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We perform a general analysis of thin-wall Q-balls in anti–de Sitter (AdS) space. We provide numeric
solutions and highly accurate analytic approximations over much of the parameter space. These analytic
solutions show that AdS Q-balls exhibit significant differences from the corresponding flat-space solitons.
This includes having a maximum radius beyond which theQ-balls are unstable to a new type of state where
the Q-ball coexists with a gas of massive particles. The phase transition to this novel state is found to be a
zero-temperature third-order transition. This, through the AdS/CFT correspondence, has implications for a
scalar condensate in the boundary theory.
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I. INTRODUCTION

The AdS/CFT correspondence [1], which relates a
theory in an anti–de Sitter (AdS) space in Dþ 1 dimen-
sions with a conformal field theory in D dimensions, has
been the subject of intense study for many years now. Any
observable quantity in the gravitational theory (sometimes
called the bulk theory) has a corresponding quantity in the
boundary theory, e.g., the correlation functions of the field
theory are in one-to-one correspondence with the boun-
dary-to-boundary propagators in the bulk theory. The
original correspondence of [2] has since been generalized
to many other theories.
When the field theory is at nonzero temperature, it can

exhibit phase transitions. In the bulk theory, these often
correspond to a formation or alteration of bound states. For
example, when the temperature of the field theory is
increased, there is a deconfinement phase transition; this
is believed to correspond to the formation of a black
hole [3]. AdS can also support other solitons such as boson
stars, compact objects made of scalar fields with gravita-
tional (and potentially gauge) interactions [4–11]. These
solitons exhibit yet other types of phenomena; for instance,
if one considers charged boson stars, one can find a

zero-temperature second-order phase transition between
two types of boson stars [12].
In thiswork,we consider a different type of soliton inAdS.

Q-balls are configurations of complex scalars ϕ that are
bound together by self-interactions [13]. [Q-balls can also
carry a Uð1Þ gauge charge, but here we consider Q-balls
whose binding energy is dominated by the scalar attraction.]
They are stable over a large range of parameter space and are
hence an example of a nontopological soliton.
As Q-balls are solitons in a scalar field theory, their

profiles are the solutions to a nonlinear differential equa-
tion. While this differential equation is difficult to solve
exactly, extremely accurate approximation methods have
been found for Q-balls with thin-wall configurations
in [14]. These methods produce excellent analytic approx-
imations to the charge and energy of both global [14] and
gauged Q-balls [15] and Q-shells [16,17], as well as the
radial excitations of global Q-balls [18].
Here we extend these methods to study Q-balls in AdS

(some previous work on this subject is [9,19,20]).We ignore
backreaction on the spacetime and hence the AdS space is
taken to be a fixed background for the scalar field. We find
solutions both numerically and by an extension of the
methods of [14], and show excellent agreement between
the approximate analytical functions and the exact numeri-
cal solutions in several different spatial dimensions. These
methods agree in showing that there is generically amaximal
radius forQ-balls in AdS, except for a special class of scalar
potentials such as those studied in [19]. Beyond the
corresponding maximal charge, we find an unexpected
phase of the theory, where the Q-ball coexists with a gas
of noninteracting massive particles. (A similar phenomenon
has been found for Kerr black holes in AdS [21].)
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We also examine the consequences of the Q-ball physics
for the dual theory on the boundary. We find an intricate
phase diagram with zero-temperature phase transitions that
can be either second order or, surprisingly, even third order.
These high-order phase transitions are found to be generic
for a large class of potentials as long as they admit Q-ball
solutions. These results are seen to hold for dual theories in
several dimensions.
In the next section we review the action for Q-balls in

AdS and find the equations satisfied by a sphericalQ-balls.
We show that the thermodynamic relation dE ¼ ωdQ
between the energy and charge holds for AdS solitons.
We then apply approximation techniques to find a relation
between the radius of the Q-ball and the parameters of the
theory in Sec. III. In Sec. IV we compare with numerical
results, showing remarkable agreement for thin-wall sol-
itons. The numerical results also confirm the analytic
prediction that, unlike in flat space, there are soliton
solutions with ω > mϕ. The consequences of our analytic
understanding of Q-balls are further explored in Secs. V
and VI with particular interest given to soliton instabilities
and that, in contrast to flat space, the AdS Q-balls often
have a maximum allowed radius. The implications of these
results for the holographic theory on the boundary are
discussed in Sec. VII. In Sec. VIII we show that the results
obtained for three-dimensional AdS are easily extended to
higher and lower dimensions. We close with a discussion of
our results.

