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Some of the physical implications involved in self-consistently selecting a ferromagnetic (inequivalent)
representation for the Heisenberg exchange Hamilto»~rI are developed and discussed. This is done by
comparing the spin-rotation symmetry of our system in original variables with that same symmetry

when written in terms of physical variables. It is shown explicitly that Goldstone's theorem is satisfied

and that dynamical rearrangement of symmetry has taken place in going from original to physical
varibles. Thus it is found that the original spin-rotation symmetry transformation is taken up by
physical "massless" fields and that the Bose-Einstein condensations of these fields in the physical
(ferromagnetic) ground state produce the asymmetry by "printing" the spin quantum number on that
state.

I. INTRODUCTION

In a previous paper' (referred to hereafter as I)
it was concluded that the Heisenberg magnetic-ex-
change model which is described by the Hamilto-
nian

does describe a ferromagnetic system when one is
in the appropriate (inequivalent) representation.
This was shown by writing the spin operators S;
and S;. in second-quantized form in terms of fer-
mion annihilation and creation operators (the a' s)
and then applying Umezawa' s self -consistent-field
theory techniques to transform to the physical spin
operators S~ and 8;., which were written in terms
of physical annihilation and creation operators (the
b's). All the higher-order terms were accounted
for, and this was accomplished without recourse
to the adiabatic theorem. Validity for using an ex-
change integral depending only on relative distance
between lattice sites and, in particular, on nearest
neighbors was a further result. Thus, using quan-
tum-field-theory methods, we were able to bilin-
earize the Heisenberg exchange Hamiltonian. As
noted at the end of I, this present paper is an at-
tempt to explain the physical implications involved
in picking out the ferromagnetic representation for
the Heisenberg-exchange model. In particular,
this will be done by looking at the symmetry of our
system in original variables as compared with that
same symmetry when written in physical variables.
This will be the content of Sec. IV. However, in
order to form a foundation for what will come, we
will briefly review Goldstone's theorem in Sec. II
and the dynamical rearrangement of symmetry in

Sec. DI.

H. GOLDSTONE'S THEOREM AND BROKEN SYMMETRIES

Goldstone's theorem, briefly stated for nonrel-
ativistic systems, asserts that (i) if the interac-

tions are sufficiently well behaved at large dis-
tances (this depends on the model being considered}
and (ii) if the physical ground state is not an eigen-
state of the time-independent generators Gv of
symmetry transformations on the original Hamil-
tonian of the system (in other words, if a broken
symmetry exists), there must exist an excitation
mode with no energy gap present in the physical
spectrum (referred to as "massless" particles). '
This certainly seems understandable, physically
speaking, since such massless particles, like the
vacuum or ground state, can have zero energy and

thus provide a mechanism for constructing various
null eigenstates of the energy-momentum four-
vector. These new ground states are in general
not eigenstates of the symmetry generators, and

so this idea provides a mechanism for obtaining
broken symmetries, i.e. , a way for obtaining so-
lutions possessing a lower symmetry than a given
Hamiltonian. These ground states are referred to
as asymmetric ground states. Of course, this is
of great importance in nonrelativistic quantum-field

theory, since such systems as superconductors
and ferromagnets have perfectly acceptable solu-
tions to their field equations, which have less sym-
metry than that of the Hamiltonian.

The theorem was first conjectured by Goldstone
in 1961 on the basis of only the Goldstone model
(complex-scalar-field model) and the model con-
sidered by Jona-Lasinio and Nambu. ' Since then,

many proofs have been proposed and given, but

probably the most understandable and applicable
proof for nonrelativistic systems is essentially
that of Lange, ~ which we will now outline.

Proof We begin with .the assumption that there
exists a conserved current J~(x),

(g=1, 2, 3, 0)

Next, we define the generator of symmetry trans-
formations in volume V, Gv(t), a.s

Gv(t) = f„d x J'(x, t) = $ dx J'(x)
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Now in order to incorporate the effect of current
conservation, let us consider

f dx [S„J"(x), Q(x')] =0 (2. 3)

where Q(x ) is any appropriate operator of the field
theory being considered. When Eq. (2. 3) is writ-
ten out, it becomes

[soG„(t), (t)(x')]+ [gdx V ~ J(x), (t)(x')] =0

= S, J dx [J (x), (f)(x')]

