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Numerical  Investigations of Solitons 
Long Nonneutral Plasma 

S. Neil Rasband and Ross L. Spencer 

in a 

Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 

Abstract. For realistic density profiles we have obtained two-dimensional soliton 
solutions numerically for a cold-fluid (CF) model and as a BGK wave with finite 
temperature. The CF soliton profile agrees well with an earlier analytic approximation 
(K. C. Hansen, Master's Thesis, BYU, 1995), and for small temperatures(<0.1eV) the 
profiles for the CF soliton and the BGK soliton agree as well. The effects of temperature 
are evident in the propagation velocities and differences in the models are also evident 
for large amplitude solitons. 

I N T R O D U C T I O N  

Solitons in nonneutral  plasmas have been studied using simulations by Neu and 
Morales [1] in slab geometry and by Hansen [2] in cylindrical geometry. Solitons 
have also been observed experimentally by Moody and Driscoll [3] and by Hart 
[4]. Solitons in nonneutral  plasmas offer the potential for careful study of nonlinear 
waves and two-dimensional soliton type structures in a system where they live and 
interact for a substantial duration of time. 

SOLITONS IN THE COLD-FLUID MODEL 

The familiar equations for the fluid density n(x,  t),  velocity v(x ,  t), and electro- 
static potential ¢(x,  t) are: 

~n 
o-7 + v .  (nv)  = 0, 

dv  = q E + ! v × B ,  
dt m m c  

V2¢ = -4rr qn. 

We make the following assumptions: 
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0 
v~ = 0, 0--¢ = 0, (no ¢ dependence) 

/ 

v = rwo(r)dp + v f i ,  B = Bo~, 

where Bo denotes a constant magnetic field. We then simplify to find 

57 + ( n ~ )  = 0, (1) 
Ov~ Ov~ q 0 ¢  
O-T + v~ Oz m 0~' (2) 

1 0 0¢  02¢ -4 teen .  (3) 
0 ~ ( ~ N  ) + 0 ~  = 

We now transfer focus to the moving frame of the soliton. Assume the soliton is 
moving to the right with a velocity u and let ~ denote the coordinate in the moving 
frame along the direction of the magnetic field. Then 

= z - ut,  v: = v¢ + u ,  n(r ' , z , t )  = n ( r , ( ( z , t ) ) ,  similarlyfor v; and ¢. 

Equation (1) becomes 

o~(nv¢) = 0 =~ rive = const (in 4). 

We assume the boundary conditions that v, = 0 when z (or () -+ cc and that also 
that n(r,  ¢) ~ no(r) and ¢(r, 4) ~ ¢0(r). Thus 

Equation (2) becomes 

(4) 

0~12 q¢) O, ~ ( ~ v ~  + = 

~v~(r,1 2 q__ ~ul 2 .._q¢°(r)" ¢) + m¢(~, 4) = + (5) 

We now solve for v¢ and n(r,  4) to find 

vd~, 4) = -u(1 - 2~(~, ¢))~ and (6) 

n(~, ~) = no(,')/(1 - 2~(~, C))~, (7) 

where ~(~, ¢) = q(¢(,-, 4) - ¢o(~))/'~u 2. From Poisson's Equ,tion (3) we then and 

V'~(r,()- w~°(r)[1 -(i- 2~(r,¢))-½] (8) 
It 2 
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Approximate  analytic solution to Eq. (8) 

3 - 2  Following Hansen [2], assume 121 << 1 so that 1/ - 2~ _~ 1 + 2 + 7 ~ .  Sub- 
stituting in Equation (8) find: 

v : 2  _ ~:o(~)~: (2 + ~¢~) (9) 

Let 2(r ,  if) = R(r) f ( ( ) ,  where we assume a knowledge of R(r);  with boundary 
conditions R(0) = 1 and R(r,~u) = 0. Substitute into Equation (9), multiply 
through by rR(r)  and then integrate from 0 to twin. We obtain the following 
equation: 

d2f rl2w~(0) 3 aw~(0) -2 (10) 
d~2 = ( 3  2 u2 ) f  2 ~-] f ,  

where cz, 32, and 7/2 are defined below. Let Ilgll ~ - f0 rwal' rg 2 dr. Then 

1 rwall dR 

IIRII = fo d ( r d R ) R d r  = (11~11~= (11) 
dr dr ~ J - ~  J " 

~]2 1 erwall 2 2 
-- Jo W~o(r)rR dr, (12) 

~(o) I IRI I  = 
1 frwall 3 

~ -  Jo ~o(~)~R ~ (13) ~(O)IIRII ~ 

Equation (10) we recognize as the first integral of the KdV equation and is readily 
verified to have the soliton solution: 

f(~)  = Asech2(~),  where (14) 

u 2 ~2~(0)), 
A -  c~w2 0 (/~2 (15) 

1 1 ~ ~ ( 0 ) ) _ ~  (16) 
S = ~(~ ~ • 

Numerical  solution to Eq. (8) 

We assume a tensor product spline approximation for ~(r ,  ~) = Ei,j ¢i(r)¢j({) 
and take a Galerkin approximation to Eq. (8). We assume symmetry  about { = 0 
and r = 0 and thus require 0~/0~(r ,  0) = 0 and 02~Or(O, ~) = 0. Furthermore 
we take ¢(rwan, ~) = 0 and 2(r,  ~w~n) = 0, where (wan is arbitrary but taken large 
enough to approximate cx3. The unperturbed radial density profile is taken to be 
of the form 
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no(r) = noo exp [_(r).]. 
rp 