II. Q-BALLS IN AdS

We consider a complex scalar field propagating in a fixed
AdS background. The AdS geometry is parametrized as

ds2 ¼ aðrÞdt2 − bðrÞdr2 − r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

with

aðrÞ ¼ 1þ r2

l2
; bðrÞ ¼ 1

1þ r2

l2
; ð2Þ

where l ¼
ffiffiffiffiffiffiffi
− 3

Λ

q
is a scale that sets the size of the AdS

space.
The action for a scalar field propagating in this geo-

metry is

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ð∇μΦÞ�ð∇μΦÞ −UðΦΦ�Þ�: ð3Þ

The complex scalar fieldΦ is subject to a potentialUðΦΦ�Þ
that preserves a global Uð1Þ symmetry and thereby leads to
a conserved particle number, denoted by Q,

Q ¼ i
Z

d3x
ffiffiffiffiffiffi
−g

p ðΦ�
∂
tΦ −Φ∂

tΦ�Þ: ð4Þ

The energy stored in the field,

E ¼
Z

d3x
ffiffiffiffiffiffi
−g

p
Tt

t; ð5Þ

is given in terms of the energy-momentum tensor

Tμν ¼ ð∇μΦÞ�ð∇νΦÞ þ ð∇νΦÞ�ð∇μΦÞ
− gμν½ð∇μΦÞ�ð∇μΦÞ −UðΦΦ�Þ�: ð6Þ

The equation for Φ is

∇μ∇μΦ ¼ −
∂U
∂Φ� ¼ −Φ

dU
dðΦΦ�Þ : ð7Þ

We look for spherical Q-ball solutions; this implies that we
take the scalar field to be of the form

Φ ¼ ϕ0ffiffiffi
2

p fðrÞe−iωt; ð8Þ

where ϕ0=
ffiffiffi
2

p
is the value of the nontrivial minimum of

UðΦΦ�Þ=ðΦΦ�Þ. To make a connection with the typical
flat-space characterization of Q-balls, we also define

ω2
0 ≡UðΦΦ�Þ

ΦΦ�

����
Φ¼ϕ0=

ffiffi
2

p : ð9Þ

The dimensionless function fðrÞ is referred to as the profile
of the field configuration. The equation of motion for the
field can then be written as an equation to determine this
profile,

d2f
dr2

þ2

r
1þ2r2=l2

1þr2=l2

df
dr

¼ f
1þr2=l2

�
dU

dðΦΦ�Þ−
ω2

1þr2=l2

�
:

ð10Þ

Note that as l → ∞ this becomes the usual flat-space
equation for f [13].
In general, the equation for f cannot be solved analyti-

cally. In this study, following [14], we focus on a sextic
potential,

UðjϕjÞ ¼ m2
ϕjϕj2 − βjϕj4 þ ξ

m2
ϕ

jϕj6: ð11Þ

While a specific choice, this potential captures the qualities
of many potentials that give rise to Q-balls [22]. In
particular, we expect that any potential that gives rise to
thin-wall Q-balls will have qualitatively similar results. In
this potential, we have used the mass of the scalar field to
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determine the estimated scaling of higher-dimension oper-
ators. Our assumption of the scalar field not backreacting
on the spacetime is essentially that mϕ and ϕ0 are much
smaller than the Planck scale. We also assume that the
cosmological constant Λ is much smaller thanmϕ to ensure
that l2jϕj6 contributions to the potential are subleading.
This leads to the constraint lmϕ ≫ 1.
The potential parameters given above are mapped to the

Q-ball parameters ϕ0 and ω0 by

ϕ0 ¼ mϕ

ffiffiffi
β

ξ

s
; ω0 ¼ mϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

β2

4ξ

s
: ð12Þ

It is convenient both for numerical analyses and in
determining how various quantities depend on the param-
eters of the theory to define the dimensionless quantities

Φ0 ¼
ϕ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
ϕ − ω2

0

q ; Ωð0Þ ¼
ωð0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q ;

ρ ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q
; λ ¼ l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q
: ð13Þ

We see that our lmϕ ≫ 1 constraint becomes λ ≫ 1. The f
equation can then be written as

f00 þ2

ρ

1þ2ρ2=λ2

1þρ2=λ2
f0

¼ f
1þρ2=λ2

�
1−

Ω2

1þρ2=λ2
þΩ2

0−4f2þ3f4
�
; ð14Þ

while the charge is

Q ¼ 4πΦ2
0Ω

Z
∞

0

dρρ2
f2

1þ ρ2=λ2
ð15Þ

and the energy is

E¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ−ω2
0

q
2πΦ2

0

Z
∞

0

dρρ2
�

Ω2f2

1þρ2=λ2
þf02ð1þρ2λ2Þ

þf2ð1−f2Þ2þΩ2
0f

2

�
¼ωQ−L; ð16Þ

where the Lagrangian is given by

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ −ω2
0

q
2πΦ2

0

Z
∞

0

dρρ2
�

Ω2f2

1þ ρ2=λ2
− f02ð1þ ρ2λ2Þ

− f2ð1− f2Þ2 −Ω2
0f

2

�
: ð17Þ

Using the Lagrangian, one finds that field configurations
that satisfy the equations of motion also satisfy

dL
dω

¼ Q; ð18Þ

as in flat space. A straightforward calculation produces

dE
dω

¼ Qþ ω
dQ
dω

−
dL
dω

¼ ω
dQ
dω

; ð19Þ

implying that

dE
dQ

¼ ω: ð20Þ

We emphasize that, although we have chosen a specific
potential, this differential relation relating the energy and
charge holds for all potentials. This result also gives ω a
simple interpretation as a chemical potential, describing
how the energy changes as the particle number changes.

