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ABSTRACT 
Active structural acoustic control is an active control method that controls a vibrating structure in a 
manner that reduces the sound power radiated from the structure.  Such methods focus on attenuating 
some metric that results in attenuated sound power, while not necessarily minimizing the structural 
vibration.  The work reported here outlines the weighted sum of spatial gradients (WSSG) control 
metric as a method to attenuate structural radiation.  The WSSG method utilizes a compact error 
sensor that is able to measure the acceleration and the acceleration gradients at the sensor location.  
These vibration signals are combined into the WSSG metric in a manner that is closely related to the 
radiated sound power, such that minimizing the WSSG also results in significant attenuation of the 
sound power.  The connection between WSSG and acoustic radiation modes will be highlighted.  
Computational and experimental results for both flat plates and cylindrical shells will be presented, 
indicating that the WSSG method can achieve near optimal attenuation of the radiated sound power 
with a minimum number of sensors. 
  

 
1.    INTRODUCTION 
Active structural acoustic control (ASAC) is an important subfield of active noise control.1-6 ASAC 
is an active control method where one controls the vibration of the radiating structure but in a manner 
designed to minimize the radiated sound power from the structure, rather than the vibration of the 
structure.  Thus, it is possible in some scenarios to achieve a significant attenuation of the radiated 
sound power without significantly attenuating the vibration levels on the structure.  Such ASAC 
methods offer the possibility of more efficient attenuation of the radiated sound. 

The sound radiated from a structure can be understood and analyzed using the radiation re-
sistance matrix, which encompasses the coupling between the vibration structure and the surrounding 
acoustic fluid.3,7 In the 1990s, analysis of the radiation resistance matrix led to the development of 
acoustic radiation modes, which consist of the eigenvectors associated with the radiation resistance 
matrix, and which form an orthogonal set of basis functions that describe the acoustic radiation.  At 
low frequencies, the lowest order radiation mode corresponds to the volume velocity associated with 
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the structure, which led to researchers proposing the minimization of the volume velocity as an ef-
fective ASAC approach.8 However, since the volume velocity only represents a single radiation 
mode, it is limited in how effectively it can attenuate the radiated sound power. 

For active control applications where the desire is to minimize the acoustic energy in the field, 
previous research outlined the advantages of implementing a control system designed to minimize 
energy-based quantities.  One example of this was the minimization of acoustic energy density for 
active noise control applications, which was suggested as a method for achieving global attenuation 
of the sound field in an enclosed field.9,10 When considering ASAC, it then becomes desirable to 
implement a control metric that is closely related to the radiated sound power.  Further, an ideal metric 
would also be largely insensitive to sensor location.  This would ensure rather uniform performance 
of the system regardless of where the error sensor(s) is located.  The weighted sum of spatial gradients 
(WSSG) control metric was developed as a possible metric that can achieve both of these objectives. 
 In the following sections, the WSSG metric will be outlined and its connection to acoustic 
radiation modes will be shown. Implementation of the WSSG metric into a modified filtered-x algo-
rithm will be presented.  The WSSG method will then be applied to two active control applications: 
1) minimization of the sound field radiated from a vibrating plate, and 2) minimization of the sound 
field radiated from a vibrating cylindrical shell. 

 
2.    DEVELOPMENT OF THE WSSG METHOD 
2.1.    WSSG Metric 
The WSSG control metric consists of four spatial gradient terms that can be thought of as correspond-
ing to a breathing mode, two rocking modes, and a twisting mode.11-12 The WSSG metric has been 
developed for both flat structures (plates) and cylindrical shells, and is given by 
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where w is the normal structural displacement, a is the radius of the cylindrical shell, x,y are the 
coordinates of the plate, z,𝜃 are the coordinates of the shell, and 𝛼, 𝛽, 𝛿, and		𝛾 are the set of weights 
that when applied, yield a rather uniform WSSG field with little spatial variance.  This can be seen 
in Figure 1, which shows the WSSG metric for an unwrapped cylindrical shell, where it can be seen 
that the WSSG is quite uniform except for right near the drive point in the lower left corner. 
 It can be seen from Equation 1 that the first term represents the displacement, the next two 
terms represent the gradient in the two orthogonal directions, and the last term represents a second-
order twisting term.  To measure and implement the WSSG metric, an array of closely-spaced accel-
erometers is used which together constitute a single integrated error sensor, as shown in Figure 2.  
(For implementation, the displacements indicated in Equation 1 can be replaced by accelerations.) 



