-

sition is used along with RFP fitting to estimate the in vacuo
modal parameters, including mass-normalized mode shapes.

The mode shapes are then used as basis modes to compute

acoustic resistance and reactance matrices using a lumped

parameter BE model which accounts for external fluid load-

ing on the structure. Elements were then created using the

excitation points from modal analysis in order to determine

the appropriate velocity boundary condition.

The method is evaluated using a 4.445 mm (1.75 in.)

thick NAB panel by comparing natural frequencies and

damping obtained using the hybrid approach to equivalent

data obtained from in-water measurements. The results com-

pare well for the majority of the modes with most natural

frequencies having less than 2% error. The predicted and

measured OTO loss factors are also accurate with only small

errors in several bands. The in-air modes and BE-estimated

mass loading and radiation damping may then be used to

compute in-water structural vibration response, as well as

radiated sound power for any postulated forcing function.

These results reveal that the hybrid approach is a reasonably

accurate method for estimating the effects of fluid-loading

on structures without performing actual in-water

measurements.
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