III. THIN-WALL Q-BALLS

Following Coleman [13], we can treat Eq. (14) as
describing a particle rolling in a potential Vðf; ρÞ defined as

Vðf;ρÞ¼ f2

2ð1þρ2=λ2Þ
�

Ω2

1þρ2=λ2
−Ω2

0− ð1−f2Þ2
�
; ð21Þ

where the ρ coordinate is treated as an effective time. Since
the potential depends on ρ, the physics is of a particle rolling
in a time-dependent potential. In flat space and AdS, the
coefficient of the f0 term decreases with increasing ρ, which
is interpreted as a friction that decreases with time. In flat
space, thin-wall trajectories are those in which the particle
starts rolling from rest near a maximum in the potential but
does not complete the large field change, rolling down the
hill, until the friction term has become somewhat small. This
leads to a fast transition, or a thin wall for the soliton. All of
the Q-ball trajectories end at f ¼ 0 to ensure a field
configuration that is localized in space.
An example of thin-wall Q-balls in AdS, where the field

stays at the false minimum of U at f ¼ fþ for a long time
before making a quick transition to the true minimum of U
at f ¼ 0, is shown in Fig. 1. The left panel shows theQ-ball
profile found numerically using collocation algorithms
implemented by SciPy [23]. In the right panel, we show
the effective potential Vðf; ρÞ as a function of f for several
values of ρ. The field value at a specific value of ρ is shown
as a dot.
The effective potential is found to have extrema at f ¼ 0

and

f2� ≡ 2

3
� 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Ω2

1þ ρ2=λ2
− 3Ω2

0

s
: ð22Þ

We note that fþ can take real values, while f− does not
when

Q-BALLS IN ANTI–DE SITTER SPACE PHYS. REV. D 109, 086003 (2024)

086003-3



Ω2 ≥
�
1þ ρ2

λ2

�
ð1þΩ2

0Þ: ð23Þ

Within these restrictions, we find that fþ corresponds to a
maximum and f− to a minimum. A more restrictive
constraint on Q-ball profiles is that if the “particle” is to
roll down a slope that ends at the fþ maximum, then that
maximum must have positive energy, or Vðf; ρÞ > 0, for
the particle trajectory to overcome the residual friction and
end at f ¼ 0. However, we find that VðfþðρÞ; ρÞ ¼ 0 for

ρ2 ¼ λ2
Ω2 −Ω2

0

Ω2
0

: ð24Þ

Trajectories that have not already rolled to near the f ¼ 0
maximum by this value of ρ cannot produce a localized
soliton configuration. This limits the radius of thin-wall
AdS Q-balls to

Rthin-wall ≲ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 −Ω2

0

p
Ω0

: ð25Þ

For flat-spaceQ-balls, the extremum at f ¼ 0 is always a
maximum because Ω2 −Ω2

0 < 1 for Q-ball configurations.
In an AdS background (as we will see below), this
restriction does not apply. Thus, we find that

d2V
df2

����
f¼0

¼ Ω2 − ð1þ ρ2=λ2Þð1þ Ω2
0Þ

ð1þ ρ2=λ2Þ2 ð26Þ

can lead to a minimum at f ¼ 0, at least until ρ becomes
sufficiently large. Note that this is exactly the same
condition for the minimum at f− to not exist. In this case,
the maximum at fþ rolls directly to the minimum at f ¼ 0.
This behavior gives rise to a class of AdS Q-balls with no
flat-space analogue.
We take the large field transition to occur at ρ ¼ R ≫ 1.

This implies that for ρ ≪ R, we should take the solution to

be approximately f ¼ fþðρÞ. This is not an exact solution
to the equations because the derivatives of fþðρÞ are
nonzero, but f0þ=fþ is of order 1

λ, so for λ ≫ 1 the
corrections to this solution are small.
On the other hand, when ρ ∼ R the field transitions

between the two vacua and the derivatives are not small. To
analyze this region, we define an energy-like quantity,

W ¼ 1

2
f02 þ Vðf; ρÞ; ð27Þ

to analyze the transition region of the Q-ball. For a thin-
wall transition, we expect this “energy” to be approxi-
mately conserved, so W is constant. Note that as ρ → ∞,
W → 0 because the particle comes to rest at Vð0;∞Þ ¼ 0.
In this approximation, we can neglect the contributions to
f0 away from the radius of the soliton, which we define by
f00ðRÞ ¼ 0. The equation is then

df
dρ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2Vðf; RÞ

p

¼ fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2=λ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − f2Þ2 − Ω2

1þ R2=λ2
þΩ2

0

s
: ð28Þ

Finally, we expect this equation to be most correct when the
particle rolls with the least amount of friction. This would
be for cases that come as close as possible to saturating the
bound in Eq. (25). In this case, the differential equation is

df
dρ

¼ fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2=λ2

p ð1 − f2Þ; ð29Þ

which leads to the transition profile

ftðρÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2e2ðρ−RÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2=λ2

pq : ð30Þ

FIG. 1. Left: numerical Q-ball profile in solid red for λ ¼ 500 and Ω0 ¼ 1=
ffiffiffi
2

p
, Ω ¼ 0.99. Right: effective potential in dashed red

Vðf; ρÞ for the same parameters and various values of ρ, where the blue dots indicate the location of the field value.
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To match the interior solution, we multiply by fþðρÞ, so our
approximate thin-wall profile is

fTðρÞ ¼
fþðρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2e2ðρ−RÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2=λ2