Figure 1. WSSG for a cylindrical shell at a frequency of 541 Hz for the (2,3) mode. 

Figure 2. The configuration of four closely spaced sensors (shown here for a cylindrical shell). 

 With the array of accelerometers, the WSSG can be implemented using the finite difference 
method, with the terms being represented as (shown for the cylindrical shell) 
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where ai is the signal from the ith accelerometer. 
2.2.    WSSG and Acoustic Radiation Modes 

A review of the acoustic radiation modes can give some insight into the mechanisms that lead to 
global attenuation of the radiated sound field.  For a vibrating structure, the radiated sound power can 
be expressed as7 
 



𝑃(𝜔) = 𝐯%,(ω)𝐑(𝜔)𝐯%(𝜔). (3) 
 
Here, the structure has been discretized into small elementary radiators and ve is a vector of the ve-
locity of each elementary radiator, (•)H is the Hermitian transpose, and 𝜔 is the frequency of interest.  
R is the radiation resistance matrix that relates the normal velocity of each elementary radiator to the 
acoustic pressure response at all other elementary radiators.  The eigenvectors of R yield the acoustic 
radiation modes and the eigenvalues of R are proportional to the radiation efficiency of their respec-
tive radiation modes.  Thus, by determining the acoustic radiation modes, the radiated sound power 
can also be expressed as 
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where 𝜆- is the nth eigenvalue, and 𝑦-is the amplitude of the nth radiation mode. 

For a flat plate excited at low frequencies, the lowest six acoustic radiation modes can be seen 
in Figure 3.  It should be noted that the radiation modes have a mild frequency dependence and exhibit 
greater curvature at higher frequencies.  However, it will be noted that the first four radiation modes 
correspond to a piston-type displacement, then rocking in the two orthogonal direction, and finally a 
twisting mode.  Thus, the WSSG terms are essentially local point measurements that mirror the global 
radiation modes.  Similarly, the lowest order radiation modes for a cylindrical shell at low frequency 
are shown in Figure 4. 

 
 
 
 
 

 
 
 

Figure 3. The lowest six radiation modes for a flat plate. 

 
 



 
 

Figure 4. The lowest nine radiation modes for a cylindrical shell. 
 

 At low frequencies, the acoustic radiation from many structures can be represented in terms 
of a small number of acoustic radiation modes.  The WSSG sensor provides a local estimate of the 
first four of these radiation modes.  Thus, if the structure does not have significant radiation associated 
with higher radiation modes, the WSSG metric will generally result in very effective global attenua-
tion of the radiated sound power.  Furthermore, given the relative uniformity of the WSSG metric 
over the structure, there is considerable flexibility on where the WSSG sensor is placed. 
2.3.    Incorporating WSSG into the Filtered-x Algorithm 
The WSSG metric shown in Equation 1 can be seen to be a quadratic function.  As such, a gradient 
descent method like the filtered-x algorithm can be used to minimize that metric.  Conceptually, the 
WSSG metric can be viewed as a sum of four error “signals”, corresponding to the four terms of 
WSSG.  Finite difference techniques are used for obtaining these four signals, as shown in Equation 
2, resulting in the four “error signals” being given by 
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As shown, these expressions are for a cylindrical shell.  The corresponding expressions for a flat plate 
replace Δ𝑧 with Δx and 𝑎Δ𝜃 with Δy.  In Equation 5, di is the primary excitation at each accelerome-
ter and Hi is the transfer function from the control output to each of the four accelerometers, as is 
routinely implemented for the filtered-x algorithm.  This leads to the update equation for the controller 
as 
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where Ri is the vector of the current and past values of the ith filtered-x signal, which corresponds to 
the reference input signal passing through the corresponding Hi transfer function. 

3.    RESULTS 
The WSSG method has been implemented on both flat plate structures, as well as cylindrical shell 
structures.  This section will show some of the computational and experimental results that have been 
obtained. 

3.1.    Determining the Weighting Parameters 
It can be noted from Equation 1 or Equation 5 that the WSSG metric includes the weighting param-
eters 𝛼, 𝛽, 𝛿, and	𝛾, which must be determined before implementing the method.  It was stated previ-
ously that by properly weighting these parameters, the WSSG metric can be made to be nearly uni-
form across the structure.  The proper values for doing that are related to the structural wavenumbers 
in the two orthogonal directions and can be expressed as 
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where 𝑘7  and 𝑘-  are the wavenumbers in the two orthogonal directions of the structure.13 These 
wavenumbers are frequency and mode dependent, so several methods of determining the optimal 
values to use over the entire frequency range have been investigated, including averaging over the 
bandwidth, using the values for the nearest structural mode, and expressing the wavenumber in terms 
of the parameters of the structure (bending stiffness, density, thickness).  The performance difference 
in using the various weighting schemes is generally not very significant, since they are all tied to the 
use of the structural wavenumbers. 