+ J( ) [dS J(x), @(x)], (2. 4)

where S(V) is the surface bounding V. If for some
sufficiently large volume V (may have to have
V- ~), we have

= dC/dx = 0, it follows that the left-hand side of
Eq. (2. 10) must not depend on x'. These condi-
tions are consistent with each other only if the left-
hand side vanishes, except for those states where
p„=~„=0 in the limit as p„-0. Thus, we have
shown that if (1) the condition i.n Eq. (2. 5) holds
(which limits the range of the interaction forces)
and (ii) a symmetry is broken (the ground state is
not an eigenstate of the symmetry generator), then
there must be excitation modes in the spectrum of
the symmetry generator whose energy vanishes in
the limit that the momentum of these modes van-
ishes.

III. DYNAMICAL REARRANGEMENT OF SYMMETRIES

then

or

lim( J, , [dS ~ J(x), P(x)]}=0,

l~[S, [G,(t), y(x')]}=0

i~([G,(t), y(x')]}=C,

(2. 8)

(2. 8)

(2. ?)

where dC/dt=0, and where C may or may not be
zero.

Now let us impose the broken-symmetry condi-
tion,

(oi Cio)~0, (2. 8)

where I 0) is the translationally invariant physical
vacuum or ground state. Taking the vacuum-ex-
pectation value of Eq. (2.4), inserting a. complete
set of states )n), and letting V-~, so that Eq.
(2. 5) is satisfied, we have

lim 0G&t n nQx 0 —Oft)x n

«&
I
o,(olo&I) =(ol cl o&«o . (2.9)

Assuming j (x) to have the following translational
behavior, Jo(x) = e @*J'o(0) e'~~ and also that e e~

~
0)

= ~0), Eq. (2.9) becomes

)(~ E/ f l
o«( &o)l.ooI (&&«)l o) «»0«

—(ol o («')I «) &« I o '(o)l o& « ""I)
2m35 „0J 0 n Qx Oe'~+

-&olo(*')I &( lo'(o)lo&«"O" I)
=(oiCio)~0 . (2. 10)

where p„are the eigenvalues of the four-momentum
operator p.

Now what are the conditions under which Eq.
(2.10) is satisfied in the limit as p„-0? Since Eq.
(2. 10) is valid for all times xo, and since dC/dt

Looking for the microscopic mechanism produc-
ing the asymmetric ground states noted in Sec. II,
Umezawa and others began a more detailed study
of certain models, and they discovered the phenom-
enon of dynamical rearrangement of symmetry.

During 1965 and 1966, Umezawa, Leplae, Sen,
and Nakagawa made more detailed calculations for
the Nambu model, the complex-scalar-field model,
and for neutral superconductivity. ' They discov-
ered that the symmetry transformations for the
original fields (in terms of which the interacting
field equations are expressed) took entirely differ-
ent forms for the physical fields (the free-field op-
erators for the observed particles). For ex- .
ample, the original symmetry of the Nambu Hamil-
tonian g- e~"5g becomes in physical variables,
B-B+g8, where P is the original fermion field,
y is a constant, B is the physical "pion" field and
is massless, and 8 is a transformation parame-
ter. ' In other words, the symmetries can be dy-
namically rearranged. When this occurred, certain
broken symmetries were observed even when the
Hamiltonian was fully symmetric. In other words,
we might think of broken symmetries as having a
dynamical origin.

After dealing with the above models, Umezawa,
Leplae, and Sen~~ called upon their physical intu-
itions to make general statements which appeared
to be independent of any model. From their re-
sults, they concluded that for a fully symmetric
Hamiltonian, dynamical rearrangement of sym-
metry takes place if and only if the ground state is
asymmetric, and that an asymmetric ground state
can only be realized by the Bose-Einstein conden-
sation of massless physical fields in the physical
ground state. t~ (Given a field g, Bose-Einstein
condensation is said to take place when

(0
~ P ~

0) = c number oo 0, (3 1)

where [0) is the ground state. '4) Thus, the exis-
tence of massless physical fields is required, and
it is these fields which take over the original sym-
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metry transformationr as indicated above for the
Nambu model. Since the commutation relations,
and not the anticommutation relations, are invar-
iant under the inhomogeneous transformation,
B-B+ c number, the only canonical device for the
massless fields are Bose fields. The c numbers
coming from the ground-state expectation values
of these symmetry-preserving massless fields
(indicating Bose-Einstein condensation) are related
directly to the symmetry quantum numbers associ-
ated with the corresponding symmetry transforma-
tions. An explanation for this is that the symmetry
quantum numbers are tom off the original particles
and "printed" on the physical ground state by the
Bose-Einstein condensation of the massless fields,
thus producing an asymmetric ground state. Cer-
tain physical fields are left frozen; that is, they
do not respond at all to the original symmetry
transformations when written in physical variables.