pq : ð31Þ

This transition function allows us to capture the leading-
order effects of friction of the particle trajectories. Using the
equations of motion for f, we find

dW
dρ

¼−
2

ρ

1þ2ρ2=λ2

1þρ2=λ2
f02

þ ρf2

λ2ð1þρ2=λ2Þ2
�
Ω2

0−
2Ω2

1þρ2=λ2
þð1−f2Þ2

�
: ð32Þ

By integrating from ρ ¼ R − z0 to ρ ¼ ∞, we find

W∞ −WR−z0 ¼ −2
Z

∞

R−z0

dρ
ρ

1þ 2ρ2=λ2

1þ ρ2=λ2
f02

þ
Z

∞

R−z0
dρ

ρf2

λ2ð1þ ρ2=λ2Þ2

×

�
Ω2

0 −
2Ω2

1þ ρ2=λ2
þ ð1 − f2Þ2

�
: ð33Þ

We find the leading effect from the friction by evaluating
these integrals using the transition function defined in
Eq. (31), similar to the analysis done in [14]. Equation (33)
then yields the relation

Ω2
0 −

Ω2

1þ R2

λ2

¼ λ2R2ðΩ2 ln 4 − 5Þ − 2λ4 − 3R4

2Rλðλ2 þ R2Þ3=2 : ð34Þ

This relation for a more general n-dimensional AdS
background is derived in more detail in the Appendix.

IV. NUMERICS

We begin by verifying that our analytic understanding of
Q-balls in AdS agrees with numerical solutions. Solutions
to the profile equation (14) are obtained numerically
through the use of SciPy [23]. We consider two benchmark
points, corresponding to (a) λ ¼ 500, Ω0 ¼ 1=

ffiffiffi
2

p
and

(b) λ ¼ 100, Ω0 ¼ 1=10. For each benchmark point,
solutions are generated for various choices of Ω.
Figure 2 shows the comparison between the numerical

calculations (red dashed) and analytic predictions (blue) for
the benchmark point λ ¼ 500, Ω0 ¼ 1=

ffiffiffi
2

p
. The left panel

shows the obtained numeric values for the Q-ball radius R
as a function of ω with a comparison to the analytic
predictions from Eq. (34). The difference between the
numerical and analytical results is negligible. The vertical
dashed line is ω ¼ mϕ or Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ω2

0

p
. In flat space,

there are no Q-ball solutions beyond this point, but we find
both numerical and theoretical evidence for these solitons
in AdS space. The red dot indicates the E ¼ mQ instability
point, which is described below. Soliton solutions to the
right of this point on the curve are unstable to dissociation.
The right panel of Fig. 2 compares the numerical and

analytic predictions [as predicted by (31)] for the two Q-
ball profiles for the same parameters λ ¼ 500, Ω0 ¼ 1=

ffiffiffi
2

p
,

andΩ ¼ 0.99. The two different solutions for R lead to two
different profile functions of very different radius. Once
again, the difference between the numerical and analytical
results is negligible for both profiles.
Figure 3 is similar to Fig. 2, except that the benchmark

point is λ ¼ 100,Ω0 ¼ 1=10. As with the previous plot, the
difference between the numeric and analytic results regard-
ing the radius of theQ-balls is completely negligible. It is in
principle possible to modify our radius prediction to obtain
better accuracy for even larger AdS curvature. Any mis-
calculation of the radius feeds into the profile prediction
and, in fact, is the largest source of error for near thin-wall
profiles. As seen in the right panel of Fig. 3, when we

FIG. 2. Numerical calculations (red dashed) compared to analytic predictions (blue) for λ ¼ 500,Ω0 ¼ 1=
ffiffiffi
2

p
. Left:Q-ball radius R as

a function of ω. Right: both Q-ball profiles for Ω ¼ 0.99.
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correct for the radius the functional form of the analytic
thin-wall profile remains impressively accurate. The pro-
files with smaller radii are not fit well by our analytic
profile. This is because our calculation assumed that the
particle begins rolling from the maximum of the potential,
but for these profiles the particle begins rolling some way
downhill of the maximum.
As can be seen, there is overall an excellent match

between the analytical predictions from the previous
section and the numerical results near the thin-wall limit.
Away from the thin-wall limit, the analytic approximations
do not provide a good fit to the profile. It is likely that this
fit could be improved by making a more careful analysis
of profiles that do not begin near the maximum of the
potential.
In Fig. 4 we plot the predicted (solid) and numerical

(dashed) radius for AdS Q-balls for λ ¼ 500 (black), 100
(read), and 10 (blue). A few general characteristics of the
solution space are evident. For larger and larger λ, we
approach the flat-space limit, in which the upper branch of
solutions is pushed to infinite radius. As λ increases, the

value of ω at which the upper branch begins becomes
larger, leading to a smaller radius at which ω ¼ mϕ. We
also see that the lower-branch Q-balls near ω ¼ mϕ with
increasing radius are seemingly pulled out of the solution
space as λ increases.
These observations are quite similar to what has been

demonstrated for gauged Q-balls in flat space [24]. In that
case, increasing the gauge coupling has a similar effect to
increasing λ [25]. This can be understood by the mapping
of global Q-balls into the gauged Q-ball solution space
[15,17], which suggests that, even though flat-space gauged
Q-balls differ significantly from global AdS Q-balls, a
similar mapping from the flat-space global solution to the
global AdS solution space can also be defined.
We emphasize that from the figures, unlike in flat space

[13], there are AdS Q-balls for ω > mϕ. We have shown
this for the three benchmarks in Fig. 4, but it seems to apply
quite generally. As discussed in the previous section, in the
full profile equation (14), the term proportional toΩ is itself
suppressed at large ρ, and so we can have solutions that are
localized, even if ω > mϕ. This might appear to suggest
that these AdS Q-balls have an arbitrarily large radius. The
following sections, however, argue that this is not the case.