3.2.    Control of a Flat Plate 
The WSSG method was implemented to control the sound power radiated from a flat simply-sup-
ported plate.13   The plate was an aluminum plate with dimensions (Lx × Ly) of 0.473 m × 0.753 m, 
thickness (h) of 0.003 m, Young’s modulus (E) of 68.9 GPa, and density (𝜌) of 2500 kg/m3.  The 
plate was excited with a disturbance shaker located at (0.445 m, 0.692 m) and was controlled by a 
second shaker located at (0.422 m, 0.064 m).  The WSSG sensor (four accelerometers) was centered 
at (0.245 m, 0.285 m). 
3.2.1 Computational Results 
The plate was modelled computationally using MATLAB, and the WSSG method was implemented 
to predict the effectiveness of the method.  Figure 5 shows the results. 
 



Figure 5. Predicted attenuation of the sound power radiated from a simply-supported plate for the 
optimal control that minimizes sound power and for several methods of implementing WSSG control. 
 
In Figure 5, since these are computational results, the optimal solution for attenuating the radiated 
sound power can be obtained and it is shown as the green dashed curve.  The simulated annealing 
curve is a method that can be done computationally which determines the optimal WSSG weights 
frequency by frequency.  It can be seen that it achieves near-optimal control, although it is not a 
practical control strategy for experimental implementation.  The results for averaged weights and 
parameter-based weights are two methods of determining average values for the WSSG weighting 
parameters.  It can be seen that the performance is generally similar for both choices and that the 
attenuation is close to the optimal solution at most frequencies.  For the frequency range shown here, 
the optimal sound power attenuation is 15.5 dB, while an attenuation of 14.0 dB is obtained using 
parameter-based weights and 10.9 dB using averaged weights.  The primary difference in perfor-
mance occurs near 350 Hz. It should be noted that one of the reasons why the WSSG control is not 
always optimal is that a fixed set of average weights are implemented over the entire frequency band 
for the WSSG metric, which means that they will not be optimal at all frequencies. 

3.2.2 Experimental Results 
An experimental simply-supported plate was constructed that closely matched the parameters used 
for the computational results.  The control results obtained are shown in Figure 6.  The sound power 
was measured using a scanning laser Doppler vibrometer to scan a dense grid of the vibrating plate 
and then determining the radiated sound power using Equation 3.  The frequency resolution is more 
coarse for the experimental results but it can be observed that there is generally good agreement 
between the computational and experimental results.  It can be observed that the control is not effec-
tive in the region of 232 Hz and 303 Hz.  In looking at the plate model, it was determined that there 
are degenerate modes in these frequency regions.  Since, there is only a single control shaker, there 
are not enough degrees of freedom to control the multiple modes that are contributing.  To verify this, 
a second control shaker was implemented (green curve), and it can be seen that control was then 
achieved. 
 



Figure 6. Experimental attenuation of the sound power radiated from a simply supported plate using 
WSSG control. 
 
3.3.    Control of a Cylindrical Shell 
The WSSG method was also implemented to control the sound power radiated from a thin cylindrical 
shell.12   The shell was again made of aluminum with axial length (Lz) 1.206 m, radius (a)  0.0778 m, 
and thickness (h) 0.0016 m.  For the shaker/sensor locations, the coordinates are given as (z (m), 𝜃 
(deg)). The shell was excited with a disturbance shaker located at (0.1, 330) and was controlled by a 
second shaker located at (1.05, 150).  The WSSG sensor (four accelerometers) was centered at (0.785, 
292). 

3.3.1 Computational Results 
The cylindrical shell was modelled computationally using MATLAB, and the WSSG method was 
implemented to predict the effectiveness of the method.  Figure 7 shows the results. 

The computational results generally predict good attenuation of the radiated sound power.  
There is a region between 500-800 Hz where some amplification is predicted but over the broad 
frequency range shown, there is significant attenuation.  For this configuration, the computational 

Figure 7. Predicted attenuation of the sound power radiated from a simply-supported cylindrical shell 
for the optimal control and for implementing WSSG control. 



results predict an overall attenuation of 14.0 dB for the optimal control and 11.4 dB for the WSSG 
method.   