Due to the nonlinear nature of Eq. (8), the numerical solution is obtained via 
Picaxd iteration. Let superscripts denote the iteration index, then symbolically, 

~(n+l)(7", ~) ---- (V2)-~f(~(~)) 

where (V2)  -1 represents the inverse of the matrix operator obtained in the Galerkin 
procedure to represent the Laplacian and f(~(n)) represents the right hand side of 
Eq. (8). An efficient algorithm is devised that converges rapidly without underre- 
laxation: compute ~}(n+l)(r, ~), then adjust u according to 

u(n+l) = u('~)If ~('@(n+l) da/ f (~('~))2 da , 

The amplitude z}(0, 0) is fixed, 0 < ~(0, 0) < 0.5, and thus after finding u ("+1) the 
coefficients are adjusted to satisfy this constraint which then give us a new ~(n). 
Then cycle again until convergence is achieved. 

As an example we choose rw~ll = 4.0cm and ~w~n = 30.0cm. For the density 
profile we choose rp = 2.0cm, # = 4.5, and no0 = 4.0 x 10%m -a. We choose 
2(0, 0) = 0.4 and then find the numerical solution to Eq. (8). Figure 1 shows the 
two-dimensional soliton function @(r, ~) for ~ > 0. 

soliton equilibrim function ,l,(r,~') 

3u 

FIGURE 1. Potential soliton for ¢ > 0 

Figure 2 compares the numerical solution to Eq. (8) to the approximate analytic 
solution as given in Eqs. (14)-(16) for r = 0. 

Using Eqs. (11)-(13) with the function R(r)  replaced by ~(r,  ~') and then choosing 
an average over ~, we estimate a = 0.52,/32 = 0.41, and r/2 = 0.68 for the soliton 
computed above. With  these values Eq. (15) gives u/(%~,(O)) = 0.74 whereas the 
numer ica l  so lut ion  has -- 0.S0. 
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soliton equilibrim function q, ot r=O 
0.4 

0.3 

o~ 0.2 
@ 

0.1 

o.o . . . " " ~  . . . . . .  
0 10 20 30 

¢Ccm) 
FIGURE 2. Comparison of numerical(solid), Eq. (8), and analytic(dashed), Eq. (14), solitons 
for C>0 

BGK WAVE SOLITON 

To find the appropriate nonlinear BGK wave we need the distribution function 
f(r ,  ~, v) where 

F n(r, ~) = f(r,  ~, v) dv. 

We obtain this distribution function by assuming that far away from the soliton, 
--~ oe, the distribution function should be a Boltzmann distribution centered 

tt+vc~ 2 about - u ,  f ~ e x p [ - ~ ] ,  where v:r is the thermal velocity given by k ~ / m  
and v~o(v, ~) is defined below. In other words, we inject a Boltzmann distribution 
toward the soliton from the right. This distribution function we get everywhere by 
noting that the distribution function is preserved along particle orbits and using 
conservation of energy, 1 2 1 2 ~mv + q¢(r, ~) = 7mv~ + q¢o(r). Thus we find 

1 - 1 2] f (r ,~ ,v)  o¢ exp - ~ @  (u 4- [v 2 + 2u2~(r,~)]~) , 

where the + must be decided according to whether the particle at o¢ has positive 
or negative velocity. This distribution function is normalized by demanding the 
n(r, ~) --+ no(r) as ~ --+ o¢. The net resuh of this procedure is the following density 
distribution which then goes into Poisson's equation. The overbars on the velocities 
denotes that they have been scaled by u. 

n(r, if)=no(r)~T ~/~-~vTr [ 2 ( 1 - 4 - e r f ( ~ ) ) - - e r r (  1 ~ ~0(r)~TV~ ] - - e r f (  1 + ~o(r)~TX/2 ,]J ~1-I 
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+/~o(~,¢) 
a0 e x p [ - ~ ( 1 - - [ 0 2 + 2 ~ ( r , ~ ) ] ½ )  2] dO 

cx~ - 1 2 / 

In this expression we use ~o(r) = ~ and ~o(r,O = ~/21~(~,0)-  ~(~,OI. 
The right-hand side of Eq. (8) becomes then 

%~°(r)u- E ( i -  n(r, ~)/no(r)) 

With the above right-hand side we solve Eq. (8) for the BGK solution. Under- 
relaxation is now required for convergence. As an example we choose ¢(0, 0) = 0.1 
and T = 1.0eV. Figure 3 compares this soliton with the analytic approximation. 
The corresponding soliton velocities are u/(rpw~(O)) = 0.67 for the analytic approx- 
imation, 0.68 for the CF numerical solution, and 0.80 for the BGK soliton. 

soliton equilibrim function ¢ at r==O 
i • • i - i i 0.12,  

0.10 f 

0.08 

= v ,  

¢:50.06 

0.04 

0.02 

O.OC 
0 

\ 

20 4O 60 
¢(cm) 

• , I 

80 100 

FIGURE 3. Comparison of a BGK numerical soliton(solid) and the analytic approximation 
(dashed) for ¢ > 0 
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