V. INSTABILITIES

In this section, we discuss two different instabilities
related to global Q-balls. The first is familiar from flat-
space solitons, but the second is new to the AdS case.
There exist solutions to the field equation with E=Q >

mϕ and dE
dQ < mϕ, where E is the energy and Q is the global

charge, for both flat-space and AdSQ-balls. At these points
in parameter space, a Q-ball is unstable to dissociation
into Q individual, independent particles of mass mϕ. The
emission of just a few particles does not stabilize the soliton
because dE

dQ ¼ ω < mϕ, so shedding individual charged
particles makes E=Q even larger. Therefore, any soliton
of this type completely falls apart. Thus, the lowest-energy

FIG. 3. As in Fig. 2, but for the benchmark point λ ¼ 100,Ω0 ¼ 1=10. Red dashed curves are numerical results and blue curves are the
analytic predictions.

FIG. 4. Plot of radius vs ω=mϕ for λ ¼ 500 (black), 100 (red),
and 10 (blue). The theoretical predictions for the radius are shown
as solid lines, while the numerical data are show as dashed lines.
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state with this charge is expected to be a gas of free particles
without any soliton contribution.
However, in AdS (but not in flat space) we can have

dE
dQ > mϕ. In this case, removing a particle from the Q-ball
decreases the energy of the system, as the energy required
to remove the particle is more than compensated by the
binding energy. Such a Q-ball will therefore radiate
particles until it reaches a state with dE

dQ ¼ mϕ, with an
additional gas of free particles of mass mϕ. From the
relation dE

dQ ¼ ω, we find that if for a global chargeQ theQ-
ball solution has ω < mϕ, it remains a pureQ-ball solution.
Conversely, if for a fixed charge Q the soliton solution has
ω > mϕ, it sheds particles, leading to a field configuration
with a Q-ball plus additional unbound particles.
These instability points are marked for the benchmark

points in Figs. 2 and 3. The red dot indicates the point at
which E ¼ mϕQ; to the right of this point, the lower branch
becomes unstable to a state completely composed of free
particles. We also show the line ω ¼ mϕ. To the right of this
line, we have dE

dQ > mϕ and the upper branch becomes
unstable to a soliton of smaller charge surrounded by a gas
of free particles.
The implication is that in AdS, generically, there is 1) a

minimum charge Qmin for Q-balls below which E ¼ mϕQ
and the soliton dissolves into particles, 2) a maximum
charge Qmax for Q-balls where ω ¼ mϕ and beyond which
a gas of particles forms around the Q-ball, and 3) the two
branches of solutions as functions of ω that show that there
is a charge Q where the frequency ω is minimized to some
value ωmin.
In Fig. 5 we illustrate the phase diagram of AdS Q-balls

as a function of the total charge Q and ω0 for the
benchmark value of λ ¼ 100. The phase of a free gas of
unbound particles is largely the same as for flat-space

Q-balls. However, the phase on the right of the diagram
cannot occur in flat space.

VI. COMMENTS ON LARGE RADIUS
AdS Q-BALLS

It is interesting to note that in AdS space the thin-wall
Q-balls must have a maximal radius. This is easily seen by
using the language of a particle rolling in a potential. In the
thin-wall approximation, the field stays at the second
maximum until it transitions. However, for extremely large
R, the energy of the second maximum drops below the
energy at f ¼ 0 and the transition can no longer occur.
Therefore, there is a maximum possible radius.
There are two possible avenues to having stable AdS

Q-balls with large radii. First, one could consider non-thin-
wall solutions where theQ-ball profile rolls slowly between
the two maxima. These solutions cannot be treated ana-
lytically using our methods, and so the formula (34) does
not apply. However, the general argument of the previous
paragraph still applies; as ρ increases, the entire potential
drops, and eventually the field does not have the energy to
return to the final field value at f ¼ 0.
The other possibility is to consider an entirely different

class of potential. The effective potential for the particle is
of the form

Vðf; ρÞ ¼ Ω2f2

ð1þ ρ2

λ2
Þ2
−

UðfÞ
1þ ρ2

λ2

: ð35Þ

For large ρ, the first term is additionally suppressed, and in
our case we recover similar dynamics to the original sextic
potential, where the second maximum is below the maxi-
mum at f ¼ 0. However, we can consider a potential where
the first term is always dominant at large f; this can happen
if UðfÞ grows slower than f2 at large f. An example is the
exponential potential considered in [19], where the poten-
tial goes to a constant at large f. In this model, the authors
of [19] indeed found Q-balls of arbitrarily large radius and
charge. We therefore find that the existence of largeQ-balls
in AdS is possible, but it requires a specific form of
potential. We leave this issue for future consideration.

VII. IMPLICATIONS IN THE DUAL THEORY

From the AdS/CFT correspondence, we expect our
results to have an interpretation in a dual three-dimensional
field theory. While the precise nature of this field theory is
not determined, we note that the scalar field in the AdS bulk
must map to a scalar field operator in the dual boundary
theory. This operator is typically a composite of the
fundamental fields of the theory. We leave the nature of
the fundamental theory unspecified, but we assume that it
has a low-energy limit or sector that is dominated by the
interactions of this scalar operator. One intriguing possibil-
ity is that the AdS Q-balls are dual to scar states [26,27].

FIG. 5. Phase diagram of the theory as a function of ω0 and the
total charge Q̄≡Q=4πϕ2

0 for λ ¼ 100. The phase on the right
(red) appears for Q-balls in the AdS background, but not in
flat space.
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These states have been tied to nontopological AdS soliton
states without horizons [28], such as boson stars and
oscillons, though the connection to Q-balls has not been
established. In any case, the bulk potential determines
certain properties of the scalar operator and, in particular,
the dimension of this operator is [1]

Δ ¼ d
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

4
þ l2m2

ϕ

r
; ð36Þ

where d is the dimension of the space and l is the AdS
radius.
The charge of the Uð1Þ scalar field in AdS maps to a

Uð1Þ charge on the boundary. More precisely, by weakly
gauging the Uð1Þ global symmetry of bulk theory (so that
the gauge field does not affect the structure of the Q-ball),
this symmetry would be dual to a globalUð1Þ symmetry on
the boundary. By construction, the scalar field operator on
the boundary carries a charge under this global Uð1Þ, and
states created by the action of this operator also carry this
global charge.
We can understand the dynamics of this sector and, in

particular, the structure of the ground state of the theory as a
function of the charge Q by using the bulk Q-ball solution.
Small charge: From the bulk description, we see that for

very small charges, the solution is a gas of free particles.
The energy increases proportionally to Q as E ¼ mϕQ
[here mϕ is related to the operator dimension by (36)].
Intermediate charge: As we increase the charge, there is

a critical value (corresponding toQmin) at which the ground
state becomes a condensate carrying charge Q. The Q-ball
is localized in the interior of the AdS space and has a
nontrivial dependence on the r coordinate. This indicates
that the three-dimensional field theory condensate has a
nontrivial dependence on scale.
At the transition point, the condensate has an energy

E ¼ mϕQ. Therefore, the transition does not lead to a
discontinuous jump in the energy. However, the condensate
has an energy dependence of the form dE

dQ ¼ ω, in contrast

to the free gas, which has the relation dE
dQ ¼ mϕ. Since the

transition occurs at a value of ω that is not equal to mϕ (as
seen in Figs. 2 and 3), we see that there is a discontinuity in
dE
dQ. This is therefore a second-order phase transition. As the
charge increases further, the condensate becomes increas-
ingly bound until the binding energy per particle reaches a
maximum value of mϕ − ωmin.
Large charge: As we continue to increase the charge, the

binding energy begins to decrease and vanishes at Qmax.
Beyond this point, additional charge is not absorbed into
the condensate. However, the condensate does not evapo-
rate; instead, the condensate is surrounded by a gas of
free particles. More precisely, the condensate carries a
charge Qmax, and the remaining charge Q −Qmax is in free
particles.

As mentioned above, the condensate has an energy
dependence of the form dE

dQ ¼ ω. Since the transition occurs
exactly at ω ¼ mϕ, the energy dependence is dE

dQ ¼ mϕ.
This is equal to the change in energy when we add a free
particle. This implies that dE

dQ is continuous. However, for

the gas around the Q-ball, d2E
dQ2 ¼ 0, while for the Q-ball,

d2E
dQ2 ¼ dω

dQ. Hence,
d2E
dQ2 is discontinuous, which implies that

this is a third-order phase transition.

VIII. Q-BALLS IN n-DIMENSIONAL AdS

The above analysis has assumed a 3þ 1 AdS space,
which maps to a 2þ 1 conformal field theory (CFT). In this
section, we outline how our results generalize to ðn− 1Þþ 1
AdS spaces related to ðn − 2Þ þ 1 CFTs. The AdS geom-
etry in n dimensions is parametrized as

ds2 ¼ aðrÞdt2 − bðrÞdr2 − r2dΩ2
n−2; ð37Þ

with

aðrÞ ¼ 1þ r2

l2
n
; bðrÞ ¼ 1

1þ r2

l2n

; ð38Þ

where ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− ðn−2Þðn−1Þ

Λ

q
and dΩ2

n−2 is the measure on the

(n − 2)-sphere. Assuming a spherically symmetric solu-
tion, as before, the action becomes

S ¼ Sn−2ϕ2
0

Z
dtdrrðn−2Þ

�
1

2

ω2f2

1þ r2=l2
n
−
1

2
f02ð1þ r2=l2

nÞ

− Ūðϕ2
0f

2=2Þ
�
; ð39Þ

where

Ū ¼ 1

2
ðm2

ϕ − ω2
0Þf2ð1 − f2Þ2 þ ω2

0

2
f2: ð40Þ

We can then consider f to be a particle rolling in a time-
dependent potential, as before, with the Lagrangian

L ¼ rðn−2Þ
�
1

2

ω2f2

1þ r2=l2
n
−
1

2
f02ð1þ r2=l2

nÞ

−
1

2
ðm2

ϕ − ω2
0Þf2ð1 − f2Þ2 − ω2

0

2
f2
�
: ð41Þ

Transforming to dimensionless parameters ρ, Ω, Ω0, and

λn ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ϕ − ω2
0

q
, the Lagrangian can be written as
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L ¼ ρðn−2Þ

ðm2
ϕ − ω2

0Þn−3
�
1

2

Ω2f2

1þ ρ2=λ2n
−
1

2
ðf0Þ2ð1þ ρ2=λ2nÞ

−
1

2
f2ð1 − f2Þ2 −Ω2

0

2
f2
�
: ð42Þ

The equation of motion for fðρÞ is

f00 þ n − 2

ρ

1þ ð n
n−2Þðρ2=λ2nÞ

1þ ρ2=λ2n
f0

¼ f
1þ ρ2=λ2n

�
1þ Ω2

0 −
Ω2

1þ ρ2=λ2n
− 4f2 þ 3f4

�

≡ −
∂V
∂f

; ð43Þ

where Vðf; ρÞ is the effective potential, given explicitly by

Vðf; ρÞ ¼ f2

2ð1þ ρ2=λ2nÞ
�

Ω2

1þ ρ2=λ2n
−Ω2

0 − ð1 − f2Þ2
�
ð44Þ

after imposing Vð0;∞Þ ¼ 0. The effective potential is
unchanged from the n ¼ 4 case aside from the substitution
λ → λn. Defining the energy-like quantityW as in Eq. (27),
we find thatW is approximately conserved for the thin-wall
solutions and the approximate thin-wall profile for the
n-dimensional case is then given by

fT;nðρÞ ¼
fþ;nðρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2e2ðρ−RÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2=λ2n

pq ; ð45Þ

with

fþ;nðρÞ≡ 2

3
þ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3Ω2

1þ ρ2=λ2n
− 3Ω2

0

s
: ð46Þ

Using the equations of motion for f [Eq. (43)], we find

dW
dρ

¼−
ðn−2Þ

ρ

1þð n
n−2Þρ2=λ2n

1þρ2=λ2n
f02

þ ρf2

λ2nð1þρ2=λ2nÞ2
�
Ω2

0−
2Ω2

1þρ2=λ2n
þð1−f2Þ2

�
: ð47Þ

By integrating from ρ ¼ R − z0 to ρ ¼ ∞, we find

W∞ −WR−z0 ¼ −ðn− 2Þ
Z

∞

R−z0

dρ
ρ

1þ ð n
n−2Þρ2=λ2n

1þ ρ2=λ2n
f02

þ
Z

∞

R−z0
dρ

ρf2

λ2nð1þ ρ2=λ2nÞ2
�
Ω2

0 −
2Ω2

1þ ρ2=λ2n

þ ð1− f2Þ2
�
: ð48Þ

Once again, we compute the leading-order effect of the
friction by evaluating these integrals using the transition
function defined in Eq. (45), which results in the relation

Ω2
0−

Ω2

1þR2

λ2n

¼ λ2nR2ðΩ2 lnð4Þ−2nþ3Þ−ðn−2Þλ4n−ðn−1ÞR4

2Rλnðλ2nþR2Þ3=2 : ð49Þ

This relation is derived in more detail in the Appendix.
Note that this relation exactly matches the previous implicit
equation for R [Eq. (34)] for n ¼ 4. Figure 6 shows the
numerical and predictedQ-ball radius as a function of ω for
n ¼ 3 and n ¼ 5, with λn ¼ 500 and Ω0 ¼ 1=

ffiffiffi
2

p
for both

cases. These results show that AdS Q-balls can be con-
structed in various dimensions using these methods.
Consequently, the qualitative analysis of their dual CFTs
follows, including similar-looking phase diagrams to those
shown in the previous section.

FIG. 6. Numerical calculations (red dashed) compared to analytic predictions (blue) for λn ¼ 500, Ω0 ¼ 1=
ffiffiffi
2

p
. Left: Q-ball radius R

as a function of ω for n ¼ 3. Right: Q-ball radius R as a function of ω for n ¼ 5.
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IX. DISCUSSION AND CONCLUSION

In this article, we have studied Q-balls in a fixed AdS
background, with particular focus on thin-wallQ-balls. The
scalar field is subject to a sextic potential (which also
supports Q-balls in a flat background), but the general
features are expected to apply to most (if not all) potentials
that support thin-wall solitons. We have shown that the AdS
background significantly modifies the physics of these
Q-balls, even if gravity is not dynamical. In particular,
Q-balls have a maximal radius in AdS, unless the potential
is of a very special type.
We have also found new phases of the scalar field

that composes the Q-balls that do not exist in flat space.
Specifically, for large charges, the lowest-energy field
configuration is a Q-ball surrounded by a gas of massive
particles, while in flat space the ground state for larger
charge is just a Q-ball with larger mass and radius.
The transitions between the states are also of a novel

type. At low charges, as the charge is increased, there is a
zero-temperature second-order phase transition to a Q-ball
state, similar to flat-space systems. Curiously, at high
charges, there is a third-order phase transition to the mixed
Q-ball scalar gas state mentioned above. This phase
transition has no flat-space analogue. These results imply
that the dual boundary theory must also have similar
transitions. It would be quite interesting to explore whether
scar states, similar to those related to other nontopological
solitons in AdS, can be related to AdS Q-balls. If so, one
should be able to understand this third-order phase tran-
sition in the context of scar states.
In this work we have ignored backreaction on the

geometry. This implies that the gravitational interactions
of order 1

Mpl
have been dropped, while keeping the curvature

scale of the AdS constant. In terms of the original AdS/CFT
correspondence, this amounts to taking the N of the dual
gauge group to infinity while keeping the ’t Hooft coupling
g2N fixed.
Including dynamical gravity on the AdS side would

be an important next step to see if these novel phase
transitions survive the inclusion of gravity. It would also be
interesting to connect these solutions to the known boson
star solutions. Finally, there is cosmological motivation to
extend these solutions to a full characterization of Q-balls
in de Sitter space [29]. We leave these and other questions
for future work.
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APPENDIX: DERIVATION OF Q-BALL
RADIUS FORMULA

In order to derive Eq. (49), we must evaluate

W∞ −WR−z0 ¼ −ðn− 2Þ
Z

∞

R−z0

dρ
ρ

1þ ð n
n−2Þρ2=λ2n

1þ ρ2=λ2n
f02

þ
Z

∞

R−z0
dρ

ρf2

λ2nð1þ ρ2=λ2nÞ2
�
Ω2

0 −
2Ω2

1þ ρ2=λ2n

þ ð1− f2Þ2
�
: ðA1Þ

We assume that R ≫ λn. The first integral on the right-hand
side can be approximated by noting that the dominant
contribution occurs about the transition between minima at
ρ ¼ R. We define the function ft;nðρÞ as

ft;nðρÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2e2ðρ−RÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þR2=λ2n

pq ; ðA2Þ

so that fðρÞ ¼ fþ;nðρÞft;nðρÞ. Around ρ ¼ R, we have
f0ðρÞ ≈ fþ;nðρÞf0t;nðρÞ. Since the integrand is exponentially
suppressed below ρ ¼ R, we can integrate from ρ ¼ 0 to∞
rather than from R − z0 to ∞. This integral can be
performed analytically, and after dropping another expo-
nentially suppressed term in the result it yields

ðn−2Þ
Z

∞

R−z0

dρ
ρ

1þð n
n−2Þρ2=λ2n

1þρ2=λ2n
f02

≈−
λnðλ2nðn−2ÞþnR2Þ

�
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3λ2nΩ2

λ2nþR2−3Ω2
0

q 	
12Rðλ2nþR2Þ3=2 : ðA3Þ

The second integral in Eq. (A1) can be evaluated by
expanding the integrand about ρ ¼ R to first order in ρ − R
[except for the exponential piece in ft;nðρÞ since its series
expansion does not converge; however, we will still be able
to do these integrals analytically while including this
exponential piece]. The resulting expression will be very
large and have a dependence on z, but this dependence will
match exactly with the z dependence on the left-hand side
of Eq. (A1) and cancel out.
On the left-hand side, we need to expandWðρÞ, given by

Eq. (27), about ρ ¼ R − z; the W∞ piece is simply zero
since the profile and potential vanish at infinity. It will be
convenient to instead write ρ ¼ Rð1 − aÞ, where a ¼ z=R,
and expand about a ¼ 0. Once again, we do not expand the
exponential part of ft;nðρÞ since this does not converge, but
we will find that this just leads to extra exponentially
suppressed terms, which can be dropped. After doing this
substitution and expansion, we can send a → z=R and then
expand the resulting expression about z ¼ 0. Once again,
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this results in a very large expression with some z
dependence.
Noting that W∞ ¼ 0, we can rewrite Eq. (A1) as

WR−z0−ðn−2Þ
Z

∞

R−z0

dρ
ρ

1þð n
n−2Þρ2=λ2n

1þρ2=λ2n
f02

þ
Z

∞

R−z0
dρ

ρf2

λ2nð1þρ2=λ2nÞ2
�
Ω2

0−
2Ω2

1þρ2=λ2n
þð1−f2Þ2

�
¼0:

ðA4Þ

Plugging in our expressions for each term and expanding in
powers of z, we find that the z dependence exactly cancels
out to second order. To find an implicit expression for the
Q-ball radius to leading order in 1=R, we first rewrite λn in

terms of a new free parameter σ via λn ¼ σR. We then
search for an equation of the form

Ω2
0 −

Ω2

1þ σ−2
¼ f0ðn; σÞ þ

1

R
f1ðn; σÞ; ðA5Þ

whichmirrors the formof the radius relation in [14] with 1=R
corrections. Enforcing this relation on Eq. (A4), we find

f0ðn;σÞ¼ 0;

f1ðn;σÞ¼
1þ2σ4−nð1þσ2Þ2þσ2ð3þΩ2 lnð4ÞÞ

2σð1þσ2Þ3=2 : ðA6Þ

Plugging these results into Eq. (A5) and sending σ → λn=R
reproduces Eq. (49).
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