The computational results also allow for an investigation of what the control is doing in terms 
of the acoustic radiation modes. Table 1 shows the amplitudes of the radiation modes without and 
with control at a frequency of 290 Hz.  For this table, the left column provides the amplitudes of the 
radiation modes without control, the middle column shows the amplitudes with control using the 
WSSG metric, and the right column shows the amplitudes with control for the optimal control that 
numerically minimizes the radiated sound power. 
 
Table 1. Radiation mode amplitudes, before and after control, for the ten most efficient radiation 
modes at 290 Hz. 
 𝑠89 𝑠#9 𝑠#9:;!$ 

Mode 1 −1.1676	 × 10:* −7.0630 × 10:< −5.9740	 × 10:< 

Mode 2 2.5131	 × 10:* 5.0015	 × 10:* 5.0262	 × 10:* 

Mode 3 1.2722	 × 10:) 9.1847	 × 10:< 1.9270	 × 10:= 

Mode 4 1.2104 8.6961	 × 10:+ 1.8334 × 10:> 

Mode 5 −2.2861	 × 10:* −4.4339	 × 10:* −4.4552	 × 10:* 

Mode 6 −1.1503	 × 10:& −2.2310	 × 10:& −2.2417	 × 10:& 

Mode 7 1.7763	 × 10:& 3.5353	 × 10:& 3.5525	 × 10:& 

Mode 8 −1.3518	 × 10:& −2.6905	 × 10:& −2.7036	 × 10:& 

Mode 9 3.1516	 × 10:& 3.1177	 × 10:+ 4.7739	 × 10:? 

Mode 10 −1.0240	 × 10:& −1.0130	 × 10:+ −1.5502	 × 10:? 

 
It can be seen that the WSSG control generally does not alter the amplitudes of low-amplitude radi-
ation modes significantly, such as modes 2, and 5, but instead tends to target the high amplitude 
modes (which give most of the radiation), such as modes 3 and 4, and attenuates them significantly.   
 
3.3.2 Experimental Results 
An experimental simply-supported cylindrical shell was constructed that closely matched the param-
eters used for the computational results.  The control results obtained are shown in Figure 8.  For 
these results, the sound power was measured with the shell in a reverberation chamber and using the 
ISO 3741 standard, both without and with control running.  The results are computed and plotted in 
terms of 1/3-octave bands.  The performance trends are fairly similar, although the amount of atten-
uation obtained experimentally is not as close to the computational results as it was for the flat plate.  
The overall experimental attenuation was 5.7 dB.  One possible explanation for the reduced attenua-
tion, compared to the flat plate, is that there are more radiation modes contributing to the radiated 
sound power for the cylindrical shell than there were for the flat plate.  Nonetheless, there is still a 
significant amount of attenuation achieved for the sound power radiated from the shell. 
 
 



Figure 8. Experimental attenuation of the sound power radiated from a simply supported plate using 
WSSG control. 
 

4.    CONCLUSIONS 
For active noise control applications, it is often effective to focus on developing a method that is 
closely aligned with what the control objective is.  In the case of active structural acoustic control, 
the desire is to minimize the radiated sound power, so methods that are in some way connected to the 
radiated sound power will tend to be more effective.  The WSSG metric has been introduced as a 
method that is related to the acoustic radiation modes which can be used to describe acoustic radiation 
with a relatively small number of terms.  WSSG has been shown to be rather uniform over the struc-
ture when the weights used are adjusted properly.  This means that the sensor is not highly sensitive 
to sensor location in terms of the control that can be achieved.  The WSSG metric is also closely 
related to acoustic sound power, such that minimizing the WSSG metric will generally lead to good 
results for attenuating the radiated sound power.  Results have been shown for the radiation from flat 
plates and from cylindrical shells.  For flat plates, WSSG often achieves near-optimal attenuation.  
Results obtained indicate that the attenuation for cylindrical shells is very good but not quite as ef-
fective as for flat plates.  A primary reason for this result is that the radiation modes for a cylindrical 
shell exhibit great frequency dependence than for flat plates, and there are typically more modes that 
contribute to the radiation, so it is difficult to implement a set of fixed weights for the WSSG metric 
that will be effective at all frequencies.  Nonetheless, the results for both types of structures are en-
couraging and suggest that it is possible to get significant attenuation of the global sound power by 
minimizing the local WSSG metric. 
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