
Approximate exchange energy as a functional of the electron density. Light atoms
M. Berrondo and A. FloresRiveros 
 
Citation: The Journal of Chemical Physics 72, 6299 (1980); doi: 10.1063/1.439044 
View online: http://dx.doi.org/10.1063/1.439044 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/72/11?ver=pdfcov 
Published by the AIP Publishing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.187.97.20 On: Wed, 19 Mar 2014 03:04:35

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/586982248/x01/AIP-PT/JCP_CoverPg_101613/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=M.+Berrondo&option1=author
http://scitation.aip.org/search?value1=A.+FloresRiveros&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.439044
http://scitation.aip.org/content/aip/journal/jcp/72/11?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov


Approximate exchange energy as a functional of the 
electron density. Light atomsa) 

M. Berrondob) 

Instituto de Fisica, Universidad de Mexico, Apdo. Postal 20-364, Mexico 20, D.F. Mexico 

A. Flores-Riveros 

Instituto Mexicano del Petroleo, Ave. Cien Metros 152, Mexico 14, D.F. Mexico 
(Received 19 November 1979; accepted 7 February 1980) 

We derive an expression for the exchange energy integral in terms of the density for the case of light 
atoms containing sand p electrons. We start from an approximate functional form of the density matrix 
for an electron cloud in the presence of an attractive nucleus. An important restriction to consider is the 
Pauli principle. A correction factor is included to account for the multipole expansion in an average way. 
The results we obtain. both for closed and open shel1s. are within a few percent of the exact exchange 
integral. 

I. INTRODUCTION 

An approximate expression for the exchange integral 
for electron systems was proposed by Dirac, 1 and since 
then it has been extensively used, particularly in the 
X .. model. Z The exchange integral stems from a typi­
cally quantum effect, namely the antisymmetrization of 
the N -electron wave function, hence, it does not have 
such a direct electrostatic interpretation as the Coulomb 
energy. The exchange energy is defined in terms of the 
density matrix, rather than the density. For the ground 
state however, it has been shown3 that the total energy 
(including the electronic correlation) can be, in princi­
ple, expressed as a functional of the local density. 

Dirac's approximation was originally introduced as 
a correction to the Thomas-Fermi model. It is an ex­
act expression for the case of a homogeneous electron 
gas. The electron orbitals are taken as plane waves in 
the Fermi sea. For the case of a large number of elec­
trons N, where statistical approximations are suitable, 
it is very good. For smaller N, however, it becomes 
poorer. On the other hand, it is in this case that the 
exchange energy is a sizeable fraction of the total ener­
gy, so a better approximation is called for. 

The density for atoms in their ground state p(r) varies 
smoothly, but is far from being constant. It is a mono­
tonically decreasing function of r, and its logarithm has 
an almost constant slope piecewise. 4 This has led us to 
an approximation for the exchange potential5 different 
from the one based on the homogeneous electron gas. 
A remarkable feature of this potential is that it has a 
correct asymptotic behavior, in contrast to the electron 
gas607 and the X .. model. Z This follows essentially from 
(a) considering an attractive nucleus, which immediate­
ly yields a Coulomb-type tail at large distances, and 
(b) incorporating the Pauli principle in the approximate 
functional form of the density matrix, which implies a 
correct normalization of the Fermi hole. 

alWork supported in part by Conacyt (Mexico) through project 
PNCB-0024. 

blVisitor at the Institute for Advanced Studies, The Hebrew Uni­
versity of Jerusalem. Israel during 1979. 

The computation of the exchange energy is more de­
manding than its corresponding potential. The main 
reason being that both idempotency of the density ma­
trix and normalization of the total density are required 
to obtain a correct value of the integral. While this is 
automatically fulfilled in the homogeneous electron gas 
model, it is not a trivial matter for the case of more 
realistic inhomogeneous electron models. Making use 
of the multipole expansion for the electronic repulSion, 
we have been able to derive an expression which ac­
counts for these two restrictions in an exact way, for 
the largest portion of the integral. The remainder is 
then evaluated with the aid of the approximate functional 
form used for the potential. 5 We deal first with the case 
of closed shells, and for open shell atoms we calculate 
the average exchange integralS with a slight modification, 
as explained in Sec. III. 

Section II derives the approximate form of the ex­
change energy as a functional of the density, separating 
the large monopole contribution. In Sec. III we present 
numerical results for atoms with sand p electrons. 
Finally in Sec. IV we draw some general conclUSions. 

II. FUNCTIONAL FORM OF THE EXCHANGE ENERGY 

We shall work with the spinless density matrix y(rl> 
ra) normalized to t N throughout this paper. The exten­
sion to the local spin density formalism is straightfor­
ward. The starting point is the separation of the mono­
pole term in the multipole expansion of the interelec­
tronic repulsion: 

(2.1) 

where, as usual, r«r» denotes the smaller (greater) of 
rl and rz and Y'm are the spherical harmonics. Hence 
the exchange energy can be written also as a summation 
over k: 

(2.2) 

in atomic units. The integrals 1_ are given by: 
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-"-.i!.....jl ( la..!i. * 1_ - L;t 2k + 1 y rh ra) ~+l Y _ .. (01) Y.m(Oa) drl dra 

(2.3) 
The largest contribution to (2.2) is the first term, which 
is explicitly given by: 

10 = f drl f dOa( :1 lrl 1 y(rb raWddra 

+ i- I y(rh ra) ,zrzdra) . (2.4) 
rl 

Completing the first integral form 0 to 00, this can be 
rewritten as: 

10 "" f drl(-1.. J' y,adrz+j dOa i-' rl a(-1.. -~\r~drz) . 
~ ~ ~ ~ 

(2.5) 
The integral over dra can be performed exactly for the 

first term, in the case where yis a Fock-Dirac density ma­
trix. Again, this is the largest of the two terms in 
(2.5), as shall be shown in Sec. III. The second term 
is negative since ra > rl in the integral. Using the 
ide~potency condition: 

j y(rl, rz) r(rz, r 3) drz = y(rh r 3) (2.6) 

for the case r 1 = r 3, we obtain the first term in (2.5) di­
rectly as a functional of the density p(r) =y(r, r). Hence 
a crude estimate of the exchange energy can be already 
written as: 

(2.7) 

with 

(2.8) 

Before considering the second term in Eq. (2.5) let 
us pause for a moment to analyze (2.7). Since p(r ) 
gives the charge distribution of electrons in the atom, 
Eq. (2.7) can be interpreted as a minus first moment. 
In fact, it is equal in value to the nuclear (repulsion) 
integral for a unit charge (Z = -1). Furthermore, com­
paring Eq. (2.7) with the Coulomb energy, with Eq. 
(2.8) in mind, 

E = 2 f p(r1) p(ra) dr dr 
c r12 I 2 

(2.9) 

gives a result for I~ll of the order of N times smaller, 
as it should, since we expect I~t) to be the main contri­
bution to the atomic exchange energy. Secondly, since 
the contribution for k* 0 in Eq. (2.2) is negative, as 
well as the second term in Eq. (2.5), there is a partial 
cancellation between the two of them. For small N, 
where the former term (k* 0) has a small magnitude 
(zero if only s electrons are present), IJ1) overestimates 
the value of the exchange energy. For larger N, the 
trend will be reversed. 

Let us now focus our attention on the second term in 
Eq. (2.5). A very good approximation obtains by uSing 
the approximate functional form5

: 

(2. 10) 

TABLE I. Exchange energy for closed shell atoms with s 
electrons. 

Ex (a. u.l 
Atom presenta exact Dirac· -E tot (SCF)b 

He 1. 0694 1. 025 8 0.8841 2.86167 

Be 2.6790 2.6664 2.3126 14.57237 

aEquations (2.12) and (2.13) in the text. 
~he density is calculated using the double C basis of Ref. 10. 
"Equation (2. 14) in the text. The last column is the total SCF 
energy with the same double C basis (Ref. 10). 

For slowly varying 17(r) and evaluating A from the idem­
potency condition, Eq. (2.6), we obtain: 

f dOz [., ylZ (-1.. -~)r;drz"" - p(rt) (1 +1/' rt) e-hrl 
rl rz rt rl 

(2.11) 
Hence 

(2.12) 

where 1) is a function of r, obtained from the density as: 

1 1 
1)(r) = - '2 p(r) [Vp(r) . Vp(r)Jl/2 . (2.13) 

Hence the gradient of the density appears in a natural 
way in view of the particular form of the inhomogeneity 
of the electron density of atomic systems (cf. Ref. 9). 

In Table I we present results for two closed shell sys­
tems, He and Be, where the expression (2.12) is direct­
ly applicable, since only 10 contributes in the case of s 
electrons. The density p was calculated using the op­
timized double ~ orbitals, Slater-type orbitals (STO) 
from Clementi and Roetti. 10 Comparison with the exact 
evaluation of the exchange integral uSing the same set 
of orbitals, yields an error of 0.043 a. u. and 0.008 a. u. 
for He and Be, respectively. The value for the Dirac 
approximation (in a. u.): 

3(3)1/3j -E~[p(r)] = 4' -; [2p(r)]4/3 dr (2.14) 

is also shown in Table I, as well the total self-consis­
tent field (SCF), with the same baSis set. 

We should finally notice, en passant, that for the 
trivial case of the hydrogen atom, the expression (2.12) 
is exact. Hence it is cancelled by the self interaction 
of the Coulomb integral (2.9). In this case there is no 
spurious many-body contribution for the H atom. 

III. RESULTS FOR sAND p ELECTRON ATOMS 

Two corrections to Eq. (2.12) are considered in this 
section. The first one is the multipole correction, i. e., 
including higher values of k in the sum in Eq. (2.2). 
The second one appears only for open shell systems, 
where we want to compute a configuration average. 

In case there are p electrons present, we want to 
estimate a correction la in a simple fashion. The term 
k = 1 arises only from s-p interactions in this case, so 
we will disregard it. For k = 2, the angular integration 
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TABLE n. Average exchange energy for atoms from He to Ar. 

-Ex (a. u.) E tot (SCF)' 
Atom _I~I) (a. u.)a presentb exact" Diracd (Slater average) 

He 1. 6873 1. 0694 1. 0258 0.8841 2.86167 
Li 2.7714 1. 7586 1. 7227 1. 4612 7.43272 
Be 4.2042 2.6790 2.6664 2.3126 14.57237 
B 5.4374 3.5268 3.5760 3.0217 24.52792 

C 6.8222 4.6245 4.6695 3.8735 37.65748 
N 8.4498 6.0476 6.0174 4.9747 54.29135 
0 10.3896 7.8320 7.6526 6.4303 74.76388 
F 12.7312 10.0252 9.6640 8.3953 99.40132 
Ne 15.5599 12.6787 12.1190 11. 0409 128.53512 
Na 17.6421 14.0308 13.9700 12.7150 161. 85003 
Mg 19.9618 15.7918 15.9989 14.6144 199.60700 
Al 22.0911 17.5233 17.9632 16.3546 241. 87306 
Si 24.3030 19.4157 20.0496 18.1849 288.83128 
P 26.6465 21. 5128 22.2898 20.1753 340.64511 
S 29.1569 23.8369 24.6944 22.3889 397.47589 
CI 31. 8819 26.4044 27.3162 24.9200 459.47963 
Ar 34.8638 29.2246 30.1879 27.8652 526.81513 

aEquation (2.7) in the text with the average density Eq. (3.5). 
bEquations (3.4) and (3.5) in the text. 
"Equation (3.3) in the text, using the double C basis of Ref. 10. 
dEquation (2.14) in the text, using the average density Eq. (3.5). 
"The total SCF energy with the double C basis (Ref. 10), but using the Slater average over 
configurations (Ref. 8). 

in Eq. (2.3) yields8 a Gaunt coefficient cIa) (P, P) 
and only the P-P interactions contribute. We shall 
estimate it by taking a factor proportional to the 
number of p electrons present and taking into account 
the extra power of r due to the behavior at the origin: 

(3.1) 

where N. is the number of s electrons. An estimate of 
la is hence given by: 

la""'(1-!f:)c CZ )(PO;PO)Io, (3.2) 

and this will be enough for our present purposes. 

Let us next consider the case of open shell atoms. 
The average energy (defined in Ref. 8) is a weighted 
mean over the possible configurations ariSing from the 
open shell. A glance at expressions (2.7) and (2.8) in­
dicates that the appropriate modification for open shells 
is to compute the density and its norm N as a weighted 
mean. One aspect, however, requires additional 
thought. In both the Coulomb integral (2.9) and ex­
change energy (2.2) we have included the self interac­
tion term (which obviously cancels out for the exact ex­
pressions). This implies that the mean over configura­
tions must include this term. The usual average8 is 
performed over all different pairs of electrons in the 
open shell for the Coulomb plus exchange energy. We 
instead, shall define a modified weighted average in­
cluding the self interacting pair. In terms of the Slater 
integrals G-, we have (in a. u.): 

(3.3) 

the summation over shells i, j unrestricted. Here N j 

is the occupation number of shell i. 

From the considerations above, the approximate ex­
change energy, both for open and closed shells, in case 
of sand P electrons, is given (in a. u. ) by: 

-Ex[j)(r)1=(1+~~)f ~[1-(1+1fr)e-2,;rldr, (3.4) 

where we have already substituted the value % of C(2) 

(p, p) (Ref. 8). The quantities in (3.4) are defined 
thus: 

-() 1", ~ 2 ( 
P r ;= 2" '7' 4l/ + 2 R"ilj r) 

1f(r)=- 2~[VP' Vpp/2 , 

-- '" ~ N - '7' 4l j + 2 ' 

(3.5a) 

(3.5b) 

(3.5c) 

with p normalized to iN. Table II includes the value of 
the mean exchange energy computed with Eqs. (3.5), 
USing double?; basis. 10 Comparison is made with the 
exact mean exchange as defined in (3.3) and Dirac's ex­
pression Eq. (2.14) with p, USing the same baSis set. 
We have also included the raw estimate 1~1) from Eq. 
(2.7) using again p. We note immediately that for heav­
ier atoms, the estimate becomes better. The error in 
(3.4) is only a few percent of the exact value (3.3) and 
is obviously much smaller with respect to the total en­
ergy. 

IV. CONCLUSIONS 

The main result of this paper is given in Eqs. (3.5). 
The approximate exchange energy is very good for atoms 
with sand P electrons. We have limited ourselves to 
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this case, because it is precisely for few electron atoms 
that the homogeneous electron gas approximation fails. 
Hence Eqs. (3.5) should be preferred in these cases. 
The approximation should be very useful for core elec­
trons in molecules. This is particularly suited for lin­
ear combination of atomic orbitals (LCAO) calculations, 
where atomic orbitals are used explicitly. 

Unlike the electron gas model, the inversion problem 
of expressing the integrands in 1_, Eq. (2.3) in terms of 
the density (and its gradient) does not have a unique 
solution. This is an unfortunate situation, which we 
had already remarked in connection with the local ex­
change potential. 5 It is precisely for this reason that 
Eq. (2.7) is so useful in our case. Since it only relies 
on the idempotency of y and its trace, it is independent 
of the particular form of the density matrix. Hence we 
can use expression (2.7) in two different ways: (a) as 
a guideline to find a more exact functional form, as we 
did in Eq. (2.11); (b) as a rough estimate of the exchange 
energy, particularly for larger N. 

We can include in principle the contributions from d, 
/, ... electrons in a fashion similar to the development 
in Sec. III for p electrons. In practice, however, the 
inaccuracies introduced with such an oversimplified 

treatment induces one to use simpler expressions like 
Eq. (2.7) or the statistical approximation for larger N 
values. Further developments are being pursued, how­
ever, in order to improve upon the accuracy, both for 
small and large number of electrons. 
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