A good example, considered by Umezawa, is
the neutral superconductor. %e denote the origi-
nal fermion field by P, and the Hamiltonian is sym-
metric under the electron phase transformation,
g- e'eg. In physical variables this symmetry is
taken up by the phononlike field B as B-B+ p8,
where g is a c number constant. The c number g
indicates Bose-Einstein condensation and is di-
rectly proportional to the number of electrons.
This can be interpreted by saying that the total
fermion number is carried by the Bose-Einstein
condensation of the massless particles in the
ground state, thus resulting in asymmetry of that
state with respect to the phase transformation.

We will now use the results of these last two sec-
tions and show explicitly what takes place physi-
cally in selecting the ferromagnetic representa-
tion for Eq. (1.1). (How that representation is
selected was the content of I. )

+ (sinete cosiII+ cos8 sing cosQ) S;
+ (sin8 sing) S,

(y) (x)S; - (- cosQ sing —cos8 cosg sing) S;
+ (- sintj sing+ cos8cosg cosg) S-'

2

+(sin8cosg) S;
(,) . . (x)

S, —(sin8 si nerve) Sf
—(sin8 cose3e ) SI

(c)
+ (cos8) S; (4. 2)

al =u-b~ —v b1 t 1 lt 1 1& r

a- =u b- —v-blt 1 lt 1

a» v»b» +u»b»1& 1 lt ) 1&

al, = Vrbrt+ur bl-, ,

(4. 3)

where u; and vl- are Hermitian parameters which
have to be determined self-consistently, and
(u~+ v-) = 1 for this to be a canonical transforma-

1
tion] and from Eq. (3.2) of I, namely,

(c) j t f
Sf = —,(af, af, —af, a;, )

t t
Sf = ——,i (af, af, —ai, a;, )

Sf = —,(af a;, + af, af,),
and from Eq. (3.42) of I, namely,

(4. 4)

where P, 8, and P are angles as defined in Ref. 16.
In order to see what effect the transformations

in Eq. (4. 2) have on the physics, we need to know
the relationship between our original symmetry
generators (4*', S-'"', and St") and our correspond-
ing physical symmetry generators ($+', S-", and

1 1
g -"'). This is obtained from our dynamical map,
Eq. (3.11) of I, [which is

IV. DYNAMICAL MAP, MASSLESS PARTICLES, BOSE-
EINSTEIN CONDENSATIONS, «~

Let us begin by looking at the symmetry of our
system in original variables, as compared with
that same symmetry written in physical variables.
As is well known, our original Hamiltonian (written
in terms of the a' s) [Eq. (1.1)],is invariant under
spin rotations generated by the unitary operators

rr, (e) e"'= e~(ee. Ze;) . =
1

(4. 1)

Of course, this can be effected by the 3x3 matrix
describing the rotation of the spin vector S; around
a given axis by an angle 8. Thus, using the Euler'
matrix representation for this rotation, H «„~
(written in second-quantized form) remains invar-
iant in form when we let

S;" —(cosg cosg —cos8 sing sing) S;*

Sf = p(bf, bf, —bf, bf, )

t tSf =
~ (bfe b;, + bf, b;, )

S+ = —2i (b b- —b "b)"-
81-=1- + ill- = bl, bl-,

(x) . (y) t

(x) . (y)—i~&- = b; b-1 m 14 lt

resulting in

(c) g 2= (Qf —vf) Sf + Qf vf (Sg + Sf)
+ 2 + 2 (c)8 =u-S"- v-S=-2u-v-~~-1 1 1 1 1 1 lm

2 ~ 2 + (c)/== u-S=- v-S--2u v-~&-1 1 1 1 1 1'1
or, vice versa,

+
Sf = (Qf —vf)Sf —tcg vf (Sf+Sf)

+ (c) 2 - 2 +"=2u v 8 —v"g=+u-$
1 1 1 1 1 1 1

(c) 2 2 +S1 2ul vol + ul f v» 81 ~

(4. 5)

(4. 6)

(4. V)
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Using Eq. (4. 6) along with Eqs. (3.15)-(3.18), and
(3.21) of I (which are the self-consistent equations
for u; and vf), we have under the transformations

in Eq. (4. 2) written now for physical variables,

g&c & g(c)
1 1

2 ~ ~
(I)Sj- [i sin8 cosg(uf - v~~) —2iupvf (sing cosQ + cos8 sin@ cosi(')] &I

+ [~ (cos8 coed cosp —sing sing) —
& i(sing cosQ + cos8 sing cosg) (u; —v;) —i sin8 cosp(u; vf)] Zj

+ [- 2 (cos8cosg cosp —sing sing) —~ i(sing cosQ+ cos8 sinQ cosg) (u~p vp-i sin8 cos((uf vp)] 8;,
d'; —[- i sin8 cosg(u; —vf) +2iupv~gsing cosp + cos8 sing cosg)] 4;2 2 (g) (4. 8)

+ g (sing sing —cos8 cosQ costi|) + 2 i(sing cosp+ cos8 sing cosp)(u; —v~f) + i sin8 cosp(uf vf}]4;
+ [—,

' (cos8 cosp cosg —sing sing) + 2 i(sing cosQ + cos8 sin@ cosg) (u; —v~f) + i sin8 cos((u; vp)] 8j

Therefore, from Eq. (4. 8) our Hamiltonian,
written in physical variables [Eq. (3.43) of I],
which is

H= -QB;Bf~ (4. 9)
1

is invariant in form under Eq. (4. 2), written in

physical variables, as was our original Hamilto-
nian under Eq. (4.2). However, our physical
ground state (all spine aligned parallel) [Eq.
(3.44) of I], now is not an eigenstate of the sym-
metry generator S;, written in physical variables,
as was the original ground state under 81-.

s;~o&.„,=(s; i+ s,
'-"j +s; }t)~0).„,=0,

(Sr),~, l
O&,„,=([is;vr+ }t—'(s; —v;)] I

O& ~,
+ [i ,' (u,'--v—';) j ,'(i)-' —-ku;vp] ~44 ~ ~ ~ & ~ ~ & ~ ~ &),

(4. 10)
where 0 is in the 1th position, and 10&„« is taken
as a linear combination of all possible ground-state
spin orientations of H„«„„since there is nothing

c pt'iori in the original theory to tell us which par-
ticular one to pick. Therefore, for every state
with a spin-up specification, there is a correspond-
ing specification with that spin in the opposite di-
rection, so that S", ( 0)„„=0. [This is the typical
relationship taken between a symmetry generator
and a ground state (or vacuum). "] Consequently,
our physical Hamiltonian [Eq. (4. 9)], is still sym-
metric under the original symmetry transformation,
written in physical variables, but from Eq. t4. 10)
the physical ground state 10),h„ is not. We have a
broken symmetry and, as we would expect, our
ferromagnetic representation is built up on an
asymmetric ground state. This, along with the
fact that our interaction is short ranged (nearest
neighbor), means that the conditions of Goldstone's
theorem are met. Therefore, there must be
"massless" particles present in this physical rep-
resentation. This can be seen directly, for if we

calculate 6'", using the Hamiltonian in Eq. (3.12) of

I [(Eq. (1.1), when transformed using Eqs. (4. 4)

and (4.3)] before it is normal-ordered, we ob-
tain

i =iZj=2ZJI I (Bf Zj —6'jd'P~~ ) . (4. 11)

Z&uf Zje' '= 2s pe' 'Zj(JI, —J',), (4. 13)

and so

~t=2s(J-„-Jo)=2sg JI;~{e ' " ' ' —1), (4. 14)
1 1

where s is the eigenvalue of 4; . Therefore,

1im ((of) = 0
k" 0

(4. 15)

A similar result is found for Z,'-with Eq. (4. 15)
again being satisfied. Thus, 6",- and 6'; correspond
to the spin-wave fields. "

Now from Umezawa's work discussed in the sec-
tion on the dynamical rearrangement of symme-
tries, since we have an asymmetric ground state
(all spins aligned parallel) [Eq. (3.44) of I], we
expect a dynamical rearrangement of symmetry
to have taken place in obtaining our ferromag-
netic representation. This is the case, as is seen
in Eq. (4. 8). The spin-rotation symmetry trans-
formation in physical variables has been taken
over by 8";and 8';, leaving 8';, the field account-
ing for the physical fermion property of spin for
the system, frozen. That is, 6';"' does not respond
at all to the transformation. We also get a good
idea of this from the physical Hamiltonian in Eq.

Then normal ordering and taking the limit as
V- ~, in the same manner as we obtained the bilin-
ear Hamiltonian in Eq. (3.41) of I in terms of the
b's, or the linear Hamiltonian in Eq. (3.43) of I
[same as Eq. (4. 9) above], in terms of the 6"s,
we obtain the linearized equation of motion for 051,

id'j = 2s 2JI I (6 I —6'j) (4. 12)
1

Fourier-transforming Eq. (4. 12), using for the
time dependence e '"& ', gives
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(4.9). Since for the physical ground state all spine
are up (8;& 0), then with respect to this state there
is an energy difference of 2' s between a spin-up
and a spin-down fermion. In other words, going
to physical variables has separated the (44) dou-
blet in energy and isolated it into two singlets.

Since 8",- and 8'; take up the spin-symmetry trans-
formation in physical variables, we expect to find
the symmetry quantum numbers of spin s associ-
ated with 8",- and 6',= in some way. Let us look at
the ground-state expectation values of Eq. (4. 6):

={s[-v;u;i(2cosg sing+2 cos&sing cosg)

+ (u;~ v~p)i cost) sin8]}=-sq (4. 16)

( hy &0I s ' '""+fs ' '""'I 0&&has)

{s[2=univ;i(cosp sin|)I+ cosP cos8 sing)

—(u~ —v~p)i sin8 cosg] }=- sr' (4. 17)

where phys means written in physical variables,
and p and q* are defined by comparison in Eqs.
(4. 16) and (4. 17). Using the equations from 1,

z';I 0&,„,=0, (4. 18)

g;Io&,„,.=I&c" & ~ « ~ ~ &,
where 4 occurs in the 1th position, we can also
write Eq. (4. 17), for example, as

yh„&0'
I zf I

0'&,„~.= y~.&o
I sr+ s& I 0&~h~s

= s'7
(4. 20)

Thus, the c numbers g and g~ exhibit the effect of

the Bose-Einstein condensation of the massless
fields Bjand8;. [See Eq. (3.1).] As canbe seen

above, the Bose-Einstein condensations of 8',» and

„„(0'
I g,=I 0'&,„„=,,(0 I zf + ski*I 0&,„„=rq',

(4. 19)
where

' ~~'I 0&yeas

Likewise, for Eq. (4. 16), we have

8'; are directly proportional to the spin s and we
can interpret this by saying that the condensation
of the massless fields "prints" the quantum-num-
ber spin onto the physical ground state. This re-
quires no energy or momentum because the fields
are gapless. This rearrangement of spin in the
ground state is certainly a remarkable feature of
the theory.

Of course, probably the best known technique
for obtaining a gapless spectrum for the Heisen-
berg exchange model is that of Holstein and Prima-
koff. Their approach is based on the expression
of spin operato 's in terms of the creation and an-
nihilation operators of the harmonic oscillator.
The basic assumption is that the original operator
S&' can be replaced by the quantum number s so
as to insure the correct commutation relations for
the oscillator operators. However, as shown by
our calculations, this assumption is only valid in
our physical representation where, since all spins
are aligned in the same direction, 8' always has
the same value at any site and then could justifiably
be replaced by s. Then our spin-commutation re-
lations become for 8'; and 4;,

[(2s) ' '6~p, (2s) ' '4,»] =1 (4. 21)

which means that we can interpret 8'; and 8'y as
boson fields, so that above we have Bose-Einstein
condensation of massless Bose fields with respect
to the physical ground state.

CONCLUSION

Thus, in I we have found that ferromagnetism
can be described as a self-consistent choice by the
system of a state which does not carry the full sym-
metry of the original Hamiltonian. It is produced
by a self-consistent magnetic field which depends
upon the exchange interaction. Now, in this paper
we have found the physical implications producing
this asymmetric representation. The appearance
of "massless" particles which are Bose-Einstein-
condensed with respect to the ferromagnetic ground
state were explicitly found and by further analysis
shown to restore the full consequences of the origi-
nal symmetry. This then provides a very good ex-
planation for the microscopic mechanism produc-
ing the macroscopic asymmetry of ferromagnetism.
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