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We prove a generalized version of the H theorem for a Boltzmann-like equation which includes a reactive 
term for a bimolecular reaction. We find the hydrodynamic equations for the reactive system as well as the 
distribution function assuming local chemical equilibrium. The resulting chemical affinity vanishes 
identically as a consequence of the constraints imposed by the reaction. Finally we derive Gibbs relation for 
the local entropy production in terms of the chemical components. with the result that there appears no 
term in the affinity. 

I. INTRODUCTION 

The microscopic foundations of chemical reactions is 
mostly based on the use of Boltzmann's equation, gen­
eralized in such a way as to include reactive collisions. 
The homogeneous case has been studied in detail for 
bimolecular reactions, 1 deriving the rate equation, in­
cluding expressions for the rate constants in terms of 
the reactive cross sections, following the pioneering 
works of Prigogine et al. 2 and Eliason and Hirschfel­
der.3 More recently, attention has been paid4 to the 
hydrodynamic equations in the reactive case, in order 
to include spatial inhomogeneities in the system, and 
the combined effects, which can hardly be overesti­
mated. From this study, 4 the need to look at the chemi­
cal reaction as a constraint has become evident. ThiS, 
of course, is a common point of view in elementary 
chemistry textbooks. We can interpret this as due to 
the fact that, from all possible combinations of pairs 
of colliding molecule, only two of them (A, Band C, D) 
are reactive in a bimolecular reaction such as 

(1.1) 

This indeed imposes a constraint. 

In this paper we shall concentrate on a system in 
local chemical equilibrium. By this we mean a sys­
tem which is close to both thermal and chemical equi­
librium. This in turn implies that the species densities 
depend on the equilibrium constants for the reaction, 
although we must give a local description in space and 
time. This is the case when the reactive collisions are 
frequent enough as to contribute in driving the system to 
equilibrium, and thus that the activation energies for the 
reaction to occur are very small as compared to the 
temperature. In a sense, it is the opposite case to the 
one considered in Refs. 1-3, where it is assumed that 
the local thermal equilibrium is attained in a time scale 
which is much shorter than the mean free time between 
reactive collisions. The intermediate regime is a case 
which certainly deserves further stu~y. 

Our starting point is again a kinetic equation includ­
ing only binary collisions from which an H theorem is 
derived in Sec. II for this reactive case. In Sec. III 
we derive the conservation equations for the macro­
scopic quantities, taking into account the constraint im-

posed by the chemical reaction. The specific form of 
the local equilibrium distribution function is found in 
the case of interest, i. eo, local chemical equilibrium. 
We proceed to define a chemical affinity in this case, 
which turns out to vanish identically. Section IV in­
cludes an expression for the entropy production in the 
local equilibrium case, and a brief comparison with the 
more familiar nonreactive expressions. 

II. KINETIC EQUATION FOR A REACTIVE SYSTEM 

We shall restrict our attention to a system in which a 
bimolecular reaction takes place, and assume it of the 
general form: 

(2.1) 

Since there are four different chemical speCies, the 
distribution function I must be labeled by a species in­
dex i (i = 1, 2, 3, 4 for A, B, C, D). It must also specify 
the internal energy state, characterized by the internal 
quantum number a, as well as the center of mass posi­
tion r I and velocity v / : 

(2.2) 

The general form of the kinetic equation obeyed by this 
distribution function is 1,2,4: 

~+v • V'! =J(el)+J(ln)+J(react) a t I I col col col , (2.3) 

where the collision terms must include elastic, inelastic, 
and reactive terms. In the low concentration limit, 
these are Boltzmann-like, i. e., include only binary col­
lisions. The expressions are summed over all al­
lowed collisions: the elastic and inelastic contributions: 

J(el) = L fg /Ju/J(a{3, a{3; glj, m 
j(3 

x (JI(a, r, vL t)/j ( (3, r, VI' t) 

-!I(a, r, VI' t)/j ({3, r, Vj' t)]dvJdO 

J(in)= L f g ,jU,J(Y5, a{3; glj, 0) 
J(3Y6 

X(JI(Y, r, v:, t)I/5, r, VI' t) 

-/1(a, r, VI, t)jJ({3, r, VJ' t)]dvJdO, 

(2.4a) 

(2.4b) 
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and the reactive term, which is written explicitly for 
the case i= 1: 

x [Jc(y, r, v~, t)ID(O, r, v~, t) 

-/A(a, r, VA' t)/B(B, r, VB, t)]dvBdQ, 
(2.4c) 

with obvious changes for i = 2, 3, 4. Here g/J is the 
relative velocity in the collision between i and j, while 
(J refers to the cross section, and in particular (JR to 
the reactive cross section. The constraint imposed by 
the reaction reflects in the fact that there is no sum­
mation over the species in the reactive term (2.4c). 

Let us now prove the validity of an extended H theorem 
for this case, starting with the modified Boltzmann 
equation (2.3), (2.4). If we define the H function in the 
usual way: 

H= ?= f I/lnl/dr/dp/, 

"'" 
(2.5) 

the total time derivative of H is obtained from (2.3). 
It involves the drift term plus the collision term, but 
the first one vanishes, as in the ordinary case. 5 Using 
now the invariance of the product g/ja/ J under the ex­
change i - j in each term, the contribution from the 
collision is finally expressed as a summation over i and 
j of terms like 

numb. 
(2.6) 

including the three different contributions from (2.4), 
with their respective limitations on the values of j and 
the internal quantum numbers. 

The H theorem is now a direct consequence of the 
microscopic reversibility 

(2.7) 

which is discussed in Ref. 1 in detail, including the 
reactive case. Equation (2. 7) results from the unitarity of 
the S matrix6 in case there are no real bound states for 
the system A-B, which we shall assume in this paper. 

Substituting (2.7) into (2.6), the H theorem follows in 
the same fashion as in the nonreactive case, 7 by in­
terchanging p and p', and using (2.7), with the net re­
sult: 

L L 
/J into quant. 

Dumb. 

Xln(~~/) drjdp/dpJdQ:=::: O. (2.8) 

The equality holds if and only if the distribution func­
tion appearing in (2.8) represents local equilibrium, 7 

which implies that 

1
(0)'",<0)' - 1(0)/(0) 
/ }J - I J (2.9) 

for every couple (i, j). Hence, for the local equilibrium 
distribution function 

(2.10) 

results as a straightforward extension of the nonreac­
tive case. 

III. HYDRODYNAMIC EQUATIONS 

The macroscopic description can be given, in the 
reactive case, in terms of the numerical densities for 
each species, defined as: 

nl(r, t) = 4= J I;(a, r, VI' t)dv; 

which, summed over i, yields the total numerical 
density n=L,ln/. The mass density, using (3.1) is 

p(r, t) = L m; n/(r, t) , 
I 

where m; is the mass of a molecule of species i. 

(3.1) 

(3.2) 

In addition to these, let us define the chemical com­
ponents and their numerical densities, following An­
dersen. 4 The chemical species are not independent 
from each other since the Reaction (2.1) imposes a 
constraint on the way the species can change: Each 
time a molecule A disappears, there must appear a 
molecule C, and so on. For the bimolecular case 
(2.1), there are only three independent components 
which we shall label by J (J = I, II, III). These are 
defined in such a way that any of the fpur species A; 
(i = 1, ..• , 4) is expressed as a linear combination of 
the three components, and taking into account (2.1) for 
each collision: Al + A2 = A3 + A4 . 

The definition of the components is not unique indeed, 
and we shall take a particular choice, 4 namely 

III 

A;= L NiJJ (3.3) 
JoI 

where the 4 x 3 matrix N is: 

(3.4) 

From this we can immediately define the component 
densities as 

(3.5) 

Written explicitly, they take the form 

(3.5') 

so that L,Jn J= n. In this way, we can work with the 
component densities without worrying any longer about 
the constraint imposed by the reaction. It is evident 
however that the information about the chemical reaction 
will only appear explicitly in the equations for the 
species' densities n/ . 
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The average local velocity u and the local energy 
density U are given by the usual expressions 

(3.6) 

(3.7) 

respectively, where Ela is the internal energy of a 
molecule of species i in the internal state a, and we 
have introduced the peculiar velocity V I' measured 
with respect to the barycentric velocity 

VI=vl-u(r, t). (3.8) 

In order to obtain the continuity equations for the 
densities defined above, we multiply the kinetic equation 
(2.3) by the appropriate quantity ifJ(i, a, VI) and average 
by integrating over VI' summing over i and a. In case 
ifJ is a collisional invariant, the weighted average stem­
ming from the collision terms J cOI in the kinetic equa­
tion (2.3) vanishes, so we obtain the conservation 
equations 4 corresponding to 

if!=m l , NIJ (for each J), m l VI , 

namely 

Dp 
-+pV.u=O 
Dt ' 

Du ..... 
p- +V·P=O 

Dt 

(3.10) 

where D/Dt=a/at+u.v is the streaming derivative. 
In Eqs. (3.10) we introduced the "diffusion" numerical 
flux /JJ for component J 

(3.11) 

the pressure tensor P having the usual definition 

(3.12) 

as well as the heat flux JJ. associated to the energy EIOI 
defined in (3.9) 

JJ.=L:JE la Vdldvi 
101 

(3.13) 

The densities which have a direct physical interpreta­
tion are of course the species densities nl' The con­
servation equation for these follow by setting ifJ;: olJ. 
During a reactive collision, the species label necessari­
ly changes, so 0l} is not a collisional invariant. Hence 
there appears a contribution from the reactive term 
(2.4c). The resulting equation is the chemical reaction 
rate equation for inhomogeneous media,4 containing 
both diffusive and reactive terms 

Dn j +n l V • u + V· All =Idreact) 
Dt • 

(3.14) 

The diffusion flux for species i is: 

AlI(r, t) =;; J ViII dVI , (3.15) 

and the reactive source term is given in terms of (2.4c) 
as 

K~react) = L: J J (react) (i, a, VI )dvi . 
a 

(3.16) 

In order to apply the Chapman-Enskog method in our 
case, we must distinguish between the two extreme 
cases: almost frozen flow (AFF) and local chemical 
equilibrium (LCE). In the AFF regime, the reactive 
collisions are considered to be much slower than the 
elastic and inelastic terms, so they do not change the 
equilibrium established (locally) by the nonreactive col­
lisions in any appreciable way. In other words, the re­
active term (2.4c) is considered as of zeroth order in 
the uniformity expansion parameter JJ. - (mean free 
time)/(macroscopic time). This regime has been dis­
cussed in detail by Ross et al. 1 for the homogeneous 
case, and also by Andersen4 in the inhomogeneous case. 
The reactive term (3.16) for AFF is evaluated explicit­
ly by substituting the local equilibrium distribution con­
structed assuming that ifJ = 0li is a collisional invariant. 
This is indeed consistent with the assumption that re­
active collisions take no part in driving the system to­
wards equilibrium. The chemical reactions in this 
case have a characteristic time so large that the sys­
tem is allowed to relax equilibrium at each point in 
this time scale. 

In the other regime (LCE), both chemical reactions 
and intermolecular relaxations are fast enough to alter 
the local distribution function. In this event, we must 
take the reactive collisions on the same footing as the 
elastic ones. The first order terms in )J. yield the local 
(both thermal and chemical) equilibrium equations, 4 

when we use the expansion 

fl = flO) [1 + JJ..p(l) + O(JJ.2) 1 
in the conservation equations. 

(3.17) 

In order to obtain the local equilibrium distribution 
functionf~O), we use the H theorem derived in the last 
section to get that 

(3.18) 

As usual, InfO) has to be a linear combination of colli­
sional invariants. For LCE we include N u , rather than 
01" since (3.18) is also valid for reactive collisions. 
Assuming we have the same local temperature for all 
species, the equilibrium distribution function is ex­
pressed in terms of the invariants (3.9) as 

f)O)(a, r, vI> t) = exp[ - j3(EIOI - ~ NiJCl\i")] (3.19) 

In (3.19), the total energy EIOI is given in terms of the 
peculiar velocity, as defined in (3.9). The temperature 
kT = j3-1 is defined as the average energy as usual: 
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tn(r, t) kT(r, t) =: J E/o«r, t) flO) dv/ . 
.0< 

(3.20) 

Finally, the parameters ClJ(r, t) play the role of "chemi­
cal potentials" for the components (notice that the (i' s 
are defined with respect to the numbers N/J rather than 
the masses, since m J has no meaning) J = I, II, III. 
With the definition of the species' numerical densities 
(3.1) we can write 

nlO)(r, t) =(2:kil'y/2 Q/ exp( ~ N 1J Cl J ) , (3.21) 

where Q1 =L, exp(- E1",/kT) is the internal partition 
function for molecule i. 

For the particular choice (3.4) which defines the com­
ponents, we can express Cl J (J = I, II, III) in terms of the 
first three species densities n~O), n~O), n~O) as: 

Cl (r t) =kT(r t)(ln nt~~jr, t) _~ In 27TkT(r, tl) 
I,II,III , , Q 2 m . 

1,2,3 1,2,3 

(3.22) 
In this way, we can identify them as the chemical poten­
tials associated to the species densities 

Cl -Cl I,II,III - 1,2,3 • (3.23) 

Using (3.21) for i =4, we can also define 

Cl 4 =Cl 1 +Cl2 -Cl 3 • (3.24) 

In other words, the chemiCal affinity in LeE is: 

Cl(r, t) =0 . (3.25) 

IV. CHEMICAL AFFINITY AND GIBBS RELATION 
IN LCE 

The way we identify components' chemical potentials 
with species' chemical potentials (3.23) is only valid 
for the particular choice of components (3.4). In LeE 
there are only three independent chemical potentials, 
each associated with each of the three components. 
This, of course is only a consequence of the constraint 
imposed by the reaction. Hence, if we insist on defin­
ing a chemical potential for each species, there must 
be a relation among them. This relation, Eq. (3.24) is in­
dependent of the choice made in (3.4) for the Identifica­
tion (3.23). Since the fact that the affinity is zero fol­
lows directly from (3.24), it will also be independent of 
the choice made to define the components. This is not 
so surprising as it might seem at first sight, since the 
chemical affinity is identically zero in chemical equilib­
rium, and it should be the same in LeE. 

The perturbation q, in the distribution function (3.17) 
has to fuUm in this case the restriction: 

LNJiJ flO) q,jdv1 =0 lIJ=I, II, III 
1 

(4.1) 

to every order in j.J.. However there is no similar con­
dition related to the species density (with NJi replaced 
by OJ}), as one has for AFF. Now, since we have con­
structedf~O) using (3.18) also for the reactive term, 
the RHS in the rate equation (3.14) vanishes to zeroth 
order in 11-. To first order however, we get 

Dn(l) 
_1_ +n(O) 'il . u(l) + 'il . ,q ~I) =K\I) * 0 

Dt • •• 
(4.2) 

where 

n(l) = 'I;,:~ J (0) (1 + iP\l)) dv· =n\O) + On. 
1 ~ _1 t '1 t 

'" 
(4.3) 

In spite of the fact that the reaction source term van­
ishes to order zero in 11-, there is a first order contri­
bution Kll) which does not vanish any longer. It is in­
stead linear in cf>ll) when we substitute (3.17) in the ex­
pression (3.16). The net result is hence a linearized 
chemical rate equation in terms of On i , for the case of 
LeE. 

The important result (4.2) means that the chemical 
reaction takes place away from (absolute) chemical 
equilibrium, in spite of the fact that the chemical af­
finity vanishes. 

Let us next look at the expression for the local entropy 
density at equilibrium: 

(4.4) 

which, using (3.19), (3.1), and (3.7) results in 

1 ( III ) 
ps =1- p+pu - fu (iJn J , (4.5) 

where p is, as usual, the hydrostatic pressure. In or­
der to obtain Gibbs relation we differentiate (4.5) with 
respect to time, and use the conservation equations 
(3.10). The final result differs from the AFF case6 in 
the fact that all the summations which appear are made 
over components rather than species, and there is no 
contribution coming from the reactive source term­
since the affinity vanishes 

P - = - 'il . oj - -2,(l • 'ill' - ,(lJ • V _.- - - II' 'ilu Ds (1 L ((i J) 1 -
Dt • T· J T T' , 

(4.6) 
where 

II =P- pI , 

and 

(4.7) 

The corresponding expression for the entropy produc­
tion is 

Here we see that for LeE the most natural fluxes to 
consider are the fluxes c1J associated to the numerical 
densities of the components, together with their chemi­
cal potentials (iJ. In fact, Expressions (4.6) and (4.8) 
look formally like those of a nonreactive multicompo­
nent. system, 6 with the components replacing the spe­
cies. In other words, the effect of the chemical reaction 
is not apparent in the entropy production because the 
zeroth order reactive term in the 11- expansion vanishes. 

V. CONCLUSIONS 

In this paper we have found that in LeE the chemical 
affinity vanishes identically. Nevertheless the reactive 
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source term in the rate equation is not zero, so this is 
not equivalent to absolute chemical equilibrium. LeE 
implies only that the zeroth order (in iJ.) reactive con­
tribution vanishes. The first order reaction term is 
linear in On;, hence yielding a linearized version of the 
chemical rate equation (3.14), which is characteristic 
of local equilibrium. Notice that it is not enough to as­
sume local thermal equilibrium (this is also the case in 
AFF), but also LeE in order to obtain a linear rate 
equation for this nonhomogeneous case. The first order 
contribution does appear in the entropy production, 
which takes an orthodox form, as long as we express it 
in terms of the independent chemical components. 
Since the measurable quantities are the chemical spe­
cies, this implies a cumbersome entanglement of the 
diffusive effects with reactive ones, as well as the 
crossed effects due to the thermal fluxes. It is not at 
all clear how these effects can be separated in the case 
of LeE. 

We would also like to point out the difference between 
the affinity and the barycentric velocity in this case. In 
equilibrium u takes the value zero, since we are as­
suming there are no external forces. The affinity in­
stead vanishes identically in chemical equilibrium, 
therefore it has to be the same (zero) in LeE. 

In the particular case of a homogeneous system there 
are'no divergence terms in the rate equation (3.14), 
which reduces to: 

(5.1) 

For the particular choice (3.4), this implies conser va -
tion of n 1 +n4, n 2 +n4, and n3 - n 4, so we can introduce 
the progress variable ~(t) in the familiar fashion,6 in 
spite of the fact that the affinity vanishes. 

Finally, we expect the main conclusions in this paper 
to remain valid if we include higher order terms in the 
density, since they are based on the hydrodynamic equa­
tions. The specific form of the reactive source term 
in the rate equations (3.14) and (4.2) will indeed change, 
but not so the entropy production, neither the vanish­
ing of the affinity in local chemical equilibrium